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Abstract: Impaired glucose tolerance associated with obesity causes postprandial hyperglycemia 
and can lead to type 2 diabetes. To study the differences in liver metabolism in the healthy and 
obese states, we constructed and analyzed trans-omic glucose-responsive metabolic networks 
with layers for metabolites, expression data for metabolic enzyme genes, transcription factors, 5 
and insulin signaling proteins from the livers of healthy and obese mice. We integrated multi-
omic time-course data from wild-type (WT) and leptin-deficient obese (ob/ob) mice after orally 
administered glucose. In WT mice, metabolic reactions were rapidly regulated (within 10 
minutes of oral glucose administration) primarily by glucose-responsive metabolites, especially 
ATP and NADP+, which functioned as allosteric regulators and substrates of metabolic enzymes, 10 
and by Akt-dependent glucose-responsive genes encoding metabolic enzymes. In ob/ob mice, 
most rapid regulation by glucose-responsive metabolites was absent; instead, glucose 
administration produced slow changes in the expression of metabolic enzyme-encoding genes to 
alter metabolic reactions in a time scale of hours. Few common regulatory events occurred in 
both the healthy and obese mice. Thus, our trans-omic network analysis revealed regulation of 15 
liver metabolism in response to glucose is mediated through different mechanisms in the healthy 
and obese states: Rapid changes in allosteric regulators and substrates and in gene expression 
dominate the healthy state, and slow transcriptional regulation dominates the obese state.  

 

One Sentence Summary: Rapid changes in regulatory metabolites and gene expression 20 
dominate the healthy state, and slow transcriptional regulation dominates the obese state.   

 

Main Text:  
The ability to produce stable blood glucose is indispensable for human life and health (1–3). 
Although a large amount of glucose enters the body through meals, changes in organ metabolism 25 
maintains glucose homeostasis (4–6). Impairment of the regulation of organ metabolism, 
commonly due to obesity and insulin resistance, results in hyperglycemia and development of 
type 2 diabetes mellitus (4–6). The liver, into which dietary glucose flows directly through the 
portal vein, has a primary function in maintaining glucose homeostasis (7, 8). Indeed, the liver is 
both a glucose-producing organ, supplying glucose for extra-hepatic organs, and glucose-30 
utilizing organ, metabolizing one third of orally administered glucose (8, 9). Oral intake of 
glucose produces drastic changes in the liver metabolism— not only glucose metabolism but also 
lipid and amino-acid metabolism, collectively glucose-responsive metabolism. The mechanisms 
regulating glucose-responsive metabolism in the liver and how these mechanisms are altered in 
obesity have yet to be identified.  35 

Metabolism is a set of chemical reactions that convert one metabolite into another. Chemical 
reactions in metabolism, denoted here as metabolic reactions, involve metabolites, which 
function as substrates, products, and allosteric regulators of the metabolic enzymes that catalyze 
the reactions. Metabolic reactions are also regulated by cellular processes that affect the amount 
of the enzyme (for example, changes in gene expression) or posttranslational modifications of 40 
the enzymes (for example, phosphorylation). The amount and phosphorylation status of 
metabolic enzymes are regulated by transcription factors that control gene expression and 
signaling molecules that control transcription factor activity and metabolic enzyme activity 
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through phosphorylation. Therefore, metabolic reactions are regulated by an integrated network 
consisting of metabolites, the metabolic enzymes and their phosphorylation status, transcription 
factors and their activation status, and signaling molecules that mediate phosphorylation of the 
metabolic enzymes and the transcription factors. We propose that regulatory mechanisms 
controlling metabolic reactions in the liver and the alterations in these processes that are 5 
associated with obesity can be investigated by integrating simultaneous measurements of 
metabolite abundance, expression of genes for and phosphorylation status of metabolic enzymes 
and transcription factors, and the abundance and activation status of signaling molecules into a 
multi-layered trans-omic network. 

Omic measurements, such as metabolomic, transcriptomic, and proteomic measurements, 10 
enable large-scale measurement of molecules in each layer of the multi-omic network (10–14). 
We have applied an approach that we call ‘trans-omic’ analysis for the construction of global 
biochemical network using simultaneously measured multi-omic data based on direct molecular 
interaction (15–17). We used this approach to construct an insulin-induced regulatory trans-omic 
network for metabolism of FAO hepatoma cells by integrating simultaneously measured multi-15 
omic measurements (15, 18). With this trans-omic network, we discovered selective regulation 
of the trans-omic network that depended on doses of insulin. However, the regulatory trans-omic 
network for glucose-responsive metabolic reactions of the liver and the alterations in this 
regulatory network that are associated with obesity have yet to be identified. 

Here, to reveal the global regulatory mechanisms controlling glucose-responsive metabolism 20 
in the liver in the healthy and obese states, we constructed regulatory trans-omic networks for 
glucose-responsive metabolic reactions in the liver of wild type (WT) and leptin-deficient obese 
(ob/ob) mice. We administered glucose to the mice orally and then obtained simultaneously 
measured multi-omic data, which we integrated into a trans-omic network. The ob/ob mice are a 
widely used model of obesity and insulin resistance, because these mice become profoundly 25 
obese by overeating due to deficiency of the anorexigenic hormone leptin (19). We found that, in 
WT mice, glucose-responsive metabolic reactions were mainly regulated by rapid changes in 
metabolites, which function as allosteric regulators and substrates of metabolic enzymes, and by 
rapid changes in Akt-dependent gene expression of metabolic enzymes. By contrast, in ob/ob 
mice, most of the rapid changes in metabolites were absent. Instead, metabolic reactions were 30 
regulated by a slower change in gene expression, which was not seen in WT mice. Thus, we 
identified profoundly different mechanisms of glucose-responsive regulation of metabolic 
reactions in the liver in the healthy and obese states. 

 

Results 35 

The pipeline of the construction of regulatory trans-omic network for glucose-responsive 
metabolic reactions  
In this study, we constructed the regulatory trans-omic networks for glucose-responsive 
metabolic reactions in the liver of WT and ob/ob mice, and examined differences in regulatory 
mechanisms controlling these reactions (Fig. 1). Metabolic reactions are regulated by an 40 
integrated network consisting of (i) metabolites as allosteric regulators, substrates, and products, 
(ii) metabolic enzymes, (iii) transcription factors, and (iv) signaling molecules (fig. S1). Here, we 
measured metabolite abundance, gene expression, and protein abundance and phosphorylation of 
signaling molecules by multi-omic analyses, enzymatic assays, and Western blotting in the liver 
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and blood of WT and ob/ob mice following oral glucose administration. We used these data and 
bioinformatic resources to construct regulatory trans-omic networks for glucose-responsive 
metabolic reactions of the liver in WT and ob/ob mice (Fig. 1). 

We orally administered glucose to 16 h-fasting WT and ob/ob mice, sacrificed the animals, 
and collected the liver and blood at 0, 20, 60, 120, 240 min after administration (fig. S2A). We 5 
analyzed the liver samples by performing metabolomics, transcriptomics, and Western blotting, 
and analyzed blood samples by performing metabolomics (fig. S2B). The liver samples provided 
data for phosphorylation-mediated changes in signaling molecules, transcription factors, and 
enzymes involved in insulin signaling (Western blotting data), the gene expression information 
of transcription factors and enzymes (transcriptomic data), and metabolite abundance 10 
information (metabolomic data). We defined “glucose-responsive molecules” as the molecules 
that were quantitatively changed by oral glucose administration. Metabolites and genes that 
showed an absolute log2 fold change larger than 0.585 (20.585 = 1.5) and an FDR-adjusted p 
value (q value) less than 0.1 at any time point compared to the fasting state (0 min) were defined 
as glucose-responsive. To investigate differences in the regulatory networks, we focused on the 15 
relative glucose-responsiveness of molecules, meaning the change from fasting state, in the WT 
and ob/ob mice, rather than the differences in the absolute amounts of molecules, which are 
described in Supplementary Text: The differences of the amounts of molecules between WT 
mice and ob/ob mice before oral glucose administration.   

We integrated the glucose-responsive molecules into a multi-omic layered network, and 20 
identified the regulatory connections among the layers to generate the regulatory trans-omic 
networks for glucose-responsive metabolic reactions of the liver in WT and ob/ob mice. The 
regulatory trans-omic network consisted of layers of insulin signaling molecules (Insulin signal), 
transcription factors (TF), the gene expression and phosphorylation of metabolic enzyme 
(Enzyme), metabolic reactions (Reaction), metabolites (Metabolite), and the regulatory 25 
connections between the layers (Fig. 1). By comparing the regulatory trans-omic networks, we 
identified common elements in the glucose-responsive liver metabolic networks between WT 
and ob/ob mice, which we referred to as the “common network” and show with green, as well as 
identified glucose-responsive regulatory networks distinct to the healthy (WT-specific network, 
blue) or obese states (ob/ob-specific network, red).  30 

 

Identification of glucose-responsive metabolites 
We measured metabolomic changes in the liver of WT and ob/ob mice following oral glucose 
administration using capillary electrophoresis mass spectrometry (CE-MS) and liquid 
chromatography mass spectrometry (LC-MS) (Fig. 2, figs. S3 and S4, tables S1 and S2, and 35 
Supplementary Text). Using CE-MS, we quantified 161 polar metabolites, including 
carbohydrates, amino acids, and nucleic acids; using LC-MS, we quantified 15 lipids; and, using 
enzymatic assays, we quantified glycogen, a polar metabolite, and triglyceride, a lipid. We 
identified glucose-responsive metabolites in the liver of WT and ob/ob mice that exhibited 
statistically significant changes in response to oral glucose administration (Fig. 2). Many 40 
metabolites were not glucose responsive: Their abundance did not change statistically 
significantly from the fasting values (table S1). We categorized statistically significant changes 
into increased and decreased groups. To define an increase or decrease in time courses with 
changes in both directions at different time points, we used the direction of change compared to 
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time 0 at the earliest time point that showed a significant change. We also analyzed metabolites 
in mice given an equivalent amount of water orally, which showed no changes except for 
isethionate in ob/ob mice (table S1), confirming that the changes we detected reflected a 
physiological response to the orally administered glucose. 

Of the 162 polar metabolites, we determined that a small proportion of them increased or 5 
decreased in both WT and ob/ob mice: 7 increased in both WT and ob/ob mice and 8 other 
metabolites decreased (Fig. 2B, table S1). Glucose-6-phosphate (G6P), the product of first step 
of glycolysis, increased in both WT and ob/ob mice (Fig. 2C). Even though the absolute amounts 
of G6P differed between WT and ob/ob mice, G6P was a glucose-responsive metabolite that 
increased in both. Metabolites that decreased in both mice included the amino acids isoleucine 10 
(Ile), leucine (Leu), and valine (Val), the nucleotide sugar UDP-glucose, and the ketone body 3-
hydroxybutyrate (3-OH-butyrate) (Fig. 2C). Although Leu had the significantly increased and 
decreased time points in both, it was categorized as a decreased metabolite because it decreased 
at the earliest time point. Metabolites that increased only in WT mice included ATP; metabolites 
that decreased only in WT mice included NADP+ (Fig. 2C). We also measured the time courses 15 
of lipidomic changes in the liver of WT and ob/ob mice, but no lipids showed significant 
changes in response to oral glucose administration (fig. S4, table S2).  

Our metabolomic analysis revealed that the number of glucose-responsive metabolites 
specific to WT mice (42 = 23 increased + 19 decreased) was larger than that specific to ob/ob 
mice (24 = 18 increased + 6 decreased) and that only a limited number were common to both 20 
mice (15 = 7 increased + 8 decreased). ATP and NADP+ are notable WT-specific glucose-
responsive metabolites because these two cofactors are involved in hundreds of metabolic 
reactions. This result suggested that ATP and NADP+ regulate many glucose-responsive 
metabolic reactions in WT mice and that the lack of glucose responsiveness in these two 
metabolites in ob/ob mice could produce a large difference in the regulatory mechanisms 25 
between the healthy and obese states.  

We also measured the metabolomic changes in the blood of WT and ob/ob mice, and 
identified glucose-responsive metabolites in the blood (fig. S5, table S3, and Supplementary 
Text). Most metabolites in the blood did not show a significant change in response to oral 
glucose administration. Only nicotinamide, proline, and threonine changed specifically in the 30 
blood of WT mice; all increased. Only alpha-aminoadipate, 2’-deoxycytidine, and glycerol-3-
phosphate changed specifically in the blood of ob/ob mice (fig. S5A), and none showed a change 
in common to both. In addition, only the changes in 3-OH-butyrate, Val, Leu, Ile, 3-Hydroxy-3-
methylglutarate (HMG), and creatine were highly correlated between the blood and the liver in 
both WT and ob/ob mice and the other metabolites did not show high correlations (fig. S5B), 35 
indicating that contamination of blood in the liver samples had a negligible effect on the liver 
data. 

 

Identification of glucose-responsive genes and inference of regulatory connections between 
TFs and genes 40 

We used RNA sequencing (RNA-seq) to measure the time courses of transcriptomic changes in 
14,292 genes in the liver of WT and ob/ob mice following oral glucose administration (Fig. 3, fig. 
S6, Table 1, and tables S4 and S5). We identified glucose-responsive genes in the liver of WT 
and ob/ob mice (Fig. 3) and performed pathway enrichment analysis of these genes (Table 1 and 
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table S5). Our transcriptomic analysis revealed that the number of ob/ob mice-specific glucose-
responsive genes is larger than that of WT mice-specific glucose-responsive genes: ob/ob, 1933 
= 791 (increased) + 1142 (decreased); WT, 677 = 327 (increased) + 350 (decreased). To confirm 
that the glucose-responsive genes show smaller changes or no changes to water administration, 
we measured the expression of a subset of glucose-responsive genes encoding enzymes involved 5 
in glycolysis, gluconeogenesis, lipid synthesis, and cholesterol synthesis (table S6). Except for a 
decrease of genes involved in cholesterol metabolism in ob/ob mice (fig. S7, A and B), we did 
not observe significant changes in response to water. Of the glucose-responsive genes, we placed 
glucose-responsive genes encoding metabolic enzymes in the Enzyme layer of the trans-omic 
network, and those encoding transcription factors in the TF layer (see Fig. 5). 10 

Similar to the metabolites, we found that only a small proportion of genes were regulated in 
common between the two states: 143 genes (1% of the total quantified genes) were upregulated 
and 163 (1%) were downregulated in both (Fig. 3B). Genes upregulated in common included 
fatty acid synthase (Fasn) (Fig. 3C). Downregulated genes common to both mice included the 
gene encoding glucose-6-phosphatase (G6pc), a key metabolic enzyme of gluconeogenesis (20) 15 
(Fig. 3C). 

Pathway enrichment analysis showed that the 327 genes that were specifically upregulated in 
WT mice were enriched for enzymes involved in steroid biosynthesis (Table 1), indicating an 
increase in cholesterol biosynthesis. Furthermore, 168 genes that were upregulated in WT mice 
and downregulated in ob/ob mice were enriched for enzymes involved in steroid biosynthesis 20 
and terpenoid backbone synthesis, such as 3-hydroxy-3-methylglutaryl CoA synthase 1 
(Hmgcs1) and acyl-CoA: cholesterol acyltransferase 2 (Acat2) (Fig. 3C, pink boxes). The 
responses of the upregulated genes in cholesterol synthesis were rapid and transient (Fig. 3C). 
The WT mice-specific response also included increased expression of the gene for ATP-citrate 
lyase (Acly), which is involved in the synthesis of cytosolic acetyl-CoA and oxaloacetate. 25 
Cytosolic acetyl-CoA is the building block for de novo synthesis of fatty acids and sterols. In the 
ob/ob mice, no pathway was enriched in 791 glucose-responsive genes that were specifically 
upregulated in this state. However, genes specifically upregulated in ob/ob mice included those 
involved in glycolysis, such as glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and 
pyruvate kinase (Pklr), and those involved in lipid synthesis, such as glycerol-3-phosphate 30 
dehydrogenase 2 (Gpd2) and acetyl-CoA carboxylase beta (Acacb) (Fig. 3C). Gpd1 increased in 
expression in ob/ob mice, but decreased in the WT mice (Fig. 3C, pink box). Gpd1, Acat2, and 
Hmgcs1 are notable, because these genes exhibited different directions of regulation in the obese 
and healthy states.  

Pathway enrichment analysis revealed a decrease in the expression of genes associated with 35 
the metabolism of linoleic acid, arachidonic acid, and vitamin A (retinol metabolism) in the WT 
mice (Table 1). Genes associated with ribosomes were the most significantly enriched in the 
downregulated genes in ob/ob mice (Table 1), suggesting that overall protein synthesis in the 
liver was reduced in response to glucose in the obese state.  

To reveal the regulatory mechanism for the glucose-responsive genes, we inferred the 40 
regulatory connections between transcription factors and genes using hierarchical clustering 
analysis of gene expression time courses and bioinformatic analysis of binding motifs in the 
transcription factor database TRANSFAC (21, 22) (Fig. 3C, fig. S6, tables S7 and S8, and 
Supplementary Text). If a transcription factor binding motifs were enriched in the promoter 
regions of the genes in a cluster, we inferred the regulatory connections between the transcription 45 
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factor and the genes in the cluster. For example, we identified the inferred regulatory connections 
between sterol regulatory element binding factor (Srebf) and some of the WT mice-specific 
upregulated genes, and between early growth response (EGR1) and some of the ob/ob mice-
specific upregulated genes (Fig. 3C). We compared the inferred regulatory connections between 
transcription factors and genes with those predicted from chromatin immunoprecipitation (ChIP) 5 
experimental data obtained from the ChIP-Atlas database (23), and most of the inferred 
connections of the transcription factors significantly overlapped with those predicted from ChIP 
data (fig. S6C and table S9). The inferred regulatory connections between glucose-responsive 
transcription factors and glucose-responsive genes encoding metabolic enzymes served as the 
inter-layer regulatory connections between the TF layer and the Enzyme layer in the trans-omic 10 
network (see Fig. 5).  

 

Identification of glucose-responsive phosphorylation of insulin signaling molecules 
Many metabolic reactions are regulated by phosphorylation either at the level of the enzyme 
directly through enzyme phosphorylation or at the level of the transcription factor to regulate 15 
expression of the enzyme encoding gene. Phosphorylation of enzymes and transcription factors, 
is regulated by signaling molecules. Glucose stimulates the release of insulin, which activates a 
signaling in the liver. Thus, we measured the amount of 3 proteins (insulin receptor and insulin 
receptor substrate 1 and 2) and the phosphorylation of 11 enzymes, transcription factors, and 
signaling molecules in the insulin pathway from the liver of WT and ob/ob mice following oral 20 
glucose administration (Fig. 4, fig. S8, and table S10).  

We identified those proteins that exhibited glucose-responsive phosphorylation that were 
common in liver from both WT and ob/ob mice and those that changed only in the WT or ob/ob 
mice and those that changed in opposing directions between the healthy and obese states. 
Changes in common were increased phosphorylation of Erk and ribosomal protein S6 and 25 
decreased phosphorylation of glycogen phosphorylase (Gp) and glycogen synthase (Gs), 
indicating a possible increase in protein synthesis and glycogen production. Phosphorylation of 
Akt, insulin receptor β (Irβ), forkhead box protein O1 (Foxo1), and glycogen synthase kinase 3 β 
(Gsk3β) transiently increased in WT mice but not in ob/ob mice. Several proteins exhibited 
changes in opposite directions between WT and ob/ob mice. We found that the amount of 30 
phosphorylated Irβ (pIrβ) and insulin receptor substrate 1 (pIrs1) increased in WT mice and 
decreased in ob/ob mice in response to oral glucose administration. The amounts of Irs1 and Irs2 
decreased in WT mice and increased in ob/ob mice. These opposing responses at the early parts 
of the insulin pathway could contribute to the divergence in the responses, such as the increase in 
phosphorylated Akt only occurring in the WT mice in response to oral glucose administration. 35 
We confirmed that the phosphorylation of Akt and Erk do not increase following oral water 
administration (fig. S7C). Of the molecules showing glucose-responsive phosphorylation, we 
placed pGs and pGp in the Enzyme layer of the trans-omic network, pFoxo1 in the TF layer, and 
the others in the Insulin signal layer (see Fig. 5). 

 40 

The construction of regulatory trans-omic network for glucose-responsive metabolic 
reactions 
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Using the glucose-responsive molecules from the liver analyses, we constructed the regulatory 
trans-omic network for glucose-responsive metabolic reactions consisting of five layers— 
Insulin signal, TF, Enzyme, Reaction, and Metabolite— and connections between the layers 
representing regulatory events (Fig. 5, A and B, and tables S11 and S12). The Insulin signal layer 
contains those signaling molecules showing glucose-responsive phosphorylation. The TF layer 5 
contains the “glucose-responsive transcription factors”, which were defined as the transcription 
factors encoded by glucose-responsive genes or those with glucose-responsive phosphorylation. 
The Enzyme layer contains the “glucose-responsive metabolic enzymes”, which were defined as 
the metabolic enzymes encoded by glucose-responsive genes or those with glucose-responsive 
phosphorylation. The Reaction layer contains the “glucose-responsive metabolic reactions”, 10 
which were defined as metabolic reactions regulated by the glucose-responsive metabolites, 
glucose-responsive metabolic enzymes, or both. For example, dephosphorylation of G6P (EC 
3.1.3.9) was defined as a common glucose-responsive metabolic reaction in both WT and ob/ob 
mice, because dephosphorylation of G6P was regulated by a common glucose-responsive 
metabolite G6P and by a common glucose-responsive gene G6pc (fig. S1). The Metabolite layer 15 
contains the glucose-responsive metabolites. Using the information from the analysis of the liver 
in WT and ob/ob mice, we colored the nodes in each layer according to those with common 
changes in both WT and ob/ob mice and those with changes that were specific to the healthy or 
obese states. 

We then determined inter-layer regulatory connections between glucose-responsive molecules. 20 
The inter-layer connections from the Insulin signal layer to the TF layer and to the Enzyme layer 
were assigned according to the regulation of transcription factors or enzymes by kinases in the 
KEGG database (24, 25). The inter-layer connections from the TF layer to the Enzyme layer 
were based on the inferred regulatory connections of the genes encoding metabolic enzymes by 
transcription factors. Note that, among all the inferred regulatory connections, only those that 25 
connect to glucose-responsive transcription factors and glucose-responsive genes are shown. The 
inter-layer connections from the Enzyme layer to the Reaction layer were determined by 
matching metabolic reactions to their corresponding metabolic enzymes according to the KEGG 
database (24, 25). The inter-layer connections from the Metabolite layer to the reaction layer 
consisted of two types: regulatory connections mediated by allosteric regulators and regulatory 30 
connections mediated by the substrate or product of the reaction. Allosteric regulatory 
connections were assigned according to the BRENDA database (26), and substrate or product-
mediated regulatory connections were according to the KEGG database (24, 25). This trans-omic 
network included the regulatory connections for various metabolic pathways, such as glycolysis 
(fig. S9), glycogen metabolism (fig. S10), lipid synthesis (fig. S11), and cholesterol synthesis 35 
(fig. S12). 

Comparison of the regulatory trans-omic networks for glucose-responsive metabolic reactions 
between WT and ob/ob mice enabled identification of WT mice-specific (Fig. 5B, blue), ob/ob 
mice-specific (Fig. 5B, red), and common (Fig. 5B, green) glucose-responsive molecules and 
inter-layer regulatory connections. Overall, the numbers of WT mice-specific glucose-responsive 40 
molecules were larger than that of ob/ob mice-specific glucose-responsive molecules except for 
genes expression in Enzyme layer (Fig. 5B), suggesting that the response to glucose in the obese 
state not only is altered but involves a reduction in the healthy response. The number of WT 
mice-specific inter-layer regulatory connections between the Metabolite layer and the Reaction 
layer was also much greater than those in the ob/ob mice-specific connections, suggesting that 45 
changes in metabolites dominate in the healthy response to glucose. In contrast, the ob/ob-
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specific glucose-responsive molecules in the Enzyme layer and the number of ob/ob-specific 
inter-layer connections between the Enzyme layer and the Reaction layer were greater than those 
of WT mice, indicating that is a major area where the response to glucose differs in the obese 
state.  

We calculated the number of glucose-responsive metabolic reactions that were regulated by 5 
glucose-responsive metabolites in the metabolite layer, by glucose-responsive genes in the 
Enzyme layer, or by both in WT and ob/ob mice following oral glucose administration (Fig. 5, C 
and D). This analysis showed that metabolite-mediated regulation dominates the response to 
orally administered glucose in WT mice and that the changes in gene expression play a larger 
role in the response of ob/ob mice (Fig. 5C). The glucose-responsive metabolites specific to WT 10 
mice included the cofactors ATP and NADP+, and a large number of glucose-responsive 
metabolic reactions were regulated by these metabolites (216 reactions by ATP and 95 reactions 
by NADP+) (Fig. 5D and table S11). Because metabolites only effectively change enzyme 
activity when the metabolite concentration is not saturating, we quantitatively evaluated 
metabolite concentration compared to binding affinity, Km and Ki, for each metabolic reaction 15 
(fig. S13, table S13) to infer binding site saturation (27). We evaluated the saturation of ATP and 
NADP+ for each metabolic reaction with a binding affinity in the BRENDA database (26): ATP 
was not saturating in 41 of 81 of the glucose-responsive metabolic reactions regulated by ATP, 
such as the conversion of F6P to fructose 1,6-bisphosphate (F1,6P) in glycolysis, and NADP+ 
was not saturating in 3 of 12 of glucose-responsive metabolic reactions regulated by NADP+ (fig. 20 
S13), indicating that many of these inter-layer regulatory connections can be effective in WT 
mice. Indeed, together these two metabolites accounted for 50% of the regulatory connections 
between the Metabolite layer and the Reaction layer in WT mice and likely account for the much 
lower number of connections between these two layers in ob/ob mice. Although there were fewer 
inter-layer connections between the TF layer and the Enzyme layer in ob/ob mice, the number of 25 
metabolic enzyme-encoding genes that were specifically regulated in the ob/ob mice was greater 
than the number in the WT mice. Thus, glucose-responsive metabolites, especially coenzymes, 
such as ATP and NADP+, played a central role in regulation of metabolic reactions in WT mice, 
and glucose-responsive genes contributed a greater part of the response in ob/ob mice. 

 30 

Differences in the regulatory trans-omic networks between WT and ob/ob mice 
To extract the essential differences in the regulatory networks of glucose-responsive metabolic 
reactions between WT and ob/ob mice, we condensed the metabolic reactions in the regulatory 
trans-omic networks according to the metabolic pathways through the following three procedures 
(Fig. 6, fig. S14, and table S14). First, we collected the related metabolic reactions in a specific 35 
metabolic pathway into one “metabolic pathway node” according to the KEGG metabolic map. 
Second, we selected metabolic pathway nodes that exhibited statistically significant associations 
with any glucose-responsive molecule (table S14) and created a “Pathway” layer with the nodes 
and their regulatory connections (Fig. 6A). We then classified the glucose-responsive Pathway 
into 3 classes: carbohydrate, lipid, and amino acid (Fig. 6, B and C). As a further simplification, 40 
we also condensed the inter-layer regulations from the Metabolite layer to the Pathway layer by 
removing the inter-layer connections that regulated fewer than 5 metabolic reactions, and we 
limited the Enzyme layer to only those metabolic enzymes encoded by glucose-responsive genes. 
Using this process, we made the condensed regulatory trans-omic networks for glucose-
responsive reactions. 45 
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In the condensed regulatory trans-omic network of WT mice, we found three characteristics of 
the inter-layer regulatory connections that were specific to these mice (Fig. 6B): (i) from the 
Insulin signal layer to the TF layer and the Enzyme layer, pAkt is a major signaling molecule 
that directly regulates pFoxo1 and indirectly many glucose-responsive genes encoding metabolic 
enzymes; (ii) from the TF layer to the Enzyme layer, pFoxo1 and the glucose-responsive 5 
transcription factor-encoding genes Srebf, Klf4, and Homez regulate glucose-responsive genes 
encoding metabolic enzymes; and (iii) from the Metabolite layer to the Pathway layer, the 
glucose-responsive metabolites regulate many metabolic pathway nodes, especially in the 
carbohydrate and amino acid classes (see also fig. S14, A and B).  

Srebf is a key transcriptional regulator of genes encoding enzymes in steroid and cholesterol 10 
biosynthesis (28). Indeed, the lipid class was regulated by more connections between enzymes 
encoded by glucose-responsive genes than was the carbohydrate class, which was regulated by 
more connections with metabolites (fig. S14A). Furthermore, metabolic reactions that were 
regulated by Srebf-dependent glucose-responsive genes were enriched in terpenoid backbone 
biosynthesis and steroid biosynthesis (fig. S14B), both of which are related to cholesterol 15 
synthesis (fig. S12). Various pathway nodes were regulated by through pFoxo1, which alleviates 
the transcriptional activation of its glucose-responsive target genes (fig. S14B).  

In ob/ob mice, we found three characteristics of the inter-layer regulatory connections that 
were specific to these mice (Fig. 6C): (i) from the Insulin signal layer to the TF layer and the 
Enzyme layer, pErk is a signaling molecule that regulates the glucose-responsive transcription 20 
factor-encoding genes Egr1 and  glucose-responsive genes encoding metabolic enzymes 
downstream of this transcription factor; (ii) from the Enzyme layer to the Pathway layer, most of 
the regulatory connections are specific to ob/ob mice or opposing between WT mice and ob/ob 
mice; and (iii) from the Metabolite layer to the Pathway layer, there are few regulatory 
connections and the few include those common with the WT that regulate the carbohydrate class.  25 

We considered pErk as the primary regulatory connection between the Insulin signal layer and 
the TF layer, because the inter-layer regulatory connection from pErk to Egr1 and Egr1-
regulated genes were found only in ob/ob mice. Thus, although pErk was a common glucose-
responsive molecule in both WT and ob/ob mice, we assigned it to the obese regulatory network. 
This difference between the WT and ob/ob mice in the regulatory connections between pErk and 30 
the TF layer may relate to the sustained pErk in ob/ob mice but not in WT mice (Fig. 5) (29, 30). 
The connections between enzymes encoded by glucose-responsive genes and lipid class are more 
than that of carbohydrate class (fig. S14A), including the upregulated genes encoding metabolic 
enzymes involved in lipid synthesis, such as Fasn and Gpd1 (Fig. 3B and fig. S11) 

Comparing the WT and ob/ob condensed networks and their properties showed that the even 35 
these condensed networks reveal the reduction in regulatory connections in the ob/ob mice 
glucose response trans-omic network, especially between the Metabolite layer and the Pathway 
layer (Fig. 6, B and C, fig. S14A). Additionally, the changes in carbohydrate metabolic reactions 
were the most conserved between the healthy and obese states, such as the regulation of 
glycolysis and starch metabolism by G6P (figs. S9 and S10). The regulatory connections 40 
between the Enzyme layer and the Pathway layer were also largely different. Finally, the 
response was dominated by ATP and NADP+, which contributed regulatory connections to all 
node in the Pathway layer in WT mice (Fig. S14B). 

 

11 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/653758doi: bioRxiv preprint 

https://doi.org/10.1101/653758


Differences in temporal control of the regulatory trans-omic network 
We examined temporal control of glucose-responsive molecules and inter-layer regulatory 
connections by calculating their time constants (T1/2), an index of the temporal rate of response 
(Fig. 7 and fig. S15).  

The T1/2 of a glucose-responsive molecule was defined as the time when the response reached 5 
the half of the maximum amplitude for an increased molecule, or of the minimum amplitude for 
a decreased molecule (Fig. 7A). The T1/2 of an inter-layer regulatory connection was defined as 
the T1/2 of a glucose-responsive molecule that is the regulating molecule of the inter-layer 
regulatory connection, not the T1/2 of the regulated molecule. Responses with T1/2 values shorter 
than 20 min were defined “rapid”, and those with values longer than 60 min were defined “slow.” 10 
From the Enzyme layer to the Reaction layer, about the half of the inter-layer regulatory 
connections were rapid in both WT and ob/ob mice, and the number of the slow inter-layer 
regulatory connections was approximately 3-times larger in ob/ob mice (Fig. 7B and fig. S15A). 
From the Metabolite layer to the Reaction layer, most inter-layer regulatory connections were 
rapid in WT mice and these were reduced in ob/ob mice. 15 

We examined the T1/2 values of glucose-responsive molecules and of inter-layer regulatory 
connections in the condensed regulatory trans-omic networks (Fig. 7, C and D). In WT mice, 
most inter-layer regulatory connections were rapid (Fig. 7C). Approximately 50% of the inter-
layer regulatory connections between metabolic reactions and pFoxo1-dependent glucose-
responsive metabolic enzyme genes were rapid and all of the Srebf regulatory connections were 20 
rapid (fig. S15B). In contrast, in ob/ob mice (Fig. 7D), 50% of the inter-layer regulatory 
connections were slow between Egr1-dependent genes from the Enzyme layer to the metabolic 
reactions in the Pathway layer (fig. S15B). These results indicated that regulation of glucose-
responsive metabolic reactions is different not only in network structure, but also in temporal 
control between WT mice and ob/ob mice. 25 

 

Discussion 
In this study, we constructed regulatory trans-omic networks for glucose-responsive metabolic 
reactions in the liver of WT and ob/ob mice by integrating multi-omic data. Analysis of these 
networks revealed that regulation of glucose-responsive metabolic reactions in the liver was 30 
globally different between WT and ob/ob mice. In WT mice, glucose-responsive metabolic 
reactions were mainly regulated by the rapid response of glucose-responsive metabolites and by 
Akt-dependent glucose-responsive genes of metabolic enzymes. Glucose-responsive metabolites, 
such as coenzymes ATP and NADP+, rapidly regulated a large number of metabolic reactions in 
carbohydrate and amino acid metabolism, including the allosteric activation of glycogen 35 
synthesis and allosteric inhibition of glycolysis (figs. S9 and S10). A glucose-responsive gene 
Srebf was identified as the rapidly upregulated genes of metabolic enzymes related to the 
synthesis of cholesterol in the liver of WT mice (fig. S12), which could induce the synthesis of 
cholesterol esters and bile acids. This finding is consistent with the regulation of genes encoding 
metabolic enzymes related to cholesterol synthesis by Srebf (31). Because pAkt activates Srebf 40 
through mammalian target of rapamycin (mTor), and induces the expression of Srebf by 
autoregulation (28), the upregulation of Srebf might be caused by the glucose-responsive 
phosphorylation of Akt.  
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By contrast, ob/ob mice lacked most of the rapid regulation of metabolic reactions by 
metabolites and by Srebf. Instead, genes related to glycolysis, such as Pklr and Gapdh, and genes 
related to lipid synthesis, such as Fasn and Acacb were upregulated (figs. S9 and S10) in these 
obese mice. We found that Egr1 was a glucose-responsive gene. Because we used the KEGG 
database to match proteins to their regulatory kinases, in our trans-omic network Egr1 was not 5 
directly regulated by pErk. However, Egr1 is one of the immediate early genes downstream of 
pErk (32, 33). Thus, we placed Egr1 in the ob/ob network as regulated by pErk. In addition, the 
slow increase in the expression of glucose-responsive genes involved in lipid synthesis may 
represent a mechanism by which lipid accumulation occurs in the liver of ob/ob mice. 
Consistently, insulin resistance promotes de novo lipogenesis in the liver (34). Because lipid 10 
accumulation is thought to be one of the causes of insulin resistance (35), the stimulation of lipid 
synthesis by the upregulated genes in ob/ob mice might be one of the pathological mechanisms 
of lipid accumulation and insulin resistance associated with obesity. Given that the liver plays a 
major role of controlling postprandial blood glucose (8, 9), our results suggested that the rapid 
regulation of metabolic reactions in WT mice enables the transient increase of blood glucose 15 
following oral glucose administration, whereas the impairment of such rapid regulations and 
compensatory slow regulations of in ob/ob mice cause sustained hyperglycemia (fig. S2A). 

The WT-specific regulation of metabolic reactions by glucose-responsive metabolites shows 
three unique advantages: rapidness, energetic economy, and precision. Regulation of metabolic 
reactions by metabolites represents a form of direct control. The metabolites serve as allosteric 20 
regulators or substrates or products, without inducing other chemical reactions or biological 
processes, such as protein phosphorylation and gene expression, saving the organ and organism 
both time and energy. The control of metabolic reactions by metabolites directly relates to the 
concentrations of the metabolites, enabling precise regulation of metabolic reactions. This mode 
of regulation contrasts with the regulation of metabolic reactions by changing the activity of the 25 
metabolic enzymes through changes in gene expression or protein phosphorylation. Controlling 
metabolic reactions through changes in gene expression, in particular, is less precise than 
controlling the reactions through changes in metabolite concentrations. Thus, our analysis 
indicated that the response in WT mice is faster, less energy requiring, and more precise than the 
response in obese mice. The application of technologies for large-scale identification of protein-30 
metabolite interactions (36–38) will enable the validation and further analysis of the regulation 
of metabolic reactions by metabolites. 

Our trans-omic network analysis revealed that pAkt exhibited glucose-responsive 
phosphorylation specifically in the liver of WT mice, whereas pErk was a common glucose-
responsive event in both WT and ob/ob mice. Previous observations found that insulin-induced 35 
phosphorylation of Erk is not affected by obesity and that of Akt decreases in obesity (39, 40). 
Although pErk was a common glucose-responsive molecule in both WT and ob/ob mice, the 
inter-layer regulatory connections from pErk to Egr1 and the Egr1-dependent genes were found 
only in ob/ob mice, but not in WT mice. The phosphorylation of Erk in ob/ob mice was sustained, 
whereas the phosphorylation of Erk in WT mice was transient, which could explain the 40 
difference in the role of Erk phosphorylation in the healthy and obese states. Indeed, sustained 
phosphorylation of Erk, but not transient phosphorylation, induces downstream gene and protein 
expression of immediate early genes including Egr1 (29, 30). Thus, the liver seems to conform to 
this paradigm of Erk signaling with sustained pErk representing a key property of the obese state 
and the slow transcriptional response to glucose administration.  45 
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Some WT-specific glucose-responsive metabolites had higher concentrations in ob/ob mice 
than in WT mice. In ob/ob mice, such metabolites were not glucose-responsive but were 
constantly maintained at higher concentrations, even during the fasting state. Thus, in the obese 
state these metabolic reactions are constantly influenced by such metabolites regardless of oral 
glucose administration. The consistently increased metabolites included ATP, some metabolites 5 
in glycolysis and in the TCA cycle and pentose phosphate pathway, and reduced glutathione 
(table S1), indicating constant high energy production and oxidation stress even during the 
fasting state in ob/ob mice. The lack of glucose-responsiveness of these metabolites in ob/ob 
mice may be caused by maximal energy production even during fasting state. 

In this study, we focused on “glucose-responsiveness” of metabolite concentration, gene 10 
expression, and protein phosphorylation following oral glucose administration in WT and ob/ob 
mice. The simultaneous measurement of the time courses of multi-omic data following oral 
glucose administration enabled the identification of glucose-responsive molecules in each layer, 
and inter-layer regulatory connections. Our trans-omic networks is based on direct interaction 
between molecules, rather than indirect statistical relationship (16). The same multi-omic data 15 
enable analysis of both the difference in relative glucose-responsiveness of molecules and the 
difference in the amounts of molecules between WT and ob/ob mice (Supplementary Text).  

Other studies have studied the difference in the amounts of molecules between healthy and 
obese mice using multi-omic data (14, 41, 42). However, none examined the difference of 
molecules between normal and obese mice in “glucose-responsiveness” following oral glucose 20 
administration as we did here. Soltis et al. (14) identified the epigenomic, transcriptomic, 
proteomic, and metabolomic differences in the liver between normal and high-fat diet (HFD)-
induced obese mice during fasting state. They performed network modeling approach based on 
interactome and computational methods, by which they identified differences in the amounts of 
molecules in multi-omic network between normal and obese mice. We found similar differences 25 
by analyzing our multi-omic data from the fasting state: Obese mice had increased carbohydrate 
metabolism, decreased lysophospholipid metabolism, upregulation of the genes involved in 
carbohydrate and lipid metabolism, and downregulation of the genes involved in amino acid 
metabolism. Here, the ob/ob mice were fed a normal diet, not a high-fat diet, thus the common 
differences between the obese mice and WT mice found in both studies are likely caused by 30 
obesity, rather than by the content of diets or by an effect of lack of leptin in the ob/ob mice. 
Similar to ob/ob mice, diet-induced obese mice show leptin resistance and dysregulation of 
hepatic metabolic response (43, 44).  

To construct the regulatory trans-omic networks for glucose-responsive metabolic reactions, 
we used transcriptomic and metabolomic data and data from the analysis of selected signaling 35 
proteins by Western blotting. Because of the lower comprehensiveness of data by Western 
blotting compared to the transcriptomic and metabolomic data, the numbers of signaling 
molecules, transcription factors and their inter-layer regulatory connections in our trans-omic 
network were poorer than those of metabolites, gene expression and their inter-layer regulatory 
connections. In particular, we could not identify transcription factors regulating most of the 40 
glucose-responsive genes encoding metabolic enzymes in the liver of ob/ob mice. Proteomic data 
will provide large-scale information about the regulation of metabolic reactions by changes in 
the amount of transcription factors and metabolic enzymes (45, 46), and phosphoproteomic data 
will identify the regulation of metabolic reactions by phosphorylation of transcription factors and 
metabolic enzymes (15, 18, 47). In addition, epigenomic data, as well as detailed information 45 
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about the binding affinities of metabolic reactions for the metabolites that function as substrates, 
products, and allosteric regulators are required for constructions of a comprehensive regulatory 
trans-omic network for glucose-responsive metabolic reactions. Epigenomic data, including 
histone modification and DNA methylation, will reveal regulatory mechanisms controlling of 
glucose-responsive genes (48–51). Because some metabolites in the liver are regulated by 5 
transport between blood and liver, the regulation of such metabolites between blood and liver 
requires inclusion of the transporters that control the distribution of these metabolites (52, 53). 
Although our trans-omic network is not comprehensive, we used the network to reveal key 
insights into how liver metabolism is differentially regulated between the healthy and obese 
states in response to glucose. This in vivo study provides key insights into how obesity 10 
profoundly changes the regulatory profile, shifting regulation away from rapid regulation by 
metabolites to slow regulation by gene expression.   
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Figure 1. The pipeline of the construction of regulatory trans-omic network for glucose-
responsive metabolic reactions. We measured the time courses of multi-omic data from the 
liver and blood of WT mice and ob/ob mice following oral glucose administration and identified 10 
molecules that changed by oral glucose administration, which we defined as glucose-responsive 
molecules in each layer (see Materials and Methods: Identification of glucose-responsive 
molecules). We added inter-layer regulatory connections between glucose-responsive molecules 
in different layers using bioinformatic methods and information in public databases. The result 
was a regulatory trans-omic network for glucose-responsive metabolic reactions in the liver of 15 
WT and ob/ob mice. We identified regulatory trans-omic subnetworks specific to WT mice 
(blue), ob/ob mice (red), and common to both mice (green). 
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Figure 2. Identification of glucose-responsive metabolites. (A) Left: The heat map of the time 
courses of 162 metabolites from the liver of WT and ob/ob mice following oral glucose 
administration. To investigate the changes from fasting state, two time courses of each 
metabolite were divided by the geometric mean of the values of WT mice and ob/ob mice in 5 
fasting state (0 min), and then log2-transformed. Metabolites were ordered by hierarchical 
clustering using Euclidean distance and Ward's method (see fig. S3 for characteristics of each 
cluster and table S1 for data). Right: The bars in the heat map are colored according to the 
glucose-responsiveness, meaning the change from fasting state (0 min), in the WT and ob/ob 
mice. Metabolites that showed an absolute log2 fold change larger than 0.585 (20.585 = 1.5) and 10 
an FDR-adjusted p value (q value) less than 0.1 at any time point were defined as glucose-
responsive: increased (orange), decreased (purple), or were unchanged (white). To define an 
increase or decrease in time courses with changes in both directions at different times, we used 
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the direction of change compared to time 0 at the earliest time point that showed a significant 
change. Metabolites written in red text indicate glucose-responsive metabolites specific to WT; 
blue text, specific to ob/ob mice; green text, common to both; pink text, opposite responses 
between WT mice and ob/ob mice; black text, no response to glucose. See table S1 for 
unabbreviated names of metabolites. (B) Increased, decreased, and unchanged metabolites in the 5 
liver of WT mice and ob/ob mice: blue text, WT specific; red text, ob/ob specific; green text, 
glucose-responsive metabolites common to both; pink text, opposite responses between WT mice 
and ob/ob mice. The number of each type of glucose-responsive metabolites and their 
percentages out of the total quantified metabolites are shown. (C) Graphs showing the 
metabolites with responses that were common to both WT and ob/ob (green boxes), specific to 10 
WT mice (blue boxes), and specific to ob/ob mice (red boxes), and the metabolites that change in 
opposite directions in WT and ob/ob mice (pink boxes). Within the graphs, blue lines are the 
responses of the WT mice and red lines are the responses of the ob/ob mice. Data are shown as 
the mean and SEM of 5 mice. 
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Figure 3. Identification of glucose-responsive genes. (A) Left: The heat map of the time 
courses of transcript abundance for 14,292 genes in the livers of WT and ob/ob mice following 
oral glucose administration. To investigate the changes from fasting state, two time courses of 
each metabolite were divided by the geometric mean of the values of WT mice and ob/ob mice 5 
in fasting state (0 min), and then log2-transformed. Genes were ordered by hierarchical clustering 
using Euclidean distance and Ward's method (see table S4 for data). Right: The bars in the heat 
map are colored according to the glucose responsiveness, meaning the change from fasting state 
(0 min), in the WT and ob/ob mice. Genes that showed an absolute log2 fold change larger than 
0.585 (20.585 = 1.5) and a q value less than 0.1 at any time point were defined as glucose-10 
responsive: increased (orange), decreased (purple), or were unchanged (white). (B) Upregulated, 
downregulated, and unchanged genes in the liver of WT mice (row) and ob/ob mice: blue, WT 
specific; red, ob/ob specific; green, glucose-responsive metabolites common to both; pink, 
opposite responses between WT mice and ob/ob mice. The number of each type of glucose-
responsive genes and their percentages out of the total quantified genes are shown. (C) Graphs 15 
showing the gene expression time courses for the indicated genes. Genes include those that 
exhibited changes in common to both WT and ob/ob (green boxes), changes specific to WT mice 
(blue boxes), changes specific to ob/ob mice (red boxes), and changes in opposite directions in 
each (pink boxes). Within the graphs, blue lines are the responses of the WT mice and red lines 
are the responses of the ob/ob mice. Data are shown as the mean and SEM of mice (n = 11 or 12 20 
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at 0 min, n = 3 at 20 min, n = 3 at 60 min, n = 3 at 120 min, and n = 3 at 240 min). The inferred 
regulatory connections are shown as arrows from transcription factors to genes. The regulatory 
connections were inferred using hierarchical clustering analysis of gene expression time courses 
together with a transcription factor database TRANSFAC (21, 22). See fig. S6 for statistical 
confidence in inferred transcription factors; see table S7 for the unabbreviated names of the 5 
transcription factors. 
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Figure 4. Identification of glucose-responsive phosphorylation of insulin signaling 
molecules. Time courses of the amount and phosphorylation of the indicated insulin signaling 
molecules in the liver of WT mice (blue lines) and ob/ob mice (red lines) following oral glucose 
administration. Phosphorylated proteins are indicated by the prefix “p” (for example, 5 
phosphorylated Erk, pErk). Data are shown as the mean and SEM of 3 mice except for WT 
samples for 3 time points, which had inconsistent loading (see fig. S8 for Western blot). The 
time course graphs are presented in the context of the insulin signaling pathway from the KEGG 
database (24, 25). Edges may reflect direct or indirect regulatory events. Not all molecules in this 
pathway are shown. The nodes that are presented as circles [phosphatidyl-inositol 3,4,5-10 
trisphosphate (PIP3) and mammalian target of rapamycin (mTor)] were not quantified here. The 
colors of the boxes around each graph indicate a change in amount or phosphorylation specific to 
WT (blue), specific to ob/ob (red), common to both (green), opposite between WT mice and 
ob/ob (pink). Proteins that did not exhibit a change in amount or phosphorylation are outlined in 
gray. Proteins that showed an absolute log2 fold change larger than 0.585 (20.585 = 1.5) at any 15 
time point were defined as glucose-responsive. Glucose-responsive molecules in the TF and 
Enzyme layers are enclosed in dashed boxes. See table S10 for the unabbreviated names of the 
insulin signaling molecules.  
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Figure 5. The construction of regulatory trans-omic network for glucose-responsive 
metabolic reactions. (A) The procedure for constructing the regulatory trans-omic network for 
glucose-responsive metabolic reactions. The layers of Insulin signal, Transcription factor (TF), 
Enzyme, and Metabolite correspond to glucose-responsive molecules. The Reaction layer 5 
represents “glucose-responsive metabolic reactions”, which are defined as metabolic reaction 
regulated by the glucose-responsive molecules. The upward and downward arrows indicate inter-
layer regulatory connections, and the recurrent arrows indicate intra-layer regulatory events. The 
databases used to identify the inter- and intra-layer regulatory connections are shown on the 
arrows. (B) The regulatory trans-omic network for glucose-responsive metabolic reactions. The 10 
left diagram represents the network as colored nodes in the layers and edges between the layers 
with colored nodes representing glucose-responsive molecules and colored edges representing 
inter-layer regulatory connections: green, glucose-responsive molecules and inter-layer 
regulation common in both WT and ob/ob mice; blue, specific to WT mice; red, specific to ob/ob 
mice; pink, opposite responses between WT mice and ob/ob mice. A common or an opposite 15 
regulatory connection was defined if the regulating molecule of the connection is common or 
opposite, respectively. The numbers of each type of glucose-responsive node and edge are shown 
with the same colors in the network summary to the right. The Insulin signal layer is the insulin 
signaling pathway constructed in our previous phosphoproteomic study (18). The Enzyme, 
Reaction, and Metabolite layers are organized into global metabolic pathway (mmu01100) in the 20 
KEGG database (24, 25). Phospho, phosphorylation. (C) The number of glucose-responsive 
metabolic reactions regulated by glucose-responsive molecules in the enzyme layer or the 
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metabolite layer or both from a total of 823 metabolic reactions in the liver. (D) The number of 
glucose-responsive metabolic reactions regulated by the indicated glucose-responsive molecules 
in WT mice (upper, blue) and ob/ob mice (lower, red). The colors of the names of molecules 
indicate the type of glucose-responsive molecules as described in B. Glucose-responsive 
metabolites that regulated more than 15 metabolic reactions and exhibited significant association 5 
with any metabolic pathway (fig. S14B) are shown. The names of the transcription factors coded 
by glucose-responsive genes are described in italic type, and those showing glucose-responsive 
phosphorylation have the prefix “p.” 
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Figure 6. The condensed regulatory trans-omic networks for the liver metabolic response 
to glucose in the healthy and obese states. (A) The process of reducing the complexity of the 
trans-omic network into condensed versions. We grouped related metabolic reactions within a 
specific metabolic pathway into one “metabolic pathway node,” such as Glycolysis, Glycerolipid, 5 
or BCAA degradation, using the metabolic maps in KEGG (24, 25). We then generated a 
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Pathway layer of the metabolic pathway nodes and grouped these nodes into classes of 
carbohydrate, lipid, or amino acid, according to the KEGG database (24, 25). (B, C) The 
condensed regulatory trans-omic network of the liver response to glucose in WT and ob/ob mice. 
The color of nodes (glucose-responsive molecules) and edges (inter-layer regulatory 
connections) indicates the type of molecules and regulations as described in Fig. 5B. Dashed 5 
edge between pErk and Egr1 indicates the indirect regulatory connection (32, 33). In the 
transcription factor (TF) layer, the names of the transcription factors encoded by glucose-
responsive genes are written in italics, and those showing glucose-responsive phosphorylation 
have the prefix “p.” Srebf corresponds to Srebf1 and Srebf2, both of which were glucose-
responsive genes specific to WT mice. The Enzyme layer contains only those metabolic enzymes 10 
that are regulated by glucose-responsive changes in gene expression, not those regulated only by 
phosphorylation. Metabolic pathway nodes that exhibited significant associations with any 
glucose-responsive molecule are included (fig. S14B). Dashed boxes enclose the nodes for the 
lipid, carbohydrate, and amino acid classes. Glucose-responsive metabolites that exhibited 
significant associations with any metabolic pathway are included. The inter-layer regulatory 15 
connections from the Metabolite layer to the Pathway layer include only those that regulate 5 or 
more metabolic reactions. The size of the nodes and the width of the edges indicate the relative 
number of the regulated metabolic reactions. See table S14 for the unabbreviated names of 
metabolic pathway nodes.  
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Figure 7. Temporal control of the regulatory trans-omic networks for the liver metabolic 
response to glucose in the healthy and obese states. (A) Definition of T1/2, an index of the 
temporal rate of response. (B) The number of the inter-layer regulatory connections with T1/2 
values in the ranges indicated to the Reaction layer from the Enzyme layer and from the 5 
Metabolite layer. (C, D) Temporal control of the condensed regulatory trans-omic network of 
WT and ob/ob mice. The color of nodes (glucose-responsive molecules) and edges (inter-layer 
regulatory connections) indicates the T1/2 value according to the ranges in the color bar in B. 
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Srebf corresponds to Srebf1 and Srebf2, both of whose T1/2 values were 10 min. See table S14 for 
the unabbreviated names of metabolic pathway nodes. See table S1 for T1/2 values of metabolite 
data, table S4 for those of the enzyme- and transcription factor-encoding gene data, and table 
S10 for those of the phosphorylated transcription factor and signaling molecule data. 

 5 

Table 1. Pathway enrichment analysis of the glucose-responsive genes.  
Pathways with p value < 0.001 are shown. 

 

 Upregulated gene in ob/ob Downregulated gene in ob/ob Unchanged gene in ob/ob 

 activity p value activity p value activity p value 

Upregulated 
 gene in WT 

p53 signaling  
pathway 3.2×10-5 

Terpenoid  
backbone  
biosynthesis 

2.8×10-9 Metabolic pathways 9.0×10-9 

  
Steroid  
biosynthesis 1.8×10-8 Steroid biosynthesis 2.2×10-5 

  
Metabolic  
pathways 1.9×10-4 Drug metabolism 

 - cytochrome P450 1.7×10-4 

    
Glutathione  
metabolism 5.3×10-4 

    Retinol metabolism 9.0×10-4 

Downregulated  
gene in WT 

Retinol  
metabolism 1.3×10-4   

Linoleic acid  
metabolism 2.9×10-6 

Steroid 
hormone  
biosynthesis 

8.9×10-4   
Arachidonic acid  
metabolism 3.5×10-6 

Linoleic acid  
metabolism 9.6×10-4   Retinol metabolism 2.5×10-4 

Unchanged 
 gene in WT 

  Ribosome 1.6×10-16 
 

  Phagosome 2.6×10-4 

 

32 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/653758doi: bioRxiv preprint 

https://doi.org/10.1101/653758

	Title: Trans-omic analysis reveals allosteric and gene regulation-axes for altered glucose-responsive liver metabolism associated with obesity
	References and Notes:
	Supplementary Materials

