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Abstract 

Introduction 

Tumor mutational burden (TMB) has emerged as a clinically relevant biomarker that may be 

associated with immune checkpoint inhibitor efficacy. Standardization of TMB measurement 

is essential for implementing diagnostic tools to guide treatment. 

Objective 

Here we describe the in-depth evaluation of bioinformatic TMB analysis by whole exome 

sequencing (WES) in formalin-fixed, paraffin-embedded samples from a phase 3 clinical trial. 

Methods 

In the CheckMate 026 clinical trial, TMB was retrospectively assessed in 312 patients with 

non-small cell lung cancer (58% of the intent-to-treat population) who received first-line 

nivolumab treatment or standard-of-care chemotherapy. We examined the sensitivity of TMB 

assessment to bioinformatic filtering methods and assessed concordance between TMB 

data derived by WES and the FoundationOne® CDx assay. 

Results 

TMB scores comprising synonymous, indel, frameshift, and nonsense mutations (all 

mutations) were 3.1-fold higher than data including missense mutations only, but values 

were highly correlated (Spearman’s r = 0.99). Scores from CheckMate 026 samples 

including missense mutations only were similar to those generated from data in The Cancer 

Genome Atlas, but those including all mutations were generally higher. Using databases for 

germline subtraction (instead of matched controls) showed a trend for race-dependent 

increases in TMB scores. WES and FoundationOne CDx outputs were highly correlated 

(Spearman’s r = 0.90). 

Conclusions 

Parameter variation can impact TMB calculations, highlighting the need for standardization. 

Encouragingly, differences between assays could be accounted for by empirical calibration, 
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suggesting that reliable TMB assessment across assays, platforms, and centers is 

achievable. 

 

Key Points 

• Tumor mutational burden (TMB) is a clinically relevant biomarker for efficacy of 

immunotherapy in patients with cancer 
• Variations in TMB assessment parameters can shift the final TMB value. 

Harmonization and standardization are important to the successful clinical 

implementation of TMB testing 
• TMB values assessed by different methods are highly correlated. Harmonization of 

TMB testing in patients with cancer is therefore achievable  
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1 Introduction 

1.1 Tumor Mutational Burden 

The genome of cancer cells can acquire genetic alterations that differ from the germline of 

the host [1]. Somatic mutation rates can be affected by exposure to exogenous factors, such 

as UV or tobacco smoke [2-4], or by compounding genetic defects, such as DNA mismatch 

repair deficiency, microsatellite instability, or replicative DNA polymerase mutations [2, 3, 5-

8]. Clonal expansion results in a “mutational burden” that is propagated as the tumor evolves 

[9, 10]. 

 

Tumor mutational burden (TMB) is a quantitative assessment of the number of somatic 

mutations in coding regions of the tumor genome. TMB varies from patient to patient and 

also across different types of tumors [6, 11]. The average TMB value tends to be higher in 

some cancers, such as lung and melanoma, compared with other tumor types [6, 11]. 

Assessment of TMB involves next-generation sequencing (NGS) of tumor samples using 

one of several available platforms, and may also involve sequencing of normal patient tissue 

for germline variants. Initial exploratory analyses of TMB in patients with cancer [12-15] were 

carried out by whole exome sequencing (WES). WES is a comprehensive research tool to 

assess genomic alterations across the entire coding region of the ~22,000 genes in the 

human genome, comprising 1–2% of the genome [16, 17]. As an alternative to WES, the use 

of targeted cancer gene panels for TMB assessment is increasing [3, 4, 18-20]. The 324-

gene panel assay FoundationOne® CDx was recently granted premarket approval by the US 

Food and Drug Administration (FDA) for profiling of actionable mutations in solid tumors, and 

also provides assessment of genomic signatures such as TMB and microsatellite instability 

[21]. The FDA-authorized 468-gene panel assay MSK-IMPACT™ also captures TMB as part 

of its enhanced report for investigational use [4, 22], and Illumina’s TruSight Oncology 500 

assay, which also captures TMB, has recently been granted Breakthrough Device 

Designation by the FDA [23]. Whereas TMB assessed by WES is typically reported as the 
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total number of mutations per tumor, TMB outputs from gene panel assays are usually 

normalized to mutations per megabase (mut/Mb) because they differ in the number of genes 

and target region size [3, 4, 24, 25]. The precise calculation of TMB can, however, vary 

depending on the region of tumor genome sequenced, types of mutations included, and 

methods of subtracting germline variants [3, 26]. 

 

1.2 TMB and Immuno-oncology 

Somatic mutations in coding regions of the genome (notably nonsynonymous mutations and, 

more significantly, frameshifts) potentially result in new or fragmented proteins/peptides 

(neoantigens), which can be recognized as “nonself” and elicit an antitumor immune 

response [1, 5, 26]. Neoantigens are therefore hypothesized to increase the immune cell 

repertoire and enhance the clinical efficacy of immune checkpoint inhibitors, such as  

anti–programmed death-1 (PD-1), anti–programmed death ligand 1 (PD-L1), and anti–

cytotoxic T-lymphocyte antigen 4 (CTLA-4) [5, 27]. 

 

A leading hypothesis for the clinical implementation of TMB as a biomarker for 

immunotherapy efficacy is that high TMB is associated with increased antitumor immune 

responses and increased clinical benefit to immune checkpoint inhibitors, because TMB 

positively correlates with neoantigen load [5, 6, 13, 27-29]. This hypothesis is supported by 

the results of a number of clinical trials in several tumor types [12-14, 29-33]. In addition, a 

number of studies have reported that TMB prevalence and its association with immune 

checkpoint inhibitor efficacy are both independent of PD-L1 expression [12, 30, 33-36]. 

 

Several key studies of patients with non-small cell lung cancer (NSCLC) have demonstrated 

an association between high TMB and enhanced clinical benefit following first-line treatment 

with nivolumab (anti–PD-1) monotherapy and combination therapy. In the CheckMate 026 

clinical trial (NCT02041533), patients with TMB in the upper tertile (≥243 missense 
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mutations, as measured by WES) receiving nivolumab monotherapy showed an increased 

objective response rate (ORR) for nivolumab and longer median progression-free survival 

(PFS) compared with patients with TMB in the lower two tertiles (0–100 and 100–242 

missense mutations, respectively) and with patients receiving chemotherapy [12]. 

CheckMate 568 (NCT02659059) used the FoundationOne CDx assay to establish a TMB 

cutoff (≥10 mut/Mb) for increased ORR with nivolumab + ipilimumab (anti–CTLA-4) 

combination therapy [32]; a cutoff of ≥10 mut/Mb was then chosen to define the “high TMB” 

patient population in CheckMate 227 (NCT02477826), which met its coprimary endpoint of 

PFS for nivolumab + ipilimumab vs chemotherapy in patients with high TMB, regardless of 

PD-L1 expression [30]. In patients with PD-L1 expression <1% who received nivolumab + 

chemotherapy, PFS was also longer in patients with high (vs low) TMB [37]. Thus, the 

CheckMate 227 trial validated the association of TMB with enhanced ORR and PFS with 

immunotherapy. The relationship between TMB and overall survival (OS) with 

immunotherapy, however, is less clearly defined. CheckMate 026 showed similar OS with 

nivolumab or chemotherapy, regardless of TMB status [12], whereas exploratory analysis of 

CheckMate 227 data showed a trend for prolonged OS with nivolumab + ipilimumab vs 

chemotherapy in the high and low TMB subgroups [38]. 

 

Other NSCLC studies showing enhanced benefit to immunotherapy in patients with high 

TMB used alternative WES methods or gene panel assays for TMB assessment from tumor 

or blood biopsies [29, 36, 39]. Such methods can differ in several factors, such as gene 

number, sequencing platform, sequencing depth, types of mutations that are included (e.g., 

nonsynonymous and/or synonymous single nucleotide variants [SNVs], short 

insertions/deletions [indels]), germline variant filtering methods, and format of test output 

(e.g., total mutations vs mut/Mb) [3, 4, 12-15, 24, 29, 36, 40-42]. Furthermore, patient groups 

can be selected around median, tertile, quartile, or fixed numerical values per tumor/per Mb 

[12-14, 29, 30, 35]. This makes interpretation of TMB assessment across different studies 
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and platforms challenging. As the clinical utility of TMB assessment in tumors is established, 

treatment decisions may be made around a fixed TMB value, independent of the parameters 

that may influence this number. It is essential that the clinical community understands the 

meaning of TMB values generated by different methods and that guidance is provided for 

those establishing new approaches. Standardization of methods and clear definitions of 

assessment parameters are critical to the interpretation of TMB values into precision 

medicine for patients with cancer. 

 

TMB assessment should accurately represent protein-altering tumor mutations that may 

contribute to enhanced antitumor immunity and thus improved responses to immune 

checkpoint inhibitors. In this study, we examine the analysis parameters and bioinformatics 

pipeline for reliable and accurate TMB assessment by WES, and highlight differences 

between this method and others. We illustrate the impact of including different types of 

mutations and germline filtering and explore the relationship between TMB assessed by 

WES and the gene panel assay FoundationOne CDx. In line with other harmonization 

efforts, the results highlight parameter variability across different approaches for TMB 

analysis and emphasize the importance of accurate reporting. Nevertheless, these results 

show that TMB data from different experimental platforms and bioinformatics pipelines are 

highly correlated, suggesting that assessment of TMB across different assays, platforms, 

and centers is achievable, and supporting the clinical implementation of TMB assessment for 

patients with cancer. 

 

2 Methods 

2.1 Samples for WES 

TMB was retrospectively assessed by WES on formalin-fixed, paraffin-embedded (FFPE) 

tumor samples and matched blood from 312 patients with NSCLC (69 squamous and 243 

nonsquamous), representing 58% of the intent-to-treat population in CheckMate026 [12]. 
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Reasons for sample attrition included, but were not limited to, lack of patient 

pharmacogenetic consent, sample exhaustion by PD-L1 testing, and poor tissue sampling 

[12]. DNA and RNA were co-isolated from tumor tissue samples using the AllPrep DNA/RNA 

FFPE Kit (QIAGEN, Hilden, Germany) [12]. DNA from whole blood was isolated using the 

QIAamp DNA Blood Midi Kit (QIAGEN, Hilden, Germany) [12]. 

 

2.2 Library Preparation for WES 

65–150 ng genomic DNA was fragmented to approximately 150 bp using the Covaris 

instrument (Covaris, Woburn, USA) and purified using Agencourt AMPure XP beads 

(Beckman Coulter, Indianapolis, USA). Libraries were prepared using the Agilent 

SureSelectXT Reagent Kit (Agilent Technologies, Santa Clara, USA) with on-bead 

modifications [43]: the DNA was blunted and a single “A-tail” was added to each fragment; 

truncated PE P5 and P7 adapters were then ligated to each DNA fragment and the 

fragments were purified with AMPure XP beads. The DNA fragments were then amplified by 

polymerase chain reaction (PCR; eight cycles). Up to 500 ng of enriched library was used in 

the hybridization and captured with the SureSelect All Exon v5 bait (Agilent Technologies, 

Santa Clara, USA), enriching for 357,999 exons of 21,522 genes over a total target region of 

~50 Mb [44]. 

 

Following hybridization, the captured libraries were purified according to the manufacturer’s 

recommendations and amplified by PCR (11 cycles) using a universal primer and a unique 

index primer specific to each library. This allowed molecules from each sample’s library to be 

distinguished from those of another sequencing library when several samples were 

processed simultaneously. As a result, multiple libraries could be combined or pooled prior 

to subsequent steps. The amplified product was checked for quality using the TapeStation 

(Agilent Technologies, Santa Clara, USA) and quantified by qPCR (Kapa Biosystems, 
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Wilmington, USA). Normalized libraries were pooled and DNA was sequenced on the 

Illumina HiSeq 2500 using 2 × 100 bp paired-end reads. 

 

2.3 WES Variant Calling Pipeline 

A bioinformatic pipeline was used to filter NGS output data for germline variants, and detect 

and annotate synonymous, nonsynonymous (missense, nonsense, and frameshift) 

mutations and indels. A TMB score defined as total somatic mutations per tumor was 

derived (Fig. 1). 

2.3.1 Generation of BAM Files and Metrics from Raw FASTQ Reads 

BAM files were generated from the paired FASTQ files following the Broad Institute’s best 

practices, using Sentieon Inc. implementation of the GATK pipeline [45]. The paired reads 

were aligned to the hg19 reference genome using the Burrows-Wheeler Aligner’s Maximal 

Exact Match (BWA-MEM) algorithm [46-48] and sorted; duplicate reads were marked. Indels 

were realigned and base quality scores recalibrated [49]. During this process, metrics were 

generated for total reads, aligned reads, and average coverage. Quality control filtering 

ensured that all samples used for analysis contained a total number of reads ≥45 million, 

mean target coverage ≥50×, and depth of coverage >20× at 80% of the targeted capture 

region or higher. If either tumor or blood data from a patient-matched pair failed any of these 

parameters, the pair was discarded [33]. 

 

The tumor and normal samples were processed individually as above to generate tumor and 

normal BAM files, which were then co-realigned. The BMS cohort-matcher tool 

(https://github.com/golharam/cohort-matcher), which utilizes BAM-matcher [50], compared 

the tumor and blood BAMs to ensure that they came from the same patient, in addition to 

checking for potential sample swaps within the cohort. If the genotype match between tumor 

and blood samples was <0.85, the pair was rejected from the final analysis. 
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2.3.2 Variant Calling 

The co-realigned (tumor + normal) BAM file, dbSNP [51], and target intervals consisting of 

coding exonic regions were used as the input for SNV calling and germline subtraction by 

the TNsnv somatic variant caller (Sentieon Inc., based on and mathematically identical to the 

Broad Institute’s MuTect) [52]. Default Sentieon TNsnv settings were used for analysis 

parameters that filter for sequence quality and variant allele frequency, including 

min_base_qual = 5, min_init_tumor_lod = 4, min_tumor_lod = 6.3, min_normal_lod = 2.2, 

contamination_frac = 0.02, min_cell_mutation_frac = 0, min_strand_bias_lod = 2 [53]. 

Somatic SNVs and indels were also called using the Strelka somatic variant caller using the 

tumor BAM file and normal BAM file for germline subtraction [54]. In Strelka’s BWA 

configuration file, the parameter “isSkipDepthFilters” was set to 1, as recommended for WES 

[46]. Three variant call format files (VCFs: one each for SNVs from TNsnv and Strelka, and a 

further VCF for indels from Strelka) were generated for each patient sample. 

To obtain somatic variants in the absence of a patient-matched normal sample, the tumor 

BAM and list of Catalogue of Somatic Mutations in Cancer (COSMIC) variants [55] were 

used as inputs for TNsnv, and HapMap NA12878 sequence data [56] were additionally used 

in place of a normal BAM in Strelka. VCFs were generated as above. 

2.3.3 Variant Annotation and Filtering 

VCFs were filtered to retain only PASS variants. Annotations were then added using SnpEff, 

with RefSeq as the annotation source [57], from dbSNP [51], Exome Aggregation 

Consortium (ExAC) [58], COSMIC [55], and 1000 Genomes [59] databases. Any variants 

that were found in dbSNP, 1000 Genomes, and ExAC were excluded from the TMB 

calculation, unless they were also present in COSMIC. TMB was calculated as the total 

number of remaining mutations over a target region of ~30 Mb [60]. 
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2.3.4 Patient Characteristics 

Patient characteristics were documented as part of the CheckMate 026 trial (NCT02041533). 

Race was self-reported by patients on enrollment, based on predefined categories. 

 

2.4 Data Storage and Reprocessing 

All necessary files and scripts required to reproduce the original results using the raw 

FASTQ files have been saved and versioned. 

 

2.5 The Cancer Genome Atlas (TCGA) Data 

WES data from CheckMate 026 samples were compared with data from 533 lung 

adenocarcinoma samples [61] and 177 squamous NSCLC samples [62] from the Broad 

Institute Firehose Genome Data Analysis Center (https://gdac.broadinstitute.org/). The 

results shown in this manuscript are based in part on data generated by the TCGA Research 

Network: http://cancergenome.nih.gov/. 

 

2.6 FoundationOne CDx Assay 

Investigational analysis of TMB by the FoundationOne CDx assay 

(https://www.foundationmedicine.com/genomic-testing/foundation-one-cdx. Accessed July 

17, 2018) was carried out in Clinical Laboratory Improvement Amends (CLIA) certified 

laboratories at Foundation Medicine (Cambridge, MA, USA). NGS data was analyzed using 

proprietary software developed by Foundation Medicine [63] and quality control criteria that 

included tumor purity, DNA sample size, tissue sample size, library construction size, and 

hybrid capture yields were employed. Sequence data were mapped to the human genome 

(hg19) using Burrows-Wheeler Aligner (BWA) v0.5.9 [47], and PCR duplicate reads were 

removed and sequence metrics collected using Picard 1.47 (http://picard.sourceforge.net) 

and SAMtools 0.1.12a [64]. Local alignment optimization was performed using Genome 
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Analysis Toolkit (GATK) 1.0.4705 [65]. Variant calling was performed only in genomic 

regions targeted by the test. 

 

TMB was measured by counting all coding SNVs (synonymous and nonsynonymous) and 

indels present at ≥5% allele frequency and filtering out potential germline variants according 

to published databases of known germline polymorphisms, including dbSNP and ExAC. 

Additional germline variants still present after database querying were assessed for potential 

germline status and filtered out using a somatic-germline zygosity (SGZ) algorithm, a 

statistical model that considers tumor content, tumor ploidy and local copy number to 

account for rare germline variants [66]. Known and likely driver mutations were filtered out to 

exclude bias of the dataset. The resulting mutation number was then divided by the coding 

region corresponding to the number of total variants counted, or 793 kb, with the resulting 

number provided as mut/Mb [63]. 

 

In order to empirically calculate the conversion of TMB values between WES and the 

FoundationOne CDx assay, TMB results from the two assay methods were compared using 

nonparametric Passing–Bablok linear regression analysis that accounted for possible errors 

in both assays [67]. Following quality control filters on remaining CheckMate 026 samples for 

sample and data quality, which included tissue availability, tumor content, sequence target 

coverage, and sequencing depth, data from 44 samples were included in the comparison. 

 

3 Results 

3.1 Summary of TMB Effects on Clinical Outcome from CheckMate 026 

In CheckMate 026, 541 patients with untreated stage IV or recurrent NSCLC and a PD-L1 

tumor-expression level of ≥1% were randomly assigned to receive nivolumab or platinum-

based chemotherapy [12]. WES libraries were successfully generated from 402 tumor 

samples and 452 blood samples. Three hundred twelve patient-matched tumor and blood 
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samples passed quality control filters for TMB analysis (58% of the intent-to-treat 

population), with 158 of these patients receiving nivolumab and 154 receiving chemotherapy 

[12]. Patients were grouped into TMB tertiles based on their WES-derived somatic missense 

mutations (low [0–100], medium [100–242], high [≥243]). The results of the exploratory 

analysis published by Carbone et al. (2017) to test the hypothesis that patients with high 

TMB may derive enhanced benefit from nivolumab are summarized in Table 1. In patients 

receiving nivolumab, high TMB was associated with longer PFS compared with low or 

medium TMB, whereas high TMB was not associated with longer PFS in patients receiving 

chemotherapy [12]. 

 

3.2 WES Pipeline, Methodology, and the Impact of Variant Filtering on TMB 
Assessment 

For the 312 CheckMate 026 patient samples described above, WES generated an average 

of 84 million reads per tumor sample (average 84.6× the mean tumor target coverage), and 

an average of 89 million reads per germline sample (average 93× the mean germline target 

coverage). 

 

The bioinformatic analysis pipeline used is shown in Fig. 1. Output data from NGS were 

quality controlled and filtered to obtain a TMB score representing the total number of 

synonymous, indel, frameshift, missense and nonsense mutations (“all mutations”) per tumor 

sample. The impact of filtering data for missense mutations only was assessed. TMB scores 

including “all mutations” were highly correlated with matched data filtered for missense 

mutations only (Spearman’s r = 0.99; Fig. 2). Overall, TMB scores derived from “all 

mutations” were 3.1-fold higher than matched data filtered for missense mutations only. The 

median number of missense mutations was 170 and the median number of “all mutations” 

was 540. 
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The CheckMate 026 dataset was separated according to histology (69 squamous and 243 

nonsquamous NSCLC samples) and compared with data from 177 squamous NSCLC and 

533 lung adenocarcinoma (nonsquamous NSCLC) TCGA samples. For both histology types, 

TMB scores from CheckMate 026 were similar to those generated from TCGA when filtered 

for missense mutations only, with median values of 212 and 196 missense mutations 

observed for squamous samples, and 148 and 156 missense mutations observed for 

nonsquamous samples from CheckMate 026 and TCGA, respectively (Fig. 3a). When “all 

mutations” were included in the analysis, median TMB scores were higher across all groups 

(433 mutations in nonsquamous CheckMate 026 samples, 239 in nonsquamous TCGA 

samples, 704 in squamous CheckMate 026 samples, and 295 in squamous TCGA samples). 

Including “all mutations” in the TMB assessment had a larger effect on TMB scores from 

CheckMate 026 samples than for TCGA samples (Fig. 3b). A number of factors could have 

contributed to this variation, including differences in exome capture techniques or 

bioinformatic parameters used for variant calling. It is acknowledged, for example, that indel 

calling is more challenging than calling SNVs [68]. Investigators should be aware of the 

differences between various approaches to TMB assessment and ensure that technical 

details (eg, hybridization-capture libraries used and variant calling parameters) are 

sufficiently reported. 

 

3.3 Germline Filtering Using Tumor-Only and Patient-Matched WES Data 

For all 312 NSCLC samples assessed for TMB in CheckMate 026, somatic mutations were 

identified using patient-matched blood (“normal”) samples to predict germline variants [12], 

with additional germline variants in the dbSNP, ExAC, and 1000 Genomes databases filtered 

out unless they were identified in COSMIC. 

 

In a real-world setting, filtering germline variants using patient-matched “normal” samples 

may not be possible for ethical or practical reasons, and the tumor sample may be the only 
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available sample for TMB testing. In silico methods to account for germline variants vary 

across different assays and may go beyond database filtering. To examine the significance 

of this potential limitation, TMB scores derived using patient-matched samples and database 

filtering (“tumor/normal TMB”) were compared with TMB scores derived solely from the 

tumor sample and in silico database filtering alone (“tumor-only TMB”). “Tumor-only TMB” 

values were on average approximately 100 mutations higher than “tumor/normal TMB” 

values (Fig. 4a). Data points fell noticeably into clusters with variable linear shifts in their 

intercepts. Grouping the dataset by patient characteristics revealed that the shifts in TMB 

value varied from 84 mutations in white patients to 132 mutations in black/African American 

patients and 213 mutations in Asian patients (Fig. 4b). These shifts were apparent 

throughout the whole dataset, including within data points around clinically relevant TMB 

cutoffs for medium or high TMB (100–300 mutations; Fig. 4b, inset). 

 

The results above demonstrate that variations in analysis algorithms can offset the numerical 

output of the TMB assessment, but data from different pipelines are still highly correlated. 

This suggests that, as long as the specific parameters of the analysis pipeline (e.g., types of 

mutations included, databases used for filtering and annotation) are accurately reported, 

calibrations can be made using TMB data from different assays and data can be interpreted 

across various clinical studies. 

 

While TMB assessments in the CheckMate 026 trial were calculated using matched normal 

blood samples for germline subtraction, those wishing to develop alternative TMB 

assessment methods should be aware that using publicly available data for estimating 

germline variation in place of matched normal samples may also influence TMB outputs, 

because current databases include uneven coverage of genetic variation across different 

races. This study therefore highlights that TMB assay methodology, variant calling 

parameters, and patient characteristics such as race should be considered when analyzing 
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TMB, and that data from different methods may need to be adjusted in order to achieve 

comparable results and avoid potentially incorrect treatment decisions. 

 

3.4 Bridging TMB Data between WES and the FoundationOne CDx Assay 

We explored the relationship between TMB results generated by WES and the 

FoundationOne CDx assay in the CheckMate 026 samples in order to provide guidance to 

other investigators performing similar analyses and facilitate cross-trial comparisons. Variant 

allele determination by these two TMB assessment methods is dependent on a number of 

analytical differences, and simple arithmetic means are not sufficient to calibrate TMB values 

between them. An empirical method was therefore established to convert TMB values 

between WES and the FoundationOne CDx assay. 

 

TMB was assessed in 44 FFPE samples from CheckMate 026 by the FoundationOne CDx 

assay, using the analysis pipeline shown in Fig. 5. Outputs from the FoundationOne CDx 

assay were compared by nonparametric linear regression with matched “tumor/normal TMB” 

data from WES. TMB values generated by these two assessment methods were highly 

correlated (Spearman’s r = 0.90; Fig. 6a). Consistent with concurrent studies that have 

established a clinically meaningful TMB cutoff in patients with NSCLC [30, 32], the 

FoundationOne CDx assay TMB cutoff level was evaluated at 10 mut/Mb. The precision of 

this TMB cutoff has been analytically validated, achieving >95% intra-run repeatability and 

>97% inter-run reproducibility [69]. TMB values generated by WES projected to an 

equivalent value of 199 missense mutations on WES (Fig. 6a). Patient samples were 

segregated according to whether they were < or ≥ the chosen cutoff values (Fig. 6b). 

Positive and negative agreements between WES and the FoundationOne CDx assay around 

the chosen values were 83% and 85%, respectively (95% confidence intervals [CIs] 61–94 

and 67–94, respectively), and overall agreement between WES and the FoundationOne CDx 

assay was 84% (95% CI 71–92; Table 2). 
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4 Discussion 

Response to therapy can be influenced by characteristics of the patient or tumor genome. 

Mutational burden within specific genes or pathways of interest is currently being 

investigated to facilitate the discovery of biomarkers for the clinical efficacy of a number of 

cancer treatments [2, 4, 18, 70, 71]. TMB represents the burden of mutations across the 

whole tumor exome, irrespective of gene function, acting as a surrogate biomarker for 

neoantigen load. Thus, high TMB may be a specific biomarker that is associated with 

improved efficacy of immunotherapy — a hypothesis that is supported by clinical evidence 

across several tumor types [5, 6, 12, 27-30, 32, 33, 37]. Evidence also suggests that TMB 

assessment may provide independent and complementary information to biomarker 

assessment by gene expression profiling or immunohistochemistry to guide treatment 

decisions [72-74]. 

 

A number of assays have been developed to determine TMB, with varying methodological 

parameters [24, 75]. In the initial analysis of TMB as a biomarker for immune checkpoint 

inhibitor efficacy, including CheckMate 026, TMB was retrospectively assessed by WES [12-

15]. Targeted gene panels, however, are more readily interpretable and are considered to be 

a more pragmatic and potentially cost-effective approach to TMB testing in clinical 

diagnostics [3, 18, 24], and TMB was assessed by the FoundationOne CDx assay for the 

efficacy of nivolumab + ipilimumab and nivolumab + chemotherapy in CheckMate 568 and 

CheckMate 227 [30, 32, 37]. 

 

For successful real-world implementation of TMB testing, concordance between assay 

platforms used across different clinical trials should be established. Data from early studies 

using WES should therefore be converted to usable values for a clinical in vitro diagnostic, 

and vice versa. Because TMB represents the total quantity of somatic mutations across the 

tumor genome, several key attributes for quantifying TMB differ from those of NGS assays 
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used to measure specific mutations. In the future, TMB will likely be assessed around 

specific cutoff values and patients with TMB above or below these values will be selected for 

different (individualized) treatment. Therefore, reliable, accurate, and reproducible real-world 

TMB testing options will be required across different clinical centers and countries, and 

analytical performance characteristics, such as precision and limit of quantification, play 

much larger roles in TMB assessment than in assays detecting presence or absence of 

targeted mutations [76-78]. 

 

Experiences during the implementation of PD-L1 testing in clinical practice as 

complementary or companion tests for immunotherapy have highlighted the need for 

standardization of reagents and methodologies, along with cross-center concordance 

studies [76-78]. It is therefore crucial and timely to take necessary measures toward the 

understanding and standardization of TMB assessment parameters, including different 

testing platforms, bioinformatic algorithms, and analysis workflow [79]. Systematic 

comparison and validation of new TMB assays with those used in clinical trials, 

harmonization of TMB data across alternative assays, thorough and accurate reporting, and 

empirical determination and calibration of cutoffs used to define patient populations will 

ensure the widespread availability of TMB testing. Worldwide efforts to ensure the 

harmonization of TMB assessment are ongoing [80, 81], including a European scheme from 

the International Quality Network for Pathology (IQN Path) [82], and a joint initiative between 

the US-based Friends of Cancer Research (Friends) and the Quality Assurance Initiative 

Pathology (QuIP) in Germany [75]. The Friends/QuIP partnership will use complementary in 

silico and laboratory-based approaches to introduce calibration standards and establish 

recommendations for reliable TMB assessment from WES and several different gene panel 

assays [75]. 
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A number of factors vary between TMB assay methods, and it is important to be aware of 

these variations and ensure accurate reporting of each parameter. For example, target 

regions and databases used to call coding mutations can vary between different WES 

methods and from one gene panel assay to another [3, 4, 16, 17, 24, 60]. Sequencing depth 

also varies between assays. The average tumor sequencing depth for WES in the current 

study was 84.6×, whereas the FoundationOne CDx assay targets >500× median coverage 

with >99% of exons at >100× [63]. The FoundationOne CDx assay, like other gene panel 

assays, includes synonymous mutations in the TMB calculation to ensure a representative 

TMB estimation, whereas TMB assessed by WES may not [3, 4, 26]. The FoundationOne 

CDx assay involves a different sequence analysis pipeline and alternative software to that 

used for WES (see methods). Finally, to determine germline variants, WES incorporates a 

matched blood sample, whereas TMB scores obtained by the FoundationOne CDx are 

filtered for germline variants in silico using reference databases and the SGZ algorithm [3, 

63, 66]. 

 

Consistent with published data, our results show that variations in assay parameters can 

cause a shift in the final TMB value [3, 4, 24, 29, 66]. For example, including synonymous, 

indel, frameshift, and nonsense mutations in the TMB calculation resulted in increased TMB 

levels compared with those including missense mutations only. Previous studies have also 

shown that race-dependent disparities can be mitigated using sufficiently comprehensive 

databases [42]. However, our findings suggest that shifts are still apparent after in silico 

filtering with dbSNP, ExAC, 1000 Genomes, and COSMIC, particularly in data from Asian 

patients. These results highlight the sensitivity of TMB assessment to in silico germline 

variant correction methods, and suggest that sophisticated bioinformatic adjustments beyond 

simple database filtering are required. The increased sequencing depth employed by 

existing assays such as FoundationOne CDx enables the precise measurement of allele 

frequencies. Furthermore, statistical models such as the SGZ algorithm use tumor-intrinsic 
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factors to account for rare germline variants that may occur in smaller patient populations 

and be absent from public databases [63, 66]. 

 

Despite the large number of experimental differences between TMB assays, this study found 

that TMB values assessed by different methods correlated well, and calibration curves can 

be derived to convert TMB values between them. Patient-matched results that included “all 

mutations” vs “missense mutations” were highly correlated (Spearman’s r = 0.99). 

Furthermore, TMB values generated by WES and the FoundationOne CDx assay, which 

differ in methodology and bioinformatic methods, were also highly correlated (Spearman’s r 

= 0.90) and overall percentage agreement was 84% between these two assays (95% CI 71–

92). Further investigations and global standardization efforts are ongoing and include using 

reference standards to align experimental protocols and harmonize TMB assessment across 

different assay platforms [85, 86]. In conclusion, this study suggests that the clinical 

implementation of TMB testing is achievable and that educating and encouraging the clinical 

community to adopt accurate, reproducible assessment methods and reporting standards 

will ensure the streamlined implementation of TMB testing in patients with cancer. 

 

5 Study Limitations 

In this study, genomic analyses were carried out on FFPE samples. TMB assessment 

should consider the potential for sequencing artefacts introduced by formalin fixation. 

However, this method facilitates convenient sample storage and parallel biomarker testing 

by histology or immunohistochemistry. Thus, FFPE samples are the most commonly 

available samples for biomarker analyses [85]. 

 

While our methodological approach for TMB assessment by WES in CheckMate 026 

samples involved the retrospective analysis of 312 samples, analysis of concordance  

between WES and FoundationOne CDx represents a pilot study using 44 samples. 
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Increasing patient numbers is likely to improve the reliability of calibration across TMB 

assays and platforms. Furthermore, refining preanalytical procedures (e.g., sample fixation, 

microdissection, and DNA extraction), and optimization of analytical parameters (e.g., 

genome coverage, variant calling, and germline filtering methods) are likely to improve 

precision and reduce variation in TMB determination by gene panel assays. 

 

In the WES analysis reported here, 21,522 genes were targeted over a total region of 

~50 Mb and annotated by comparison with RefSeq over a region of ~30 Mb. The 

FoundationOne CDx assay targets ~1.8 Mb over 324 genes, of which ~0.8 Mb is used to 

calculate TMB [63]. Recent studies suggest that <0.5 Mb may be insufficient coverage for 

accurate TMB estimation when TMB is low and that panels covering >1 Mb achieve greater 

precision [3, 25, 83, 84]. The performance of gene panel assays should therefore be 

considered in the context of their intended use before selection. 

 

6 Data Availability 

Informed consent for data sharing was obtained from ~185 TMB-evaluable patients in the 

CheckMate 026 trial. Sequence data from these patients support the conclusions of this 

manuscript and have been deposited in the European Genome-phenome Archive (EGA), 

which is hosted by the European Bioinformatics Institute (EBI) and the Centre for Genomic 

Regulation (CRG), under accession number EGAS00001003661. (Note for bioRxiv 

submission 2019-06-02: this data set will ‘go live’ in EGA mid-June 2019). 

 

7 Compliance with Ethical Standards 

Results from the CheckMate 026 trial (ClinicalTrials.gov Identifier: NCT02041533) were 

reported previously [12]. The trial was conducted in accordance with the International 

Conference on Harmonisation Guidelines on Good Clinical Practice and the Declaration of 

Helsinki. Written informed consent was provided by all the patients before enrollment.  
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9 Figures 

 

 

Fig. 1 Workflow for TMB assessment by WES in this study. Solid black arrows denote steps 

that were included in all WES analyses. Dashed gray arrows show which steps were 

investigated for effects on TMB output in this study. COSMIC, Catalogue of Somatic 

Mutations in Cancer; ExAC, Exome Aggregation Consortium; indel, insertion/deletion; NGS, 

next-generation sequencing; SNV, single nucleotide variant; TMB, tumor mutational burden; 

WES, whole exome sequencing. 
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Fig. 2 Analysis of TMB by WES in CheckMate 026 samples. Data show TMB scores 

including missense mutations only vs “all mutations” (including synonymous, indel, 

frameshift, missense and nonsense mutations). The linear regression line is shown in blue. 

TMB, tumor mutational burden; WES, whole exome sequencing. 
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Fig. 3 Comparison of TMB scores determined by WES in CheckMate 026 samples with 

those obtained from publicly available TCGA data. (a) TMB assessment includes missense 

mutations only. (b) TMB assessment includes “all mutations” (including synonymous, indel, 

frameshift, missense and nonsense mutations). Dark blue lines show the median value and 

interquartile ranges for each subset. Non-SQ, nonsquamous non-small cell lung cancer;  

SQ, squamous non-small cell lung cancer; TCGA, The Cancer Genome Atlas; TMB, tumor 

mutational burden; WES, whole exome sequencing. 
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Fig. 4 (a) The effect of germline subtraction by different methods on TMB values. TMB was 

derived from 312 patient samples by WES. The horizontal axis (tumor/normal TMB) shows 

TMB values calculated using patient-matched blood samples for germline subtraction. The 

vertical axis (tumor-only TMB) shows TMB values derived from the same sample, using 

public databases for in silico filtering. Black line shows linear regression across all patients. 

Equal values across the two datasets (X=Y) are represented by a gray dotted line. (b) Data 

from part (a) colored by patient race. Solid lines show linear regression analyses for subsets 

of patients grouped by race. Numbers in parentheses denote the sample numbers in each 

subgroup. Linear regression for the entire dataset is shown by a red dotted line. Inset shows 

the data magnified across tumor/normal TMB values from 0–350 mutations to highlight linear 

correlations occurring around TMB cutoff values that may be considered to be “clinically 

relevant”. TMB, tumor mutational burden; WES, whole exome sequencing. 
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Fig. 5 Workflow for TMB assessment using the FoundationOne CDx assay [63]. ExAC, 

Exome Aggregation Consortium; indel, insertion/deletion; NGS, next-generation sequencing; 

SGZ, somatic-germline zygosity; TMB, tumor mutational burden. 
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Fig. 6 (a) Correlation of TMB assessed by WES and the FoundationOne CDx assay. 

Nonparametric linear regression is shown with a blue line. Blue shaded area shows 0.95–

confidence bounds for the linear regression, calculated with a bootstrap (quantile) method. 

Cutoffs chosen for grouping of sample data are shown with red and green lines. (b) 

Grouping of TMB data into categories defined by cutoff values (10 mut/Mb by the 

FoundationOne CDx assay or 199 missense mutations by WES). F1 CDx, FoundationOne 

CDx; mut/Mb, mutations per megabase; TMB, tumor mutational burden; WES, whole exome 

sequencing. 
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Table 1. Summary of the effect of TMB on PFS in patients with NSCLC treated with 

nivolumab or chemotherapy 

TMB tertilea Nivolumab (n = 158) Chemotherapy (n = 154) 
HRb 

(95% CI) 

 
n PFS, months 

(95% CI) 

n PFS, months 

(95% CI) 

Low (0–100) 62 4.2 (1.5–5.6) 41 6.9 (5.4–NR) 
1.82c 

(1.3–2.6) 
Medium  

(100–242) 
49 3.6 (2.7–6.9) 53 6.5 (4.3–8.6) 

High (≥243) 47 9.7 (5.1–NR) 60 5.8 (4.2–8.5) 
0.62  

(0.4–1.0) 

 

aData adapted from Carbone et al [12]. TMB was defined as the total number of missense 

mutations. bHR for disease progression or death. cHR shown for low or medium TMB. CI, 

confidence interval; HR, hazard ratio; NR, not reached; NSCLC, non-small cell lung cancer; 

PFS, progression-free survival; TMB, tumor mutational burden. 

 

Table 2. Agreement between TMB data derived by WES and the FoundationOne CDx assay 
 

Agreement (%) 95% Wilson CI (%) 

Overall 84 71–92 

Positive 83 61–94 

Negative 85 67–94 

 

CI, confidence interval; TMB, tumor mutational burden; WES, whole exome sequencing. 
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