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1 Supplementary Figures

Figure 1: A summary of the TCA model for bulk DNA methylation data, presented as a four-

steps generative model. Step 1: methylation altering covariates (e.g., age and sex) of a particular

individual i can affect the methylation distribution of individual i. Step 2: the cell-type-specific

methylomes of individual i are generated for each of the k cell types in the studied tissue. Step

3: the cell-type-specific methylomes of individual i (3.1) are combined according to the cell-type

composition of the individual (3.2). Step 4: the true signal of the heterogeneous mixture (4.1)

is distorted due to additional variation introduced by different sources of noise such as batch

effects and other experiment-specific artificial variability (4.2); this results in the observed data.

Methylation levels are represented by a gradient of red color
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Figure 2: TCA improves noisy initial estimates of the cell-type proportions under different

noise levels. For each noise level (induced by a level of similarity between the input and the

real cell-type proportions; see Methods) of the input estimates, boxplots reflect the correla-

tion and absolute error (averaged across cell-types) of the true cell-type proportions with the

input estimates and with the TCA estimates. Results are presented under the assumption of

three constituting cell types (k=3; top row) and under the assumption of six constituting cell

types (k=6; bottom row), and each boxplot demosntrates the performance across 10 simulated

datasets (the central mark on each box indicates the median, and the bottom and top edges

indicate the 25th and 75th percentiles, respectively).
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Figure 3: Reconstructing cell-type-specific methylation levels from simulated bulk whole-blood

data with three constituting cell types (k = 3; 250 samples, 250 sites). Three approaches were

evaluated in capturing the cell-type-specific levels of each site j and cell type h across all individ-

uals zhj = (z1hj , ..., z
n
hj): TCA, TCA after permuting the observed data matrix (“Permutation”)

and directly using the observed bulk data (“Observed”; i.e. using the bulk as the estimate for

the cell-type-specific levels of each cell type). For each of the evaluated approaches and for each

of the simulated cell types (ordered by their mean abundance), presented are the distributions

of the linear correlation between zhj and its estimate ẑhj across all sites j and across ten simu-

lated data sets (left), and the distribution of the MSE between zhj and its estimate ẑhj across

all sites j and across ten simulated data set (right). The central mark on each box indicates

the median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively.
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Figure 4: Reconstructing cell-type-specific methylation levels from simulated bulk whole-blood

data with six constituting cell types (k = 6; 250 samples, 250 sites). Three approaches were

evaluated in capturing the cell-type-specific levels of each site j and cell type h across all individ-

uals zhj = (z1hj , ..., z
n
hj): TCA, TCA after permuting the observed data matrix (“Permutation”)

and directly using the observed bulk data (“Observed”; i.e. using the bulk as the estimate for

the cell-type-specific levels of each cell type). For each of the evaluated approaches and for each

of the simulated cell types (ordered by their mean abundance), presented are the distributions

of the linear correlation between zhj and its estimate ẑhj across all sites j and across ten simu-

lated data sets (top), and the distribution of the MSE between zhj and its estimate ẑhj across

all sites j and across ten simulated data set (bottom). The central mark on each box indicates

the median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively.
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Figure 5: Estimating the effect sizes of covariates affecting methylation using TCA. Presented

are true (X axes) and estimated (Y axes) effect sizes in simulated whole-blood methylation

data with three constituting cell types (k = 3) and varying sample sizes (separated by different

columns). Two scenarios were considered using a range of effect sizes: (1) estimating the effect

of a covariate with global (i.e. non-cell-type-specific) effect on methylation (top row), and (2)

estimating the effect of a covariate with cell-type-specific effect on methylation (rows 2-4). In

the latter scenario, we considered a separate experiment for each of the three cell types, such

that in each experiment the covariate affected the particular cell type under test. Throughout

these experiments, covariates were generated from a normal distribution, and both global (δ)

and cell-type-specific (γ) effect sizes were sampled from a uniform distribution.
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Figure 6: Estimating the effect sizes of covariates affecting methylation using TCA. Presented

are true (X axes) and estimated (Y axes) effect sizes in simulated whole-blood methylation

data with six constituting cell types (k = 6) and varying sample sizes (separated by different

columns). Two scenarios were considered using a range of effect sizes: (1) estimating the effect

of a covariate with global (i.e. non-cell-type-specific) effect on methylation (top row), and (2)

estimating the effect of a covariate with cell-type-specific effect on methylation (rows 2-7). In

the latter scenario, we considered a separate experiment for each of the three cell types, such

that in each experiment the covariate affected the particular cell type under test. Throughout

these experiments, covariates were generated from a normal distribution, and both global (δ)

and cell-type-specific (γ) effect sizes were sampled from a uniform distribution.

9



Scenario I Scenario II Scenario III

k=3

k=6

Different effects in different cell types The same effect in different cell types A single cell type with an effect

0 0.2 0.4 0.6 0.8 1
Effect Size

0

0.2

0.4

0.6

0.8

1

TP
s 

R
at

e

1

0.5

TCA
Regression
CellDMC

0 0.2 0.4 0.6 0.8 1
Effect Size

0

0.2

0.4

0.6

0.8

1

TP
s 

R
at

e

1

0.5

TCA
Regression
CellDMC

0 0.5 1 1.5 2
Effect Size

0

0.2

0.4

0.6

0.8

1

TP
s 

R
at

e

1

0.5

TCA
Regression
CellDMC

0 0.2 0.4 0.6 0.8 1
Effect Size

0

0.2

0.4

0.6

0.8

1

TP
s 

R
at

e

1

0.5

TCA
Regression
CellDMC

0 0.2 0.4 0.6 0.8 1
Effect Size

0

0.2

0.4

0.6

0.8

1

TP
s 

R
at

e

1

0.5

TCA
Regression
CellDMC

0 0.5 1 1.5 2
Effect Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP
s 

R
at

e

1

0.5

TCA
Regression
CellDMC

Figure 7: An evaluation of power for detecting cell-type-specific associations with DNA methy-

lation while including cell-type-specific affecting covariates and using a nonparametric distribu-

tion of the cell-type proportions. Performance was evaluated using three approaches: TCA, a

standard linear regression with the observed bulk data, and CellDMC with the true cell-type

proportions as an input. The numbers of true positives (TPs) were measured under three sce-

narios using a range of effect sizes: different effect sizes for different cell types (Scenario I),

the same effect size for all cell types (Scenario II), and a single effect size for a single cell type

(Scenario III); each of the scenarios was evaluated under the assumption of three constituting

cell types (k=3; top row) and six constituting cell types (k=6; bottom row). Lines represent

the median performance across 10 simulations and the colored areas reflect the results range

across the multiple executions. The colored dots reflect the results of TCA under different

initializations of the cell-type proportion estimates (i.e. different levels of noise injected into

TCA), where the color gradients represent the mean absolute correlation of the initial estimates

with the true values (across all cell types).
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Figure 8: An evaluation of false positives rates in association testing with DNA methylation.

Performance was evaluated using three approaches: TCA, a standard linear regression with

the observed bulk data, and CellDMC with the true cell-type proportions as an input. The

proportions of false positives (FPs) were measured under three scenarios using a range of effect

sizes: different effect sizes for different cell types (Scenario I), the same effect size for all cell

types (Scenario II), and only a single effect size for a single cell type (Scenario III); each of the

scenarios was evaluated under the assumption of three constituting cell types (k=3) and six

constituting cell types (k=6). Boxplots reflect results across 10 simulations. The central mark

on each box indicates the median, and the bottom and top edges indicate the 25th and 75th

percentiles, respectively.
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Figure 9: An evaluation of power for detecting cell-type-specific associations with DNA methy-

lation, stratified by cell types (with the mean abundance of each cell type noted). Performance

was evaluated using three approaches: TCA, a standard linear regression with the observed

bulk data, and CellDMC with the true cell-type proportions as an input. The numbers of true

positives were measured under a scenario where only a single effect size for a single cell type

exists, both in the case of three constituting cell types (k=3) and six constituting cell types

(k=6). The colored areas reflect the results range across 10 simulations, and the colored dots

reflect the results of TCA under different initializations of the cell-type composition estimates

(i.e. different levels of noise injected into TCA), where the color gradients represent the mean

absolute correlation of the initial estimates with the true values (across all cell types).
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Figure 10: An evaluation of false positives rates in association testing with DNA methylation,

stratified by cell types. Performance was evaluated using three approaches: TCA, a standard

linear regression with the observed bulk data, and CellDMC with the true cell-type proportions

as an input. The proportions of false positives (FPs) were measured under a scenario where

only a single effect size for a single cell type exists, both in the case of three constituting cell

types (k=3) and six constituting cell types (k=6). Boxplots reflect results across 10 simulations.

The central mark on each box indicates the median, and the bottom and top edges indicate the

25th and 75th percentiles, respectively.
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Figure 11: Results of the association analysis with level of immune activity using a standard

regression model. Presented is a Manhattan plot of the -log10 P-values for the association tests

(results subsampled and truncated for visualization), where the horizontal red line represents

the experiment-wide significance threshold.
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Figure 12: Results of the cell-type-specific association analysis with RA using a standard re-

gression model in the Rhead et al. sorted methylation data. Presented is a Manhattan plot of

the -log10 P-values for the association tests in CD4+, CD14+, and CD+19 cells. The solid hor-

izontal red line represents the experiment-wide significance threshold, and the dotted horizontal

red line represents the significance threshold adjusted for three experiments corresponding to

the three cell types.
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Figure 13: An evaluation of power for detecting cell-type-specific associations with DNA methy-

lation. Performance was evaluated using two approaches: TCA and HIRE by Luo et al. with

the true cell-type proportions as an input. The numbers of true positives (TPs) were measured

under three scenarios using a range of effect sizes: different effect sizes for different cell types

(Scenario I), the same effect size for all cell types (Scenario II), and a single effect size for a

single cell type (Scenario III); each of the scenarios was evaluated under the assumption of three

constituting cell types (k=3; top row) and six constituting cell types (k=6; bottom row). Lines

represent the median performance across 10 simulations and the colored areas reflect the results

range across the multiple executions. The colored dots reflect the results of TCA under different

initializations of the cell-type proportion estimates (i.e. different levels of noise injected into

TCA), where the color gradients represent the mean absolute correlation of the initial estimates

with the true values (across all cell types).
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Figure 14: An evaluation of power for detecting cell-type-specific associations with DNA methy-

lation, stratified by cell types (with the mean abundance of each cell type noted). Performance

was evaluated using two approaches: TCA and HIRE by Luo et al. with the true cell-type pro-

portions as an input. The numbers of true positives were measured under a scenario where only

a single effect size for a single cell type exists, both in the case of three constituting cell types

(k=3) and six constituting cell types (k=6). The colored areas reflect the results range across

10 simulations, and the colored dots reflect the results of TCA under different initializations of

the cell-type composition estimates (i.e. different levels of noise injected into TCA), where the

color gradients represent the mean absolute correlation of the initial estimates with the true

values (across all cell types).
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2 Supplementary Methods

2.1 Technical background

In a classical matrix factorization problem, a matrix X ∈ Rn×m is given and we look for two

matrices W ∈ Rk×n, Z ∈ Rk×m such that X ≈ W TZ. The matrix W is commonly referred to

as the weights matrix, and Z is commonly referred to as the features matrix. The dimension

parameter of the factorization (decomposition) k is typically known a-priori or assumed to be

known. This factorization problem is typically formulated as an optimization problem, in which

we aim at finding the values of W,Z that minimize some loss function with respect to X (e.g.,

the Frobenius norm). Put differently, we look for a decomposition X = W TZ + E, such that

the error matrix E ∈ Rn×m is minimized in some sense.

In a typical setup, xij denotes the i-th observation of the j-th feature of X for some type of

measurement, and its factorization is considered to be wi (the i-th column of W ) and zj (the j-

th column of Z). Therefore, xij can be interpreted as a linear combination of k different sources

of some feature j, weighted according to the k observation-specific weights in wi. Introducing

constraints on W or Z (or both) is often applied in many real-world problems; for example,

Principal Component Analysis (PCA) and Factor Analysis are two widely-used methods that

constrain the rows of W,Z to be orthogonal, and can further be extended to penalize their

norms in order to induce desired properties such and sparsity (e.g., [1]).

Various extensions of matrix factorization that assume explicit generative models for X exist.

Notably, probabilistic approaches to matrix factorization (PMF) are used to infer knowledge

about assumed distributions over W,Z, an approach which can be further extended by assuming

priors on those distributions (e.g., [2,3]). Such PMF formulations typically infer a point estimate

of the likelihood or posterior of W,Z or try to infer their full posterior distribution.

Both the matrix factorization problem and the PMF problem essentially assume that the fea-

tures matrix Z is shared across observations (albeit the latter assumes that Z is coming from

a distribution). Here, we propose a model where xij is a linear combination of wi, z
i
j , where

18



zij = (zi1j , ..., z
i
kj)

T is coming from a vector of random variables Zij , representing k sources of

feature j that are unique to observation i. This model comes with a statistical challenge, as the

number of parameters exceeds the number of observations. To enable inference, we require Zij

to be random but to share parameters across observations.

We present a generalization of the standard matrix factorization problem, which considers

a generative model with the assumption that each observation may have a unique features

matrix. Unlike previous formulations of matrix factorization, where we assume that the mean

is factorized, our model assumes that both the mean and the variance are factorized. As a

result, as we show, knowledge of W and the distribution of {Zij} (which can be estimated)

allows us to extract information about the {zihj} values. In our context of DNA methylation,

these values represent the underlying methylation levels for each sample i in each cell type h

and at each site j. Below, we first describe the model and a procedure for estimating the {zihj}

values, which together compose a three-dimensional tensor. Then, we consider the problem of

detecting cell-type-specific associations in epigenetic studies, and we derive a direct statistical

test based on our proposed model.

2.2 Tensor Composition Analysis (TCA): Intuition

Unlike existing factorization models for DNA methylation [4–8], which explicitly (or implicitly)

assume that all individuals have the same cell-type-specific methylation profiles (methylomes),

in our model each individual has unique cell-type-specific methylomes. Since cell-type-specific

genomic features are expected to demonstrate inherent biological variability across individuals,

we argue that this model is a more realistic one compared with the alternative factorization

models.

While the presumption of non-systematic individual- and cell-type-specific variability justifies

this model, some of the variability in a given cell type may be systematic. We therefore consider

the potential systematic effects of covariates (e.g., age and gender) on the cell-type-specific

variability. In addition, we consider the potential effect of covariates that do not have cell-

type-specific effects but rather may have direct effects on the observed mixtures (e.g., batch
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effects).

Below, we present the TCA model in a general way, which takes potential covariates into

account. We derive the conditional probability of the unobserved individual- and cell-type-

specific methylation levels given the observed methylation mixtures, which can then be used

for estimating cell-type-specific levels for each individual, and we demonstrate mathematically

and empirically the reason why TCA works. Since TCA requires knowledge of the parameters

of the model (which are typically not available in practice) we further describe a maximum-

likelihood (ML) based procedure for inferring the parameters of the model based on the observed

methylation levels. We further derive a one-step statistical test for association testing between

a phenotype of interest and cell-type-specific methylation levels by deriving the conditional

distribution of the phenotype given the observed methylation mixtures. Finally, we provide

insights into the reason why applying a standard regression approach to bulk data is severely

biased, and show that TCA provides an unbiased solution.

2.3 The TCA model

Let Zihj be the methylation level of individual i ∈ {1, ...n} in cell type h ∈ {1, ...k} at methylation

site j ∈ {1, ...m}, and let C(1) ∈ Rp1×n be a matrix of p1 covariates that may potentially affect

methylation levels in a cell-type-specific manner. We assume:

Zihj = µhj + (c
(1)
i )Tγjh + εihj (1)

εihj ∼ N(0, σ2hj) (2)

where c
(1)
i is the i-th column of C(1) (corresponding to the p1 covariates of the i-th individual),

γjh is a p1-length vector of corresponding effects sizes for the p1 covariates in the h-th cell type

at site j, and eihj is an i.i.d. component of variation.

We assume that observed methylation levels are convolved signals coming from k different cell-

types. We denote W ∈ Rk×n as a matrix of cell-type proportions of k cell types for each of

the n individuals, and C(2) ∈ Rp2×n as a matrix of p2 global covariates potentially affecting
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the observed methylation levels. Our model for Xij , the observed methylation level of the i-th

individual in cell type j, is as follows:

Xij = (c
(2)
i )T δj +

k∑
h=1

whiZ
i
hj + εij (3)

εij ∼ N(0, τ2) (4)

s.t. ∀i :
k∑

h=1

whi = 1 (5)

∀h, i : whi ≥ 0 (6)

where c
(2)
i is the i-th column of C(2) (corresponding to the p2 covariates of the i-th individual),

δj is a p2-length vector of corresponding effects sizes of the p2 covariates for the j-th site, and

eij is a component of i.i.d. variation that models measurement noise.

2.4 Deriving the TCA estimator

Let Θj = (µj , σj , wi, τ,Γj , δj) be the set of the model’s parameters for a particular site j, where

Γj is a p1 × k matrix with the vectors γj1, ..., γ
j
k. Given the observed values, we are interested

in the conditional distribution Zij |Xij = xij . Following the assumptions in (1) to (4), the

conditional probability satisfies:

Pr(Zij = zij |Xij = xij , c
(1)
i , c

(2)
i ,Θj) ∝ Pr(Zij = zij |µj , σj , c

(1)
i ,Γj)Pr(Xij = xij |Zij = zij , wi, τ, c

(2)
i , δj)

∝ exp
(
−1

2

(
zij − µj − ΓTj c

(1)
i

)T
Σ−1j

(
zij − µj − ΓTj c

(1)
i

))
exp

(
− 1

2τ2

(
xij − (zij)

Twi − (c
(2)
i )T δj

)2)
∝ exp

(
−1

2

(
(zij)

TΣ−1j zij − 2(zij)
TΣ−1j

(
µj + ΓTj c

(1)
i

)))
exp

(
− 1

2τ2

(
(zij)

Twiw
T
i z

i
j − 2(zij)

Twi

(
xij + (c

(2)
i )T δj

)))
∝ exp

(
−1

2

(
(zij)

T

(
Σ−1j +

wiw
T
i

τ2

)
zij

))
exp

(
−1

2

(
−2(zij)

T

(
Σ−1j

(
µj + ΓTj c

(1)
i

)
+ wi

(
xij + (c

(2)
i )T δj

τ2

))))

∝ exp
(
−1

2
(zij − aij)TS−1ij (zij − aij)

)
(7)
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where

Σj = diag(σ21j , ..., σ
2
kj) (8)

Sij =

(
Σ−1j +

wiw
T
i

τ2

)−1
(9)

aij = Sij

(
Σ−1j

(
µj + ΓTj c

(1)
i

)
+ wi

(
xij + (c

(2)
i )T δj

τ2

))
(10)

The probability in (7) is maximized when zij is the mode of the conditional distribution (which

is the mean in this case). We therefore set the TCA estimator of zij to be:

ẑij = aij =

(
wiw

T
i

τ2
+ Σ−1j

)−1(
Σ−1j

(
µj + ΓTj c

(1)
i

)
+ wi

(
xij + (c

(2)
i )T δj

τ2

))
(11)

2.5 Extracting underlying signals from convolved signals using TCA

In order to see why TCA can learn non-trivial information about the {zihj} values, note that [9]

Zihj |Xij ∼ N

(
µ̃1 +

COV (Zihj , Xij)

σ̃22
(xij − µ̃2), σ̃21 −

COV (Zihj , Xij)
2

σ̃22

)
(12)

where

µ̃1 = E(Zihj), σ̃
2
1 = V (Zihj) (13)

µ̃2 = E(Xij), σ̃
2
2 = V (Xij) (14)

Consider a simplified case where τ = 0 and µhj = 0, σhj = 1 for each h and some particular

j. Assuming no covariates for simplicity, given the model of Zihj and the model of Xij in (1)
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to (4), we know that

COV (Zihj , Xij) = E(ZihjXij)− E(Zihj)E(Xij)

= E

(
Zihj

k∑
l=1

wliZ
i
lj

)

= E

whi(Zihj)2 + E(Zihj)
∑
l 6=h

wliE(Zilj)


= E

(
whi

(
V (Zihj) + E(Zihj)

2
))

= whi

(15)

Therefore, based on (12), in this case we get that

Zihj |Xij = xij ∼ N

(
whixij∑k
l=1w

2
li

, 1−
w2
hi∑k

l=1w
2
li

)
(16)

This means that given the observed value xij , the conditional distribution of Zihj has a lower

variance compared with that of the marginal distribution of Zihj (σ2hj = 1), thus reducing the

uncertainty and allowing us to provide a non-trivial estimate for the {zihj} values. This result

is not specific for methylation but rather more general. In order to empirically verify this result

and get an initial intuition as for the potential performance of TCA, we considered the following

simplified general simulation.

We sampled three-dimensional source- and observation-specific values according to the model

in (1)-(2) for every feature j, observation i and source h (i.e. for each of the {zihj} values) using

n = 250,m = 250, k = 3 for the number of observations, features and sources, respectively.

In this experiment, we sampled all the source- and observation-specific values, as well as the

weights matrix (W ), from a standard normal distribution. Eventually, we generated a matrix

of observed mixtures (X) according to the model in (3)-(4) using the source- and observation-

specific values, the weights matrix and an additional component of i.i.d. variation (τ = 0.01).

For performance evaluation, for each estimated vector ẑhj = (ẑ1hj , ..., ẑ
n
hj)

T , we considered its

linear correlation and mean squared error (MSE) with the true values in zhj .

For simplicity, we assumed that all the parameters of the model are known, and applied TCA for

estimating the {zihj} values. In order to form a baseline for comparison and to empirically verify

that TCA can extract non-trivial information about the {zihj} values, we also applied TCA after
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Figure 15: Reconstructing three-dimensional observation- and source-specific values from two-

dimensional input across ten simulated data sets (n = 250,m = 250, k = 3, τ = 0.01). Three

approaches were evaluated in capturing the observation-specific values for each feature j and

source h (i.e. zhj): TCA, TCA after permuting the observed two-dimensional data matrix

(“Permutation”) and directly using the observed data matrix (“Observed”). For each of the

evaluated approaches, we present the distribution of the linear correlation between zhj and its

estimate ẑhj across all h, j (in the left) and the distribution of the MSE between zhj and its

estimate ẑhj across all h, j (in the right).

permuting X (independent permutation of each row of the matrix). In addition, for each vector

zhj , we also measured to what extent its information can be captured by xj = (x1j , ..., xnj)
T , the

observed levels in the j-th feature of X. We observed that TCA could effectively reconstruct

a substantial portion of the information in the {zhj} vectors, far outperforming the baseline

measurements (Figure 15). We further verified the robustness of TCA by varying the parameters

of the simulation across a wide range of values (Figure 16).
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Figure 16: Reconstructing three-dimensional observation- and source-specific values from two-

dimensional input in simulated data (n = 250,m = 250) while varying the parameters of the

simulation. Data was simulated under three scenarios: increasing level of i.i.d. noise added

to W (ψ), increasing level of the i.i.d. component of variation added on top of X (τ) and

increasing number of sources in the data (k). Three approaches were evaluated in capturing the

observation-specific values for each feature j and source h (zhj): TCA, TCA after permuting

the observed data (“Permutation”) and directly using the observed data (“Observed”). For

each of the approaches and for each of the evaluated parameters, we present the median linear

correlation between zhj and its estimate ẑhj across all h, j and across ten simulated data sets

(top panel) and the median MSE between zhj and its estimate ẑhj across all h, j and across ten

simulated data sets (bottom panel).
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2.6 Inferring the parameters of the model

In order to estimate the {zihj} values, the TCA algorithm requires knowledge of the parameters

in (1) to (4). Since Xij is essentially a function of Zi1j , ..., Z
i
kj , we can use its assumed distribution

for estimating all of the parameters in the model. More specifically, following the model in (3)-

(4), we note that:

Xij ∼ N

(
(c

(2)
i )T δj +

k∑
h=1

whi

(
µhj + (c

(1)
i )Tγjh

)
,

k∑
h=1

w2
hiσ

2
hj + τ2

)
(17)

We can therefore take an ML approach for estimating the parameters of the model from the

observed data matrix X. In practice, we require an initial estimate of W as an input for the

optimization. Such an estimate can be obtained by either using a reference-based approach [4]

or a reference-free semi-supervised approach [8]. Given an estimate of W , we can then estimate

the rest of the parameters in the model, and given estimates for the rest of the parameters in the

model, we can update the estimate of W . We perform this alternating optimization procedure

until convergence. Since we assume that different individuals are independent, updating W

requires us to solve a set of n relatively easy optimization problems, each with k parameters,

while satisfying the constraints in (5) and (6); we solve this numerically using a standard non-

linear optimization procedure. Below, we describe the optimization of the rest of the parameters

of the model given W (or an estimate of W ).

Given W and the variances τ, σj = (σ1j , ..., σkj)
T , ML solution for µj = (µ1j , ..., µkj)

T , δj ,

{γjh}
k
h=1 for feature j is given by solving the following constrained regression problem:

µ̂j , δ̂j , {γ̂jh}
k
h=1 = argmin

µj ,δj ,{γjh}
k
h=1

n∑
i=1

(
x̃ij −

k∑
h=1

w̃hiµhj −
p2∑
l=1

c̃
(2)
li δjl −

p1∑
l=1

k∑
h=1

c̃
(1)
lihγ

j
h

)2

(18)

s.t. ∀1 ≤ j ≤ m : µhj ∈ [0, 1] (19)
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where

x̃ij =
xij√∑k

l=1w
2
liσ

2
lj + τ2

(20)

w̃ih =
whi√∑k

l=1w
2
liσ

2
lj + τ2

(21)

c̃
(1)
lih =

wihc
(1)
li√∑k

d=1w
2
diσ

2
dj + τ2

(22)

c̃
(2)
li =

c
(2)
li√∑k

h=1w
2
hiσ

2
hj + τ2

(23)

and where δjl is the l-th entry of the vector δj , and c
(1)
li , c

(2)
li are the l-th covariate of individual

i in C(1) and in C(2), respectively. The constraints in (19) reflect the fact that methylation

levels are bounded to the range [0, 1], which means the mean levels should be also bounded

to that range. We note that in principle we should also constrain the effects contributed by

δj , {γjh}
k
h=1, in order to make sure that the total estimated methylation levels do not fall out

of the range [0, 1]. In practice, in real data, these additional constraints may result with less

accurate estimates. This problem can be solved efficiently using quadratic programming.

Since τ, σj are typically unknown, we perform an alternative optimization procedure as follows.

We start by finding initial estimates for δj , {γjh}
k
h=1, by assuming that σ1j = ... = σkj , τ = 0.

Under these conditions, the solution to the optimization problem in (18) is now independent

of σj , τ . Specifically, for obtaining an initial estimate of µj , δ
j , {γjh}

k
h=1, we solve the problem

in (18) while setting

x̃ij =
xij
‖wi‖2

(24)

w̃hi =
whi
‖wi‖2

(25)

c̃
(1)
lih =

whic
(1)
lih

‖wi‖2
(26)

c̃
(2)
li =

c
(2)
li

‖wi‖2
(27)

Once we obtain µ̂j , δ̂j , {γ̂jh}
k
h=1, we can fix them and estimate σj , τ using any hill climbing

algorithm (and then repeat until convergence). In practice, for learning σj , τ we perform another

alternating optimization procedure as follows. We first assume τ to be unique for each site and

estimate for each site j separately initial estimates of σj , τ . Then, we re-estimate τ using the
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entire data and the estimates of {σj} from all sites, and finally, we re-estimate σj for each site

j using the updated estimate of τ .

Notably, the number of parameters we need to estimate in our model is very large compared with

the number of data points available for inference. However, for each set of constant number of

parameters that we estimate, we use n data points. For instance, for estimating the parameters

µj , δj , {γjh}
k
h=1 for site j (a constant set of k(p1 + 1) + p2 parameters), we use n data points.

2.7 Testing a phenotype for cell-type-specific associations

TCA allows us to estimate cell-type-specific methylation levels for each individual in the data.

In principle, such estimates can then be used for running a cell-type-specific EWAS by testing

the estimates of a particular cell type for association with a phenotype of interest (or for running

a joint test for several cell types by using their estimated cell-type-specific methylation levels

jointly). However, for the application of association testing, we suggest an alternative one-step

approach instead of the more straightforward two-steps approach.

We model the phenotype of interest as potentially affected by cell-type-specific methylation

levels, and use the conditional distribution of the phenotype given the observed data in X.

Effectively, this allows us to integrate over all the potential values of the {zihj} individual

and cell-type-specific levels. In addition to taking into account covariates that may affect the

methylation levels, as described in (1) and in (3), we also consider potential direct effects of

other (or the same) covariates on the phenotype.

2.8 Joint test for effect sizes in all cell types

Let Y ∈ Rn×1 be a quantitative phenotype of interest, where Yi corresponds to the phenotypic

level of sample i, and let C(3) ∈ Rp3×n be a matrix of p3 covariates potentially affecting the
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phenotype (may also include an intercept term), we assume the following model:

Yi = (c
(3)
i )Tα+

k∑
h=1

βhjZ
i
hj + ei (28)

ei ∼ N(0, φ2) (29)

where β1j , ..., βkj are the effect sizes of the k different cell types in site j. Recall the model of

Xij in (3)-(4), using (12) we get

Yi|Xij ∼ N
(
µ̃1 +

COV (Xij , Yi)

σ̃22
(xij − µ̃2), σ̃21 −

COV (Xij , Yi)
2

σ̃22

)
(30)

where

µ̃1 = E(Yi), σ̃
2
1 = V (Yi) (31)

µ̃2 = E(Xij), σ̃
2
2 = V (Xij) (32)

Different individuals are assumed to be independent (both in their phenotypic and their cell-

type-specific methylation levels), and COV (yi, Xtj) = 0 for any t 6= i.

Note that

COV (Xij , Yi) = E(YiXij)− E(Yi)E(Xij)

= E

((
(c

(3)
i )Tα+

k∑
h=1

βhjZ
i
hj + e

)(
(c

(2)
i )T δj +

k∑
h=1

whiZ
i
hj + ε

))

−

(
(c

(3)
i )Tα+

k∑
h=1

βhjE(Zihj)

)(
c
(2)
i δj +

k∑
h=1

whiE(Zihj)

)

= (c
(3)
i )Tα

k∑
h=1

whiE(Zihj) + (c
(2)
i )T δj

k∑
h=1

βhjE(Zihj) + E

(
k∑

h=1

βhjZ
i
hj

k∑
h=1

whiZ
i
hj

)

− (c
(3)
i )Tα

k∑
h=1

whiE(Zihj)− (c
(2)
i )T δj

k∑
h=1

βhjE(Zihj)−
k∑

h=1

βhjE(Zihj)
k∑

h=1

whiE(Zihj)

=
k∑

h=1

whiβhjE((Zihj)
2)−

k∑
h=1

whiβhjE(Zihj)
2

=
k∑

h=1

whiβhjσ
2
hj

(33)

Therefore, we get

Yi|Xij = xij ∼ N
(
µ̃ij , σ̃

2
ij

)
(34)
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where

µ̃ij = (c
(3)
i )Tα+

k∑
h=1

βhj

(
µhj + (c

(1)
i )Tγjh +

whiσ
2
hj x̃ij

τ2 +
∑k

l=1w
2
liσ

2
lj

)
(35)

x̃ij = xij − (c
(2)
i )T δj −

k∑
l=1

wli(µlj + (c
(1)
i )Tγjl ) (36)

σ̃2ij = φ2 +

k∑
h=1

β2hjσ
2
hj −

(∑k
h=1 βhjwhiσ

2
hj

)2
τ2 +

∑k
h=1w

2
hiσ

2
hj

(37)

Using the distributions Yi|Xij = xij for each individual i, we can now consider the following

hypothesis testing for site j:

H0 : β1j = ... = βkj = 0 (38)

H1 : ∃h.βhj 6= 0 (39)

This formulation essentially tests the particular site under test j for association with the phe-

notype by considering the joint contribution of all cell-type-specific effects. Alternatively, we

can look for cell-type-specific effects of a subset of the cell types.

2.9 Marginal test for the effect size of a particular cell type

Consider the following model:

Yi = (c
(3)
i )Tα+ βhjZ

i
hj + ei (40)

ei ∼ N(0, φ2) (41)

where βhj is the effect size of a particular cell type h. Similarly as before, we get:

Yi|Xij = xij ∼ N
(
µ̃ij , σ̃

2
ij

)
(42)

where

µ̃ij = (c
(3)
i )Tα+ βhj

(
µhj + (c

(1)
i )Tγjh +

whiσ
2
hj x̃ij

τ2 +
∑k

l=1w
2
liσ

2
lj

)
(43)

x̃ij = xij − (c
(2)
i )T δj −

k∑
l=1

wli(µlj + (c
(1)
i )Tγjl ) (44)

σ̃2ij = φ2 + β2hj

(
σ2hj −

w2
hiσ

4
hj

τ2 +
∑k

l=1w
2
liσ

2
lj

)
(45)
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Using the distributions Yi|Xij = xij for each individual i, we can now consider the following

hypothesis testing for site j:

H0 : βhj = 0 (46)

H1 : βhj 6= 0 (47)

We calculate p-values for both the joint test and the marginal test using a generalized likelihood-

ratio test. The null model can be fitted using standard ML estimators. For the alternative

model, given the estimates for a particular site j, Θj = (µj , σj ,W, τ,Γj , δj), and given the

observed data Y,Xj , C
(1), C(2), C(3), the parameters α = (α1, ..., αp), φ and βj = (β1j , ..., βkj)

(in a marginal test for cell type h only the estimate of βhj is needed) can be estimated using

ML. In practice, we do that by numerically maximizing the log likelihood of the conditional

distribution using a standard non-linear optimization procedure.

Throughout our experiments in the paper, we observed that TCA, albeit powerful, resulted in

a deflation in the test statistic under the null, leading it to be an over-conservative test. This

behavior may be explained by the optimization procedure we apply. Specifically, an appropriate

application of the generalized-likelihood ratio test we use relies upon using ML estimates of the

parameters in the TCA model. In our case, we achieve ML estimates under the null model,

however, in general, we do not achieve ML estimates under the alternative model for two reasons.

First, our optimization procedure involves a non-convex optimization, which is not guaranteed

to yield global optimum, and second, for computational convenience, we leverage only the bulk

methylation data (X) in learning the parameters of the TCA model. The latter is not optimal

since in principle the phenotypic data (Y ) provides more information about the parameters of

the model. As a result, the estimates under the alternative hypothesis are not ML estimates,

which leads to a lower likelihood of the alternative model and therefore to a deflation in the

test statistic of the generalized-likelihood ratio test (and thus the test is over-conservative).

31



References

[1] Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with appli-

cations to sparse principal components and canonical correlation analysis. Biostatistics 10,

515–534 (2009).

[2] Mnih, A. & Salakhutdinov, R. R. Probabilistic matrix factorization. In Advances in neural

information processing systems, 1257–1264 (2008).

[3] Salakhutdinov, R. & Mnih, A. Bayesian probabilistic matrix factorization using markov

chain monte carlo. In Proceedings of the 25th international conference on Machine learning,

880–887 (ACM, 2008).

[4] Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture

distribution. BMC bioinformatics (2012).

[5] Rahmani, E. et al. Sparse pca corrects for cell type heterogeneity in epigenome-wide asso-

ciation studies. Nature methods 13, 443–445 (2016).

[6] Houseman, E. A. et al. Reference-free deconvolution of dna methylation data and mediation

by cell composition effects. BMC bioinformatics 17, 259 (2016).

[7] Lutsik, P. et al. Medecom: discovery and quantification of latent components of heteroge-

neous methylomes. Genome biology 18, 55 (2017).

[8] Rahmani, E. et al. Bayescce: a bayesian framework for estimating cell-type composition

from dna methylation without the need for methylation reference. Genome biology 19, 141

(2018).

[9] Jensen, J. L. Statistics for petroleum engineers and geoscientists, vol. 2 (Gulf Professional

Publishing, 2000).

32


