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Cade et al.: WGS analyses of sleep-disordered breathing

Abstract

Sleep-disordered breathing (SDB) is a common disorder associated with significant morbidity. Through
the NHLBI Trans-Omics for Precision Medicine (TOPMed) program we report the first whole-genome sequence
analysis of SDB. We identified 4 rare gene-based associations with SDB traits in 7,988 individuals of diverse
ancestry and 4 replicated common variant associations with inclusion of additional samples (n=13,257). We
identified a multi-ethnic set-based rare-variant association (p = 3.48 x 10®) on chromosome X with ARMCX3.
Transcription factor binding site enrichment identified associations with genes implicated with respiratory and
craniofacial traits. Results highlighted associations in genes that modulate lung development, inflammation,

respiratory rhythmogenesis and HIF/A-mediated hypoxic response.
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Introduction

Sleep-disordered breathing (SDB) is a prevalent disorder associated with increased mortality and
morbidity ["*]. The most common type of SDB is obstructive sleep apnea (OSA), characterized by repeated
airway collapse leading to intermittent hypoxemia and sleep disruption, that is increaed in prevalence with older
age and male sex [°]. The disease appears to be multifactorial, reflecting variable contributions of abnormalities in
ventilatory control, craniofacial anatomy, and adiposity [*'']. Due to an incomplete understanding of its
pathophysiology, standard OSA treatment only addresses the downstream manifestations of airway collapse
through nightly use of pressurized air to the nasopharynx, a therapy that often is poorly tolerated. Therefore, there
is a critical need to identify molecular pathways that could provide specific therapeutic targets. The need for
overnight studies to phenotype SDB traits has limited the available sample size for genetic analyses, and only
several common-frequency genome-wide analysis studies have been reported ['""°]. Increased statistical power
may increase the genetic resolution of regions that may not be adequately tagged by current genotyping arrays due

to population differences and/or reduced linkage disequilibrium with biologically relevant regions ['].

The Trans-Omics for Precision Medicine (TOPMed) program is an NIH National Heart, Lung, and Blood
Institute program designed to improve the understanding of the biological processes that contribute to heart, lung,
blood, and sleep disorders ['7]. TOPMed has generated whole-genome sequencing (WGS) data on over 100,000
individuals from multiple cohorts at >30% depth, including seven studies with objective assessment of SDB. A
variant imputation server using TOPMed data also allows for high-quality imputation of non-sequenced genotype
chip data ['*]. A complementary initiative sponsored by the Centers for Common Disease Genomics (CCDG) of
the NIH National Human Genome Research Institute has generated sequencing data from additional individuals in
two TOPMed cohorts (https://www.genome.gov/27563570). These initiatives provide the ability to examine the
genetics of SDB at unprecedented detail in African-Americans (AA), Asian-Americans (AsA), European-

Americans/Australians (EA), and Hispanic/Latino-Americans (HA).

In this first WGS analysis of SDB, we examine the apnea-hypopnea index (AHI), the standard clinic
metric of SDB, and four complementary measurements of overnight hypoxemia: average and minimum
oxyhemoglobin saturation (SpO.,) during sleep and the percent of the sleep recording with SpO», < 90% (Per90);
and the average desaturation per hypopnea event. These indices were chosen because of clinical relevance, high
heritability, or prior significant GWAS findings ["*'"'*]. We examined 7,988 individuals with objectively
measured SDB and WGS data in conjunction with data from 13,257 individuals with imputed genotype data.
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Methods
Each study had a protocol approved by its respective Institutional Review Board and participants
provided informed consent. A study overview is provided in Supplementary Figure 1. There were two classes of
data: “WGS studies” had WGS performed by the TOPMed program and, in some cases, in additional participants
by the CCDG program (referred to as “WGS” studies); “Imputed studies” had array-based genotyping later
imputed using the TOPMed imputation server (as described below). Some studies with WGS contributed imputed

study data from additional array-based genotyped individuals.

WGS studies

The Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), and the
Framingham Heart Study Offspring Cohort (FHS) included individuals who participated in the Sleep Heart Health

Study (SHHS), who underwent polysomnography (PSG) between 1995 — 1998 using the Compumedics PS-2
system [*#?]. These samples included 1,028 EAs from ARIC; 151 AAs and 557 EAs from CHS; and 478 EAs
from FHS.

The Multi-Ethnic Study of Atherosclerosis (MESA) is investigating the risk factors for clinical

cardiovascular disease [*]. PSG was obtained between 2010 — 2013 using the Compumedics Somte system [*].

This analysis includes data from 698 EAs, 486 AAs, 456 HAs, and 229 AsAs.

The Cleveland Family Study (CFS) was designed to investigate the familial basis of SDB, with four visits
occurring from 1990 — 2006 [*]. Sleep was assessed either in a clinical research center using full PSG
(Compumedics E series) (visit 4); or in the latest available prior examination using an in-home sleep apnea testing

device (Edentrace). Data were analyzed from 505 AAs and 485 EAs (339 AAs and 234 EAs with full PSG data).

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is studying multiple health

conditions in HAs [***"]. Home sleep apnea testing was performed during the baseline examination (2008 —2011)
using the ARES Unicorder 5.2, a validated device including a forehead-based reflectance oximeter, a nasal

pressure cannula and pressure transducer, an accelerometer, and a microphone [**]. 2,339 individuals provided

data.
The Jackson Heart Study (JHS) is investigating cardiovascular disease in AAs [*]. An in-home sleep
study was performed from 2012 — 2016 using a validated Type 3 sleep apnea testing device (Embla Embletta

Gold) [***']. 575 individuals contributed data.

Imputed genotype studies
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The Osteoporotic Fractures in Men Study (MrOS) is a multi-center cohort study initially designed to

examine the risk factors for osteoporosis, fractures, and prostate cancer in older males [****]. An ancillary study
(MrOS Sleep; 2003 — 2005) focused on outcomes of sleep disturbances used PSG and nearly identical procedures
as in MESA (Compumedics Safiro system) [**]. 2,181 EA individuals were included, with genotyping performed

using the [llumina Human Omni 1 Quad v1-0 H array.

The Starr County Health Studies (Starr) investigates the risk factors for diabetes in Mexican-Americans
[***°]. An in-home sleep apnea study occurred between 2010 and 2014 using a validated instrument that records
finger pulse oximetry, actigraphy, body position, and peripheral arterial tonometry (Itamar-Medical WatchPAT-
200) [*"]. 782 HA individuals were studied, using Affymetrix 6.0 genotyping data.

The Western Australian Sleep Health Study (WASHS) is a clinic-based study focused on the
epidemiology and genetics of SDB [*]. PSG was obtained from 1,508 European-ancestry patients (91% referred
for SDB evaluation) from 2006 — 2010 (Compumedics Series E). Genotyping was performed using the [llumina

Omni 2.5 array.

Imputed genotype data were available for additional members of the TOPMed cohorts described above.
Study/population combinations with fewer than 100 individuals were excluded. ARIC contributed an additional
631 EA individuals (Affymetrix 6.0; dbGaP phg000035.v1.p1). CFS contributed 225 AA and 218 EA individuals
(Affymetrix 6.0; [llumina OmniExpress+Exome, Exome, and IBC). CHS contributed 365 individuals (Illumina
CNV370 and IBC; phg000135.v1.p1 and phg000077.v1.p1). FHS contributed 192 EA individuals (Affymetrix
500k; phg000006.v7). HCHS/SOL contributed 7,155 HA individuals (Illumina Omni 2.5; phg000663.v1).

Phenotype and covariate definitions

We examined several SDB measures, including specific measures of OSA: AHI (number of apneas plus
hypopneas per hour of sleep, with a minimum 3% desaturation per event) and average oxyhemoglobin
desaturation per apnea or hypopnea; and measures of SDB severity ["°]: average and minimum SpO; and the
percentage of the night with SpO, <90% (Per90). Apart from WASHS, all sleep data were scored by blinded
scorers at one central Sleep Reading Center with high levels of scorer reliability using well-defined procedures
[***°]. We adjusted for age, age?, sex, age x sex, body mass index (BMI), and BMI* due to known age and sex
effects, some of which are non-linearly associated with outcomes, and our goal of identifying obesity-independent
loci. Age and BMI were obtained at the time of the sleep recording. Phenotype analyses were pooled within
populations to aggregate very rare variants for testing, and therefore further adjusted for study. Cryptic relatedness
and population substructure were controlled for using linear mixed models. Genomic control was applied to

population-specific results (or cohort-specific imputed genotype results).

Page 6 of 36


https://doi.org/10.1101/652966

102
103

104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119

120

121
122
123
124
125
126
127
128

129
130
131
132
133
134

bioRxiv preprint doi: https://doi.org/10.1101/652966; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Cade ef al.: WGS analyses of sleep-disordered breathing

WGS and genotyping

Sequence data were derived from the TOPMed Freeze 6a release, jointly called by the TOPMed
Informatics Research Center at the University of Michigan (http://github.com/statgen/topmed variant calling).
The methodology was described elsewhere ['7]. In brief, WGS was performed at the Broad Institute (ARIC, FHS,
MESA), Baylor College of Medicine (ARIC, CHS, HCHS/SOL), and the University of Washington (CFS, JHS).
Additional ARIC and HCHS/SOL WGS funded by CCDG and performed at Baylor College of Medicine were
included in the jointly-called data. TOPMed and CCDG calling pipelines have functionally equivalent outcomes
despite data processing differences (as detailed in [*']). WGS data were merged and normalized; inferred sequence
contamination was identified; and SNPs and small indels were detected (structural variants are not currently
available). Lower quality variants were excluded using Mendelian consistency checks. Variants were aligned to
Build 38 and annotated using snpEff 4.3t [**]. We excluded variants with <10x depth or >5% missingness, leaving

152.7 million polymorphic variants in 7,988 individuals with SDB phenotypes.

Genotype data were imputed using the TOPMed Imputation Server ['*] using a Freeze 5b (Build 38)
template. Forward strand checks were performed using the Strand database and the Haplotype Reference
Consortium imputation preparation script (https://www.well.ox.ac.uk/~wrayner/tools/) and confirmed using
Ensembl variant allele checks and internal QC performed on the server. Study-level data were imputed separately.

Analyses on variants with 1 score > 0.5 were therefore performed separately for each study.

Statistical analyses

Single and grouped variant analyses were performed using EMMAX and MMSKAT, both within the
EPACTS suite (v3.3, https://genome.sph.umich.edu/wiki/EPACTS) [*]. WGS genetic relatedness matrices
(GRM) were constructed using autosomal variants (MAF > 0.1%) following a comparison of EPACTS point-wise
heritability estimates of the AHI using different minimal MAFs. A grid search identified optimal GRM
parameters with imputed data (MAF > 0.5%, r* > 0.90) using 929 ARIC individuals with imputation and WGS
data. Logo P-values using identical association test parameters had a Spearman’s p correlation of 0.951 between
WGS and imputed data. Matrices were constructed separately for each study + population combination (due to

potentially differential imputation coverage).

Gene-based group sets were constructed with a series of filters considering non-pseudogenes expressed in
any GTEx v7 tissue. A variant could be assigned to one or more Ensembl genes based on SNPEff annotations
[**]. We examined 5_prime UTR premature start codon_gain_variant, bidirectional gene fusion,
conservative_inframe_deletion, conservative inframe insertion, disruptive inframe deletion,
disruptive inframe insertion, exon_loss variant, frameshift variant, gene fusion, intiator codon_variant,

missense_variant, non canonical start codon, splice acceptor variant, splice donor variant,
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splice_region variant, start loss, stop_gained, stop_lost, and stop_retained_variant mutations. We also included

variants located within experimentally derived promoter regions and Ensembl-derived Tarbase miRNA binding
sites; and regulatory variants located within 1000 bases of a particular gene, including ChIP-seq determined
transcription factor binding sites (TFBS), and Ensembl-derived CTCF, TFBS, and promoter sites [**]. Group set
variants were filtered by requiring either a FATHMM-XF score > 0.5 or a CDTS < 1% constrained region score
[*7**]. Exonic variants could alternatively have a PrimateAl score > 0.803 or a Havrilla ef al. < 1% constrained

coding region score [*°].

Gene-based tests considered variants in WGS-only data (MAF < 5%). Pooled (across cohort) analyses
were performed within each population in order to aggregate information on very rare variants across studies.
Combined population results were obtained through meta-analysis of p-values weighted by sample size (due to
potentially different MAF spectra driven by population demography). A significance level of p <4.51 x 10® was

used, reflecting a Bonferroni adjustment for all genes tested across all phenotype and population configurations.

A second set-based analysis was designed to query for TFBS annotation enrichment [*']. We performed
250 base-pair sliding window analyses (to improve power by aggregating additional variants beyond an
approximate ChIP-seq peak width of 100 base-pairs). We filtered for variants with either a FATHMM-XF score >
0.5 or a CDTS 1% score with no MAF cut-offs and meta-analyzed MMSKAT results across the 4 populations,
noting windows with p-values < 0.01. These intervals were tested for enrichment of ChIP-seq coordinates with at
least 50% physical overlap for up to 437 transcription factors using ReMap 2018 v1.2

(http://tagc.univ-mrs.fr/remap/index.php?page=annotation) [*].

Single-variant EMMAX tests examined common variants (MAF > 0.5%). Meta-analysis across
populations (and imputed genotype studies) used METAL with genomic control [**]. We performed bidirectional
discovery and replication using the WGS and imputed samples (noting the high genomic resolution in the WGS
samples and the higher sample size in the imputed data). We report results including at least 1000 individuals,
discovery association p-values < 1 x 10~ and replication association p-values < 0.05. Significance was defined as
p <1 x 10® in joint analyses, reflecting adjustment for five correlated phenotypes (Supplementary Table S3). We
performed MetaXcan imputed GTEx gene expression analyses using joint EA results in selected tissues relevant
to SDB and GIGSEA pathway analyses of MetaXcan output in whole blood (to maximize power), with empirical

p-values incorporating 10,000 permutations [***].
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Results

Study sample

A study overview is provided in Supplementary Figure 1. Tables 1 and 2 provide a summary of the
study samples and SDB traits analyzed using WGS and imputed genotypes, respectively. In total, there were
21,244 individuals (1,942 AAs; 229 AsAs; 8,341 EAs; and 10,732 HAs). Median AHI levels ranged from mildly
to moderately elevated, reflecting the age range and sex distribution of each cohort. Pairwise correlations of

phenotypes and covariates are provided in Supplementary Table 3.

Gene-based results

Gene-based rare variant results are presented in Table 3 (for meta-analyzed results across multiple
populations) and in Table 4 (for secondary population-specific results). Collectively, we identified 4 significantly
associated genes (Bonferroni p <4.51 x 10®). ARMCX3, identified in the multiple-population analysis, is an X-
linked protein-coding that was associated with average desaturation (p = 5.29 x 10"*). Two protein-coding genes
were identified in population-specific analyses of Per90: MRPS33 (p = 1.22 x 10”°) and C160r90 (p = 1.36 x 10
%). We identified 12 suggestively associated genes (p < 4.22 x 107). Three genes are druggable [***]. Nominally
significant results (p <0.01) and additional details are presented in Supplementary Tables 4 and 5.

Single-variant results

We identified four genome-level significant loci in single-variant analyses (MAF > 0.5%; p < 1.0 x 10%;
Table 5). In multiple-population analyses, the 2q12 locus (rs77375846; IL18RAP) was associated with average
event desaturation in a multiple-population analysis (combined p = 1.57 x 10”°) and minimum SpO, (consistent
with a previous report ['*]). Two novel population-specific loci were identified. The 8p12 locus (rs35447033,
NRG1) was associated with AHI in EAs (combined p = 3.02 x 107, Figure 1). The 5p13 locus (rs28777;
SLC45A42) was associated with average SpO, in EAs (combined p = 8.08 x 10", Figure 2). In HAs, the 1q32
locus (rs116133558; ATP2B4) was associated with Per90 (combined p = 3.51 x 107'%) and with average SpO, (as
previously identified ['']). Twelve additional regions were suggestively associated (p < 1.0 x 107).
Supplementary Table 6 provides additional context for all variants in these loci (p < 1.0 x 107), including
imputation quality, significant eQTLs, and overlap with epigenetic regions [**°']. Manhattan and QQ plots

corresponding to the significant associations are provided in Supplementary Figures 2 — 5.

MetaXcan imputed gene expression and GIGSEA pathway analyses
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We used joint WGS and imputed EA results to impute associations with gene expression levels using a

MetaXcan framework for 6 tissues (subcutaneous and visceral omentum adipose, lung, monocytes, skeletal
muscle, and whole blood). No individual tests reached Bonferroni significance (p < 2.60 x 107; Supplementary
Table 7). Genes that were observed in the top 10 results across the varied analyses (Supplementary Table 8)
included ZNF83 (15 instances) and CHRNE (13 instances).

Whole blood MetaXcan results (with the largest sample size) were further evaluated in GIGSEA-based
pathway analyses. KEGG pathway results are shown in Supplementary Table 9. The most significantly
associated pathway was KEGG_STEROID HORMONE BIOSYNTHESIS (average SpO, empirical p-value =
7.00 x 10*%). KEGG_RIG I LIKE RECEPTOR SIGNALING PATHWAY was observed in the top 10 results
for 4 of the 5 phenotypes. Gene-centric transcription factor binding site (TFBS) enrichment analysis results are
presented in Supplementary Table 10. VSPEA3 Q6 (ETV4) was the most significantly associated TFBS
(average desaturation empirical p-value = 3.00 x 10*) and was the strongest association for AHI and minimum
SpO, (empirical p-values 0.002 and 0.001, respectively). The most significant miRNA binding site enrichment
analysis association was GCATTTG,MIR-105 (average SpO, p = 0.002; Supplementary Table 11).
AGGCACT,MIR-515-3P (the strongest AHI association, p = 0.009) was observed in the top ten results for four
phenotypes.

ChIP-seq transcription factor binding site interval enrichment

We performed a sliding window analysis to examine enriched intervals containing ChIP-seq derived
coordinates for up to 437 transcription factors (Table 6, Supplementary Table 12). FOXP2 TFBS were
consistently the most enriched for all phenotypes. Other notable transcription factors in the top 5 included EGRI,
KDM4B, KDM6B, and TP63. KDM4B and KDMG6B are druggable [***"]. Leading sliding window results are
provided in Supplementary Table 13.
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Discussion
Sleep-disordered breathing (SDB) is associated with increased risk of a wide range of disorders, including
atrial fibrillation, cancer, cognitive impairment, diabetes, liver, and interstitial lung diseases, as well as premature
mortality [>***%7]. Treatment options, however, are limited by a lack of knowledge of molecular pathways,
including those that may be “druggable”. Recent analyses of SDB traits have focused on common variants and
identified several preliminary genome-level significant associations using GWAS, admixture mapping, and

linkage approaches ['""°]

, but did not address gene-based or rare variant effects. Ten studies and over 21,000
individuals of multiple ancestries with WGS data at unprecedented resolution from the NHLBI TOPMed program
combined with densely imputed data from other sources contributed to these results. We identified several variant,
gene-based, and pathway-level associations. Analyses adjusted for obesity, a major SDB risk factor, identified
loci and genes implicated in pulmonary, inflammatory, and craniofacial pathways. Some associations were
population-specific, while others were sex-specific, consistent with population differences and strong sex
differences for SDB [****7°]. Notably, across multiple ancestral groups, we identified a set-based rare-variant

association (p = 3.48 x 10®*) on chromosome X with ARMCX3.

Gene-based results

Across multiple populations, ARMCX3 (ALEX3) and the RNA anti-sense gene ARMCX3-AS1 were
associated with apnea-hypopnea triggered intermittent hypoxia. ARMCX3 regulates mitochondrial aggregation
and trafficking in multiple tissues and facilitates neuronal survival and axon regeneration [’"7*]. Wnt signaling
regulates reactive oxygen species (ROS) generation and ARMCX3-associated mitochondrial aggregation [>*].
Potential mechanisms for further study include sensitized carotid body chemoreflexes, interaction with
inflammatory mechanisms, and neuronal dysfunction within respiratory centers. Sleep apnea and reduced
ventilatory drive are enriched in individuals with a primary mitochondrial disorder [**]. Mitochondria are an
important source of ROS, which modulate the acute hypoxic ventilatory response. Mitochondria impact HIFIA
signaling and may contribute to oxygen sensing [’ "]. ROS are required for intermittent hypoxia-induced
respiratory long-term facilitation [**]. These effects may mitigate the level of hypoxia resulting from recurrent
apneas, or conversely, lead to ventilatory instability, promoting apnea occurrence. Mitochondrial ROS also
activate the NLRP3 inflammasome in multiple pulmonary diseases, consistent with an inflammation model that
includes our IL18-pathway and HK results, ROS-related proinflammatory responses to lung capillary pressure,
and evidence of alveolar epithelial injury/SDB interactions ['***"]. Our findings suggest value in investigating the
mechanisms by which ARMCX3 predisposes to SDB, and whether these associations are mediated by neuronal

dysfunction and/or ROS and carotid body sensitization, and interact with the inflammasome.

Additional genes were significantly associated in population-specific analyses, including the
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mitochondrial ribosomal gene MRPS33. Mitoribosomes are responsible for expression of the 13 essential

components of the oxidative phosphorylation system, and a majority of the small subunit proteins have been
implicated in disease [*]. The expression of several small and large subunit proteins are altered in a hypoxic

environment [*]. MRPS33 expression varies with oxygen treatment in COPD [*].

Single-variant results

We identified four common frequency associated loci, including multiple-population associations with
the ILI8RAP region. The IL18RAP region has been associated with minimum SpO, ["*], and here we further
identify an association with average event desaturation, highlighting a role in an OSA-specific trait. Multiple
variants in this region are also GTEx eQTL variants for both interleukin-18 receptor subunits /L/8RAP and
IL18R1 (Supplementary Table 6) and experimental studies support a role for /L8 signaling in mediating this

association, possibly through effects of pulmonary inflammation on gas exchange (reviewed in ['*]).

We identified three population-specific loci, including two novel associations in individuals of European
ancestry (Figures 1 and 2). 65 variants in the NRGI region were associated with the AHI (p < 1.0 x 10,
Supplementary Table 6). This region was suggestively associated with sleep apnea in a Korean population [*'],
however the lead signals appear to be independent (rs10097555 Korean p = 2.6 x 10°, EA p=0.91). NRGI is
associated with lung development and acute lung injury, and mediates inflammasome-induced alveolar cell
permeability [*2%°]. NRG1 promotes accumulation of HIF1A and has increased expression in vascular smooth
muscle cells following exposure to intermittent hypoxia [**°’]. The lead SLC45A42 region variant rs28777 (average
SpO: p = 8.08 x 107'%) has been associated with multiple traits and is in a splicing regulatory element with extreme
population differentiation [**]. An association in the ATP2B4 region with average SpQO. in HAs [''] has been
extended to a second hypoxemia trait at the same variant (Per90 p = 3.31 x 107'). This gene is the main cellular

membrane calcium pump in erythrocytes and also regulates vascular tone [*'%].

Pathway analyses

Several gene pathways were identified in EA individuals using imputed gene expression in whole blood
(Supplementary Table 9). KEGG_RIG I LIKE RECEPTOR_SIGNALING PATHWAY (retinoic acid-inducible
gene [-like) was the most commonly observed, occurring in the top 10 results for 4 of the 5 phenotypes. This
pathway initiates the immune response to RNA virus infection ['°'], consistent with a role for inflammation at the
NRGI and ILI8RAP loci. Steroid hormone biosynthesis (the most significantly associated pathway), PPAR
signaling, and metabolism (via ‘starch and sucrose metabolism”) suggest the importance of biological pathways

modulating energy homeostasis and balance and metabolic function ['**]. In the gene-centric GIGSEA TFBS
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analysis, VSPEA3 Q6 (ETV4) was the lead association for three phenotypes. E7V4 influences branching in the

developing lung and regulates hypoxia-inducible factor signaling ['**'**], a major mechanism influencing

ventilatory control.

Transcription factor binding site enrichment

Several transcription factors were identified through interval enrichment of observed TFBS across the
genome (Table 6). FOXP2 was consistently the most enriched transcription factor and is known to regulate gene
expression in epithelial lung tissue and response to lung injury through an inflammatory mechanism ['*>'%].
FOXP?2 is also expressed in brainstem respiratory areas including the pre-Botzinger complex (which is essential
for respiratory rhythmogenesis) and impacts airway morphology ['"'%*]. Two lysine demethylases (KDM4B and
KDMG6B) were also identified. KDM6B (JMJD?3) is required for a functional pre-Botzinger complex ['%!''°] and
reduced KDM6B protein expression was reported in hypoxic OSA patients [''']. Kdm6b also plays roles in
immune function and lung development [''*"'*]. Drosophila Kdm4b knock-outs have increased sleep ['"°].
KDMA4B (JMJD2B) and KDM6B are both members of the JmjC protein domain family and are regulated by
HIF 14, require oxygen as a cofactor and act as oxygen sensors for chromatin in hypoxia [''*''"]. EGRI mediates
hypoxia-induced pulmonary fibrosis [''*]. TP63 is associated with cleft palate in Tp63 deficient mice, which is
associated with an increased prevalence of OSA [''*'*], suggesting that its relationship to OSA may be through
pathways influencing craniofacial development. Among the leading 250-base pair sliding window results
(Supplementary Table 13), 4:105708751-105709001 (Per90 HA p = 2.72 x 10”) is of note due to regional

associations with lung function and expression in human lung ['*'].

Strengths and weaknesses

This study is the first genome-wide analysis of objectively measured SDB traits using deep sequencing.
Together with improved imputation quality, the TOPMed resource has enabled unprecedented genetic resolution.
We examined clinically relevant phenotypes measured using rigorous methodology [>"'°]. We analyzed data from
10 studies of individuals from four population groups that used different ascertainment strategies, which may
potentially improve the generalization of our results. While this analysis is among the largest performed for SDB
traits to date, our moderate sample size has lower power to detect weaker associations, and data were not
available to replicate these first rare variant associations. While there are multiple lines of evidence in the

literature to support our findings, additional experimental followup analyses are required.

Conclusion
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We have identified the first rare-variant and additional common-variant associations at genome-level

significance with objectively measured SDB traits in humans. The results point to biologically relevant pathways
for further study, including a novel X-linked association (ARCMX3), and a number of associations in genes that
modulate lung development, inflammation, respiratory rhythmogenesis and H/FA-mediated hypoxic-response
pathways. These associations will motivate future sample collection and follow-up in cell-line and animal

validation studies, with potential therapeutic benefit for sleep-disordered breathing and related comorbidities.
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Supplementary Data

Supplementary data include 5 figures and 13 tables.
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