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Abstract

Understanding how antibodies specifically interact with their antigens can enable better drug
and vaccine design, as well as provide insights into natural immunity. Experimental structural
characterization can detail the “ground truth” of antibody-antigen interactions, but computational
methods are required to efficiently scale to large-scale studies. In order to increase prediction
accuracy as well as to provide a means to gain new biological insights into these interactions,
we have developed a unified deep learning-based framework to predict binding interfaces on
both antibodies and antigens. The framework leverages three key aspects of antibody-antigen
interactions in order to learn predictive structural representations: (1) since interfaces are formed
from multiple residues in spatial proximity, we employ graph convolutions to aggregate properties
across local regions in a protein; (2) since interactions are specific between antibody-antigen
pairs, we employ an attention layer to explicitly encode the context of the partner; (3) since
more data is available for general protein-protein interactions, we employ transfer learning to
leverage this data as a prior for the specific case of antibody-antigen interactions. We show that
this single framework achieves state-of-the-art performance at predicting binding interfaces on
both antibodies and antigens, and that each of its three aspects drives additional improvement
in the performance. We further show that the attention layer not only improves performance,
but also provides a biologically interpretable perspective into the mode of interaction.

1 Introduction

As one of its mechanisms to combat disease, the immune system develops B cells that secrete
antibodies to specifically recognize and either neutralize or help drive functional responses against a
pathogen. An antibody recognizes a particular region, called its epitope, on a particular part of the
pathogen, called its antigen; the region of the antibody directly involved in the recognition is called
its paratope. The interface between an epitope and paratope is crucial to the affinity and specificity of
an antibody-antigen interaction, and thus the antibody’s function. Characterizing antibody-antigen
interactions at the epitope-paratope resolution can thus reveal mechanisms of immune recognition,
and, over a set of antibodies, can even provide insights into the development of the immune response.
Such characterization can also benefit the development of therapeutics and vaccines. For example,
therapeutic antibodies are being used to treat many different diseases [7, 20], and early development
processes typically yield large arrays of candidate antibodies from which to select. Understanding
their different recognition mechanisms can aid the selection and subsequent development. Similarly,
subunit vaccines are being developed to train the immune system against a pathogen by mimicking
an important part but without causing actual infection [5, 11, 12]. Understanding the recognition
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processes driving a beneficial response, as well as those that are not useful, can guide the development
of these vaccines so as to ensure the desired immune targeting.

Experimental structure determination methods, namely x-ray crystallography, NMR spectroscopy,
and cryoEM, provide the gold standard for characterizing antibody-antigen binding modes [3, 28].
Unfortunately they remain expensive and time-consuming, and cannot feasibly keep up with the
exploding amount of antibody sequence data for which it is desirable to understand antigen recognition,
e.g., the millions of sequences obtained from analysis of an immune repertoire [33, 50, 56]. Alternative
experimental methods like H-D exchange mass spectrometry [17] and alanine scanning [53] are faster
and cheaper, and of lower resolution/confidence, but still require substantial experimental effort per
target. Higher-throughput methods such as multiplexed SPR can characterize many interactions
simultaneously but do not provide direct localization information [38, 6]. Computational methods
thus have the most promise to scale to characterization of large numbers of possible epitope-paratope
interactions, but it is necessary to ensure that predictions provide sufficient grounds to support
further investigations, in terms of overall accuracy as well as the underlying reasoning for a prediction.

Prediction of antibody-antigen binding interfaces can be seen as a special case of predicting protein-
protein binding interfaces. However, since these interfaces have their own special characteristics [27,
15] (as do other classes of protein-protein interactions), specific methods have been developed for
epitope prediction and others for paratope prediction. Many methods make predictions based on
amino acid sequence alone, e.g., predicting epitopes based on neural networks [39], SVMs [14, 43],
HMMs [55], and random forests [21], and paratopes using LSTMs [31, 10] and random forests [34]
Though sequence-based methods can perform well on paratope prediction, most sequence-based
epitope predictions are limited to the special case of a sequentially contiguous epitope [54], while
in contrast most epitopes are found to be conformational (distal in sequence, but close in 3D
structure) [52, 37]. Thus we and others focus on structure-based methods that leverage geometric
information in making predictions. Fortunately, while the complex structure is not known, in most
common scenarios the structure of the antigen by itself is available, and antibody structure prediction
techniques enable confident prediction of most of the antibody’s structure [44, 45]. We thus briefly
review this body of most closely related work on structure-based prediction of epitopes and paratopes.

Docking: Many structure-based methods for epitope and paratope prediction rely on compu-
tational docking techniques, which estimate the most likely conformations of a complex based on
complementarity (geometric, chemical, energetic) between the individual proteins in many possible
poses [8, 40, 46]. The resulting docking models may be ranked using a scoring function incorporating
many different geometric and physico-chemical parameters; defining a good scoring function is a
challenging task that typically relies on domain expertise [35]. From the top ranked conformations,
regions on one protein that are close to the partner protein can be identified as binding interfaces.
Thus antibody-antigen docking can simultaneously predict epitopes and paratopes. While the recall
of docking is generally fairly high if enough docking models are considered, the precision is then
fairly low, prompting the development of methods that directly predict epitopes and paratopes based
on properties of the proteins [4].

Epitope prediction: Some approaches, e.g., PEPITO [49], ElliPro [36], EPSVR [30], and
DiscoTope [25], apply machine learning methods to structural features of the antigen’s residues.
These methods can be considered antibody-agnostic as they do not use information from the partner
antibody, and thus just reveal parts of the antigen generally amenable to antibody binding [42]. For
prediction of an epitope targeted by a particular antibody, the context of which residues are likely
to be involved in the interaction can improve the prediction performance, as well as distinguish
specificity differences among different antibodies. This aspect of antibody-antigen interactions
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was leveraged by the antibody-specific prediction method EpiPred [24] to achieve state-of-the-art
performance. EpiPred first performs geometric matching of patches (e.g., based on docking models)
and then scores residues on the antigen with a customized binding potential specific for antibodies
and antigens.

Paratope prediction: Many paratope prediction predictors focus on special regions on anti-
bodies called complementarity determining regions (CDRs), as they are well-defined from sequence
and constitute the majority of the paratope and the majority of the differences among antibodies
driving antigen-specific recognition. In the non-parametric method Paratome, the query antibody’s
structure and sequence are compared against a non-redundant dataset of antibodies, and paratopes
are predicted based on resemblance to those on the closest matching antibody. [26]. Antibody
i-Patch [23] uses a scoring function derived from an analysis of antibody-antigen interactions in a
non-redundant training set. Recently, Daberdaku et al. [9] achieved state-of-the-art performance with
a method that applies SVMs to classify patches extracted from the surface of the antibody, based on
roto-translationally invariant shape descriptors and other physico-chemical properties representing
the patches.

A common drawback of current structure-based methods for epitope and paratope prediction is
the use of fixed representations, which can be limited by the extent of available domain knowledge.
Furthermore, epitope and paratope prediction are treated as two separate tasks, leading to the use of
different representations and prediction methods for antigens and antibodies. Sequence-based methods
Parapred [31] and AG-Parapred [10] demonstrate the utility of learning representations for better
paratope prediction. However, there are currently no methods to learn structural representations
for either epitope or paratope prediction tasks. Recently, a spatial graph convolution network was
proposed to learn structural representations of proteins for interface prediction in general protein-
protein interactions [16]. While graph convolution networks can encode structural representations of
residues with information from their spatial neighborhood, they do not encode the context of the
target protein. As shown by current methods, embedding the correct context of the target protein
can improve the prediction performance [24, 23]. Therefore, there is a need to develop methods for
learning context-aware structural representations for epitope and paratope prediction.

In this work, we present a unified deep learning-based framework for learning context-aware
structural representations of antigens and antibodies to predict their binding interfaces. Our
framework consists of a novel combination of graph convolution networks, attention, and transfer
learning to capture several desired aspects of antibody-antigen interactions. We show that the
models trained on our framework can overcome the limitations of current computational methods
and achieve state-of-the-art performance on both epitope and paratope prediction tasks. Using
the attention layer, we demonstrate the ability of our framework to reveal the mode of interaction
between antigens and antibodies, enabling a deeper study of the biological factors driving their
interactions. Therefore, our framework improves prediction accuracy and provides interpretable
results to expedite the process of large-scale antibody-antigen characterization.

2 Learning context-aware structural representations

We propose a novel deep learning framework (Figure 1) to learn structural representations of antigens
and antibodies in order to predict their binding interfaces (i.e., antigen epitopes and antibody
paratopes). Our framework comprises three components to leverage biological insights: (1) graph
convolutions to capture the spatial relationships of the interfaces, (2) an attention layer to enable each
protein’s interface predictions to account for the potential binding context provided by its partner,
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Figure 1: Schematic overview of the proposed framework

and (3) transfer learning to leverage the larger set of data available for general protein-protein
interactions to provide a baseline model to be fine-tuned with antibody-antigen data.

We use this general framework to train two separate networks for the two prediction tasks: (1)
an epitope prediction network in which the antigen is the primary protein on which we want to
predict the interface (epitope) and the antibody is the secondary protein providing the context for
a suitable interface; (2) a paratope prediction network with the antibody as primary for interface
prediction (paratope) and the antigen secondary providing the context. We note that in both tasks,
the interface labels of the secondary protein are hidden during training and prediction phases, forcing
the attention layer to learn the correct context of the secondary protein in an unsupervised fashion.

Problem statement: The objective is to assign a label, either +1 (interface) or −1 (non-
interface), to each residue of the primary protein.

A. Input representation: Each protein structure is represented as a graph, with nodes for the
amino acid residues and edges between residues with Cβ-Cβ distance less than 10Å. Associated with
each node is a 62-dimension feature vector encoding important sequence and structural properties
as used in [16]: (a) a one-hot encoding of the amino acid type (d=20); (b) a conservation profile
for that position across a set of homologous proteins returned by PSI-BLAST [2] (d=20); (c) the
absolute and relative solvent accessible surface area of the residue as computed by STRIDE [19]
(d=2); (d) a local amino acid profile indicating the number of times each amino acid type appears
within 8Å of the residue (d=20). The structure-based features (c and d) were calculated for each
protein in isolation from its partner.

Since antibody CDRs drive their antigen-specific recognition and the rest of the antibody
framework is quite similar across all antibodies, nodes in the antibody graph are limited to “CDR
clouds” as follows: (1) identify the six CDRs using the IMGT annotation tool [29]; (2) for each
CDR, consider two sequentially adjacent residues; (3) further extend these sets to include all residues
within 6Å in the structure (the maximum of the minimum Cβ-Cβ distance between any two CDR
residues in the training sets).

B. Neural network: The neural network consists of graph convolution, attention, and fully
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connected layers. Given two input graphs, primary P = {pi}Ni=1 and secondary S = {si}Mi=1, the
network assigns to each node pi ∈ P a probability of belonging to the positive class (i.e., binding
interface).

B.1 Graph convolutions: Graph convolution [16] enables order-independent aggregation of
properties over a neighborhood of residues that together contribute to the formation of a binding
interface. For a node xi and its receptive field consisting of K spatial neighbors Gi = {gj}Kj=1
from the input graph, the convolution operation results in a vector ẑi ∈ Rv, where v is a specified
number of filters for the layer (Eqn. 1). The parameters of this operation represent the aggregation
weight matrix Wc for the center node, the aggregation weight matrix Wg for the neighboring nodes,
and the bias vector b̂. Thus, the convolution operation for a node xi results in a spatial vector
representation x̂′i in the latent space Rv.

ẑi = ReLU

Wcx̂i +
1

|Gi|

K∑
j=1

Wgĝj + b̂

 (1)

Multiple layers can be stacked to produce high-level representations for each node. Each
convolution layer has two weight-shared graph convolution modules, one for the primary graph and
one for the secondary graph.

B.2 Attention: An attention layer encodes the context of secondary graph in the residue-level
representations of the primary graph, providing information for each primary residue about secondary
residues that are likely to interact with it. An attention score aij is computed between all node pairs
pi ∈ P and sj ∈ S after projecting them into a latent space via an attention weight matrix Wa

(Eqn. 2). The dimensions of Wa are determined by the number of neurons in the final convolution
layer and the desired dimension of the latent space. This dot product style of computing attention
scores was used to directly estimate complementarity between hidden representations as in [32, 10].
The context vector ĉi ∈ Rv for node pi is then computed by aggregating the node-level representations
of S using normalized attention scores (Eqn. 3). The normalization was performed to calibrate the
score between each pair with respect to scores across all possible pairs. The normalized score αij

can therefore be interpreted as a pair-wise interaction potential between pi and sj .

aij = ReLU(hTi hj),

ĥi = Wap̂′i, ĥj = Waŝ′j .
(2)

ĉi =

M∑
j=1

αij ŝ
′
j , where αij =

aij√
i=N,j=M∑

i,j=1
a2ij

(3)

B.3 Node classification: A final fully-connected layer performs classification for each primary
node pi based on its spatial vector p̂′i and context vector ĉi (Eqn. 4). A logit function transforms
each node’s output yi to indicate the probability of belonging to the positive class.

yi = Ŵ T
(
ci||p′i

)
+ b, where || indicates concatenation (4)

C. Transfer learning: A base network φ for interface prediction is learned for a relatively
larger set of general protein-protein interactions. The learned weights from the base model are
then used to initialize weights for training the two task-specific networks, essentially fine-tuning the
general base network for epitope and paratope prediction using antibody-antigen data.
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Table 1: Summary of datasets used for training, validation, and testing.
Epitope prediction dataset

Data split # Complexes % Epitopes

Training 103 8.9%
Validation 38 9.7%

Test 30 7.8%

Paratope prediction dataset

Data split # Complexes % Paratopes

Training 205 8.8%
Validation 103 8.9%

Test 152 9.4%

3 Experiments

We evaluate our approach in head-to-head benchmark comparisons against state-of-the-art epitope
and paratope predictors, showing that our unified framework outperforms approaches specifically
targeted to each. Furthermore, we elaborate general precision and recall trends in the full architecture,
as well as versions enabling characterization of the contributions of convolution, attention, and
transfer learning. Finally, we explore the ability of the attention layer to provide insights into the
basis for the model’s predictions.

3.1 Datasets

Epitope prediction: The dataset from EpiPred [24] consists of 148 antibody-antigen complexes,
118 for training and 30 for testing. Since a separate validation set was not used, we constructed one
from the antibody-antigen complexes in the Docking Benchmarking Dataset (DBD) v5 [51], ensuring
that there were no overlapping complexes (by PDB id) among the three sets. This yielded resulted
in 103 complexes for training, 38 for validation, and 30 for testing.

Paratope prediction: The dataset from Daberdaku et al. [9] consists of 471 antibody-antigen
complexes, with 213 complexes for training, 106 for validation, and 152 for testing. Since our
framework accepts only proteins, we discarded complexes with non-protein antigens (e.g., DNA),
resulting in 205 complexes for training, 103 for validation, and 152 for testing.

Transfer learning: To facilitate unbiased transfer learning, the DBD v5 dataset [51] was
processed to discard complexes that were categorized as antibody-antigen, resulting in a dataset of
191 protein-protein complexes.

Following previous studies [24, 9], residues were labeled as part of the interface if they had any
non-Hydrogen atoms within 4.5Å of any non-Hydrogen atoms of residues on the other protein.

Table1 summarizes these dataset characteristics.

3.2 Implementation Details

The framework was implemented in TensorFlow [1]. The validation sets were used to find the
optimal set of network training parameters for final evaluation. A grid search was performed over
the following parameters: (a) Optimizer: Stochastic gradient descent, Momentum [48], Adagrad [13],
or Adam [22]]; (b) learning rates: 0.0001, 0.001, 0.005, 0.01, 0.05, or 0.1; (c) batch size: 32, 64, pr
128; (d) dropout: 0.5 or 0.8. For each combination, networks were trained until the performance on
validation set stopped improving or for a maximum of 250 epochs. For both epitope and paratope
prediction, the best validation set performance was achieved when training till 120 epochs using the
Momentum optimizer with Nesterov accelerated gradients [47] at a learning rate of 0.001, with batch
size of 32 and 50% dropout rate. Training was carried out by minimizing the weighted cross-entropy

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/658054doi: bioRxiv preprint 

https://doi.org/10.1101/658054
http://creativecommons.org/licenses/by-nc-nd/4.0/


loss function as in [16]. The same network settings were used for training on general protein-protein
complexes, but the fine-tuning was carried out on antibody-antigen complexes for half the original
time (i.e., 60 epochs). The graph convolution layers were set to have 32 filters and the latent space
dimension for attention was also set to 32. All weight matrices were initialized as in [18] and biases
set to zero. For graph convolution, the receptive field (spatial neighborhood) for each node was set
to include the 15 nearest nodes in the graph.

3.3 Evaluation

Epitope and paratope prediction networks were trained using the validation-set optimized hyper-
parameters from above. Per-protein prediction performance was measured on the test sets by
comparing predicted scores against ground truth labels. While our networks output a probability
for each residue, in order to enable a direct comparison to other epitope prediction methods we
computed precision and recall by predicting as interface residues those with logits above 0.5. To
further elaborate precision-recall trade-offs, we considered all such classification thresholds and
computed the area under the precision recall curve (AUC-PR). Though some previous methods
have used the AUC-ROC metric, AUC-PR is more suitable here since the emphasis is on predicting
binding interfaces (positive class) and the negative class constitutes roughly 90% of the samples.
To summarize the performance, AUC-PR was averaged over all proteins in the test set. To provide
robust estimates of performance, the training and testing procedures were repeated five times, and
the mean and standard error reported. Our evaluations included two learning schema: task-specific
learning (i.e., just using antibody-antigen data) and transfer learning (i.e., fine-tuning from a model
trained with general protein-protein data). For each schema, five networks were evaluated: one
network with a single fully-connected layer (No convolution), one with a single graph convolution
layer (Conv1-layer) and one with two (Conv2-layer), and likewise one network with the attention layer
following a single graph convolution layer (Conv1-layer+Attn) and one following two convolution
layers (Conv2-layer+Attn).

3.4 Results

Epitope prediction

Table 2 summarizes the epitope test set prediction performance for our different neural network
implementations along with the state-of-the-art Epipred [24] and DiscoTope [25]. Our networks
all perform better than Epipred and DiscoTope in terms of precision and recall at the 0.5 cutoff.
Elaborating performance for a range of cut-offs via AUC-PR enables further comparison among our
architecture implementations (these numbers are not available for the other methods). The network
with an attention layer after two convolution layers achieves the best performance, confirming
the utility of embedding the context of the target antibody into the representation of antigen’s
residues in addition to information from their spatial neighbors. Furthermore, the improvements in
performance of all models after transfer learning illustrates the benefits of leveraging data from general
protein-protein interactions to establish a base model that can be fine-tuned with antibody-antigen
data.

Paratope prediction

Table 3 summarizes the paratope test set prediction performance of our different neural networks
and state-of-the-art structure-based methods Daberdaku et al. [9] and Antibody i-Patch [23]. To
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Table 2: Epitope prediction performance summary. The measures for EpiPred and DiscoTope were
taken from [24]

Task-specific learning Transfer learning

Method AUC-PR Precision Recall AUC-PR Precision Recall

No Convolution 0.177±0.035 0.153 0.601 0.191±0.021 0.162 0.500
Conv1-layer 0.193±0.005 0.152 0.725 0.191±0.003 0.160 0.582

Conv1-layer+Attn 0.187±0.004 0.147 0.683 0.202±0.002 0.160 0.580
Conv2-layer 0.192±0.005 0.147 0.737 0.226±0.004 0.157 0.678

Conv2-layer+Attn 0.212±0.007 0.154 0.691 0.242±0.006 0.165 0.579

Epipred [24] NA 0.136 0.436 - - -
DiscoTope [25] NA 0.214 0.110 - - -

Table 3: Paratope prediction performance summary. The performance for Daberdaku et al.[9] and
Antibody-iPatch[23] were taken from [9]

Task-specific learning Transfer learning

Method AUC-PR AUC-ROC AUC-PR AUC-ROC

No Convolution 0.652±0.012 0.938±0.004 0.658±0.003 0.937±0.001
Conv1-layer 0.700±0.002 0.956±0.000 0.696±0.001 0.957±0.000

Conv1-layer+Attn 0.700±0.001 0.957±0.000 0.703±0.000 0.958±0.001
Conv2-layer 0.691±0.004 0.957±0.000 0.689±0.002 0.957±0.000

Conv2-layer+Attn 0.692±0.004 0.957±0.001 0.697±0.001 0.958±0.000

Daberdaku et al.[9] 0.658 0.950 - -
Antibody i-Patch[23] 0.376 0.840 - -

enable a direct comparison to previous studies, we predict for the entire structure of the antibody
Fv region instead of just the CDR clouds as described in our methods. Our networks perform better
than the other methods on both AUC-PR and AUC-ROC, establishing the superior performance of
learned features over pre-defined features as used by Daberdaku et al. The network with a single
layer of convolution and attention achieves the best performance, but the attention layer provides
only a small performance improvement over convolution. We hypothesize that since paratopes are
mostly localized to regions around the CDRs, the context of the antigen may not provide much more
information regarding exact paratope location than the structural properties already captured by
convolution. Nonetheless, as we show in the next section, the attention layer offers the benefit of
making the network interpretable, which can be a difficult task for convolution layers alone.

Assessing the contributions of attention

The attention layer provides the opportunity to study the mode of interaction by revealing the
learned context of the target protein without requiring additional inference techniques. The attention
score between every pair of residues can be visualized as a matrix, as Figure 2A illustrates for the
complex on which our epitope prediction network performed best. In this heatmap, epitopes have
a substantially distinct attention profile compared to other residues on the antigen, which results
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Figure 2: Attention visualization (A) Heatmap of the attention score matrix for an antibody in
complex with VEGFA (vascular endothelial growth factor A) (PDB ID 1TZH). The scores were
normalized to have zero mean and unit variance, and truncated to the range [-4,4]. (B-E) Projection
of max-pooled attention scores onto structures of example antigen and antibody complexes in the
test set. Structural visualizations made using PyMOL [41].

in improved epitope prediction (AUC-PR: 0.6) compared to convolution alone (AUC-PR: 0.45).
These attention scores can further be projected onto the structures (Figure 2B) by taking for each
residues the maximum of its scores with partner residues. This projection shows that attention is
high between residues in and around the actual interface region, suggesting that the attention layer
encodes the correct context (i.e., paratopes) of the antibody for epitopes. The same pattern of high
attention scores near the interface regions was also observed for other antibody-antigen complexes
(Figure. 2C-F illustrates the next 4 top performers).

Intrigued by the attention layer’s ability to localize the appropriate context during epitope
prediction, we hypothesized that the same ability could benefit paratope prediction. We thus
performed a “cross-task evaluation”, in which a network was trained to predict epitopes using the
antigens in the epitope prediction training set. This epitope prediction network was then evaluated
for its performance at also predicting paratopes for the antibodies in the epitope prediction test
set—the reciprocal task to that for which it was trained. For reference, paratope prediction networks
were trained on the antibodies from the epitope prediction training set and applied (as normal) to
the antibodies from the epitope prediction test set. As expected, the paratope prediction networks
perform significantly better at predicting epitopes than do the networks trained to predict epitopes.
However, the results from cross-task evaluation show that even though none of the networks were
trained to predict paratopes, those with an attention layer perform better than convolution-only
networks. This suggests that the attention layer is indeed able to better capture the specificity of
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Table 4: Performance summary from “cross-task evaluation”, predicting paratopes using networks
trained only for predicting epitopes.

Cross-task evaluation Task-specific learning

Method AUC-PR AUC-ROC AUC-PR AUC-ROC

Conv1-layer 0.612±0.028 0.844±0.026 0.770±0.000 0.970±0.007
Conv1-layer+Attn 0.624±0.026 0.875±0.035 0.768±0.003 0.971±0.008

Conv2-layer 0.588±0.058 0.910±0.051 0.766±0.005 0.971±0.001
Conv2-layer+Attn 0.628±0.025 0.938±0.029 0.765±0.007 0.971±0.012

antibody-antigen interactions, thereby also benefiting paratope prediction.

4 Conclusion

We have presented a unified deep learning framework for predicting binding interfaces on antibodies
and antigens. Our results demonstrate that the networks learn structural representations that capture
many desired aspects of antibody-antigen interactions and simultaneously achieve state-of-the-art
performance on both epitope and paratope prediction tasks. We also show that the attention layer
successfully encodes the context of partner proteins, improving prediction performance and providing
an interpretable view of the mode of interaction. Future work includes including additional residue
features while imposing sparsity constraints on the attention matrix, applying the same framework
to other large protein families with specific recognition modes, and using predictions to focus docking
as well as experimental evaluation.
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