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Abstract 
Background: Genome-wide association studies have identified 150+ loci associated 

with lipid levels. However, the genetic mechanisms underlying most of these loci are not 

well-understood. Recent work indicates that changes in the abundance of alternatively 

spliced transcripts contributes to complex trait variation. Consequently, identifying 

genetic loci that associate with alternative splicing in disease-relevant cell types and 

determining the degree to which these loci are informative for lipid biology is of broad 

interest. 

Methods and Results: We analyze gene splicing in 83 sample-matched induced 

pluripotent stem cell (iPSC) and hepatocyte-like cell (HLC) lines (n=166), as well as in 

an independent collection of primary liver tissues (n=96). We observe that transcript 

splicing is highly cell-type specific, and the genes that are differentially spliced between 

iPSCs and HLCs are enriched for metabolism pathway annotations. We identify 1,381 

HLC splicing quantitative trait loci (sQTLs) and 1,462 iPSC sQTLs and find that sQTLs 

are often shared across cell types. To evaluate the contribution of sQTLs to variation in 

lipid levels, we conduct colocalization analysis using lipid genome-wide association 

data. We identify 19 lipid-associated loci that colocalize either with an HLC expression 

quantitative trait locus (eQTL) or sQTL. Only one locus colocalizes with both an sQTL 

and eQTL, indicating that sQTLs contribute information about GWAS loci that cannot be 

obtained by analysis of steady-state gene expression alone.  

Conclusions: These results provide an important foundation for future efforts that use 

iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both 

cardiovascular disease risk and complex traits in general. 
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Introduction 

Genome-wide association studies have identified hundreds of loci associated 

with plasma lipid levels, an important set of predictive and causal risk factors for 

cardiovascular disease.1 The majority of variants associated with these traits are found 

in the non-coding genome and are hypothesized to mechanistically influence complex 

traits through changes in gene expression. For example, at SORT1, an established 

locus associated with both LDL cholesterol levels and coronary heart disease, a 

functional noncoding variant creates a novel C/EBP binding site, leading to changes in 

hepatic SORT1 expression and in turn, changes in circulating LDL cholesterol levels.2 

Motivated by this and other examples, significant effort has been dedicated to 

identifying variants associated with changes in gene expression, or expression 

quantitative trait loci (eQTLs) that are also associated with changes in plasma lipid 

levels.  

Recent research indicates that variants associated with changes in the proportion 

of alternatively spliced transcript isoforms (i.e., sQTLs) can provide another contributing 

mechanism underlying complex traits, and may be as informative as total gene 

expression quantitative trait loci in some cases.3,4 For example, sQTLs discovered in 

lymphoblast cell lines are enriched in multiple sclerosis GWAS disease loci, and other 

studies report similar findings for sQTL enrichment in GWAS for schizophrenia and 

type-2 diabetes.4–6 Variants affecting splicing have also been linked to systemic lupus 

erythematosus and fatty acid metabolism.7,8,9 Splicing is an attractive mechanism for 

study because it can be targeted with antisense oligonucleotides, several of which are 

currently undergoing clinical trials to treat diseases resulting from aberrant splicing such 
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as Duchenne’s Muscular Dystrophy and Spinal Muscular Atrophy.10 Finally, splicing 

provides an even finer level of detail on biological mechanism that cannot always be 

inferred through bulk expression analysis alone. For example, the Alzheimer’s disease-

associated gene ABCA7 has both an eQTL and sQTL association. The sQTL is 

hypothesized to be the causal signal, as it is associated with the production of a non-

functional transcript.11,12  

Functional studies of eQTLs have been hindered by the time and energy required 

to identify and then mechanistically characterize the QTLs in model systems. QTL 

discovery efforts in primary tissues have been highly productive, but have several 

important drawbacks, such as the reliance on heterogeneous post-mortem tissue 

collection and the difficulty of interrogating phenotypes in tissues. However, it is now 

possible to generate individual-specific, renewable, induced pluripotent stem cell (iPSC) 

lines, which can be used to both identify and characterize QTLs in specific cell types. 

iPSCs can be differentiated into a variety of cell types, including hepatocyte-like cells 

(HLCs).13 Given the liver’s importance in the synthesis and uptake of lipids,14 using 

HLCs as a model to understand the mechanisms underlying genetic associations with 

lipid levels is of particular interest. We and others have previously demonstrated the 

utility of these cell models by identifying and characterizing eQTLs in these HLCs.15,16  

Therefore, this report has two goals, namely: (i) to evaluate the feasibility of using 

HLC/iPSC lines for sQTL discovery, and (ii) to determine whether the sQTLs discovered 

are informative for our understanding of lipid biology. Therefore, we mapped sQTLs in 

83 individual-matched iPSC lines and iPSC-derived HLCs, on which we conducted 

genotyping and paired-end RNA-sequencing. To evaluate the degree to which the 
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genetic control of splicing information compares to total gene expression, we also 

perform a variety of analyses evaluating differential splicing, differential expression, and 

colocalization analysis with both HLC sQTLs and HLC eQTLs. We then highlight two 

loci where the colocalization of GWAS and sQTL results provide detail as to the causal 

mechanism underlying the variant-trait association.  

 

Results 

iPSC and HLC samples have distinct profiles of gene expression and alternative 

splicing 

We first sought to compare the patterns of alternative splicing and gene 

expression between iPSCs and HLCs. After normalization and standardization 

procedures (Methods), we applied Leafcutter to identify genes with differences in 

proportions of alternatively spliced transcripts. 9,484 genes out of 12,213 genes tested 

are differentially spliced between iPSC and HLC samples (false discovery rate, FDR 

<5%). The first two principal components of the quantile normalized and standardized 

splicing proportions clearly separate the samples by cell type (Figure 1a). Gene 

ontology analysis also demonstrated that differentially spliced genes that had at least a 

10% splicing difference across cell types were enriched for metabolism-relevant KEGG 

pathways such as insulin secretion (Figure 1b).  

We next compared patterns of gene expression between the iPSC and HLC lines 

(Methods). Virtually all (22,312 out of 23,857) tested genes were differentially 

expressed between iPSCs and HLCs (FDR < 5%), with 6,045 having an absolute log2 

fold change of 2 or more. Differentially expressed genes that were more highly 
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expressed in HLCs (relative to iPSCs) were enriched for KEGG pathways pertaining to 

liver function such as cholesterol metabolism, drug metabolism, and fat digestion and 

absorption (Supplementary Figure 1c). The first two principal components obtained 

from the normalized expression profiles for the iPSCs and HLCs clearly separated 

samples by cell type (Supplementary Figure 1a). In sum, we found substantial 

differences in alternative splicing and gene expression between iPSC and HLCs, and 

the top differentially expressed or alternatively spliced genes were enriched for liver, 

lipid, and metabolism relevant pathways. These results indicate that the successful 

differentiation of the iPSCs into HLCs results in broad changes in steady state 

transcriptional and post-transcriptional regulation. 

 

Thousands of sQTLs identified across iPSC and HLC samples 

To identify genetic variants associated with differences in the proportion of 

alternatively spliced transcripts (i.e., sQTLs), we conducted sQTL discovery scans in 

both cell types using QTLtools (Methods). We identify 1,381 sQTLs in HLCs and 1,462 

sQTLs in iPSCs (FDR < 5%, Supplementary Table 1). iPSC sQTLs correspond to 

1,444 unique SNPs and 1,462 unique genes, while HLC sQTLs correspond to 1,365 

unique SNPs and 1,381 unique genes.  

To evaluate the extent to which iPSC and HLC sQTLs are discoverable in 

primary liver tissue, we performed replication analysis in GTEx v6 primary liver samples 

(n=96).17 As one would expect, we observed more biologically similar cell types had 

more similar sQTL profiles. In comparison to iPSC sQTLs, HLC sQTLs were more likely 

to be replicated at the gene-level in primary liver tissue (π1 = 0.82 for HLC sQTLs vs. π1 
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= 0.76 for iPSC sQTLs). These results demonstrate that sQTL discovery in iPSC and 

HLC samples is feasible, and that both iPSC and HLC sQTLs replicate in primary liver 

tissue, with HLC sQTLs replicating at a higher degree than iPSCs. 

  

 sQTLs are found near their associated splice event and are enriched for splicing 

relevant annotations 

Because alternative splicing involves protein regulatory machinery interacting 

with genomic elements near intron/exon boundaries, we expect true sQTL variants to be 

found predominantly in the regions near these boundaries. Thus, we assessed the 

genomic context of each sQTL variant and measured the distance between each variant 

and its associated splice event. The majority of lead sQTL variants (69%) are within 

25kb of their associated splice event, despite the fact that the lead sentinel variant may 

not be the ultimate causal variant. We observe similar patterns for sQTLs that fall within 

the intronic region of their splice event (in between the two exons that delineate the 

excised intron). After binning to normalize for intron length, we observe that the 

windows that are closest to canonical splice sites (the 1st and 10th deciles from Figure 

2) contain the highest numbers of sQTLs (Figure 2a, 2b). Finally, both sets of HLC and 

iPSC sQTLs are significantly enriched in the 11bp window encompassing ends of 

exons, extending into introns and in several other genomic annotations (Figure 2c). 

These observations demonstrate that our identified sQTLs are often found close enough 

to canonical splicing regulatory elements to facilitate fine-mapping of causal variants 

and genes. 
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We also conducted credible set fine-mapping analysis of the colocalized sQTLs 

to identify 95% credible set SNPs; 75% of the colocalized sQTLs have a credible set 

SNP located within the sQTL-associated gene. Median credible set sizes for iPSC and 

HLC sQTLs were comparable to that of iPSC and HLC eQTLs – median credible set 

size for sQTLs is 9 and 8 SNPs for iPSC and HLC samples respectively, while median 

credible set size for eQTLs is 11 and 9 SNPs for iPSC and HLC samples. This suggests 

that sQTLs will be no more difficult to fine-map and functionally characterize than 

eQTLs. These observations suggest that sQTLs contribute information pertaining to 

potential causal genes and molecular mechanisms that may not otherwise be captured 

by eQTLs. 

 

A majority of sQTLs are shared between iPSCs and HLCs   

Previous research has indicated that sQTL effects are often shared across 

tissues.18,19 To evaluate the extent of sQTL sharing in our cell types, we examined the 

top one thousand sQTLs from the FDR < 5% sQTL set for both the iPSC and HLC 

samples, and used METASOFT to determine the extent to which sQTLs discovered in 

one cell type are found in the other. We find that if an alternatively spliced isoform is 

expressed in both cell types, the sQTL effect is observed in both cell types more than 

90% of the time (Figure 3a, 3b). In contrast, 60-74% of eQTL effects are shared, 

appearing to be more cell-type restricted (Figure 3c, 3d). However, this difference may 

simply be due to statistical power for discovery. The power to detect sQTLs is lower 

than that of eQTLs, due to a higher burden of multiple testing correction (Methods). In 

GTEx, tissues with larger sample sizes report higher percentages of tissue-specific 
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eQTLs compared to tissues with smaller sample sizes, indicating that power is 

correlated with tissue-specific eQTL discovery. The high percentage of shared sQTLs 

identified in this study may indicative of similar power limitations.  

 

HLC sQTLs identify trait-relevant genes and mechanisms at GWAS lipid loci  

To determine if our discovered sQTLs map to previously established associations 

for lipid traits in humans, we evaluated the probability that sQTL and GWAS signals 

share underlying causal architecture using a statistical process known as colocalization 

(as implemented by coloc R package).20 Colocalization analysis of HLC sQTLs (FDR < 

5%) with genome-wide significant (p<5e-08) loci from the Global Lipids Genetics 

Consortium1 identified 5,3,4, and 5 HLC sQTLs colocalizing with HDL, LDL, TG, and TC 

loci respectively (using a cutoff of PP4/PP3+PP4 ≥0.9 and PP3+PP4 ≥0.8, Table 1).21 

Colocalization analysis of FDR <5% HLC eQTLs identified 2, 5, 2, and 5 eQTL/GWAS 

colocalized loci for HDL, LDL, TG, and TC respectively (Table 2). Encouragingly, 

several of the colocalized sQTL genes have known roles in lipid biology (APOC1),22 and 

eQTLs previously shown to colocalize with GLGC traits and be functional for lipid levels 

are replicated (ANGPTL3).15 In general, the colocalized sQTLs and eQTLs are 

associated with different genes, a result that is in line with previous studies.18 Only a 

single gene colocalized for both an eQTL and sQTL, RPAP2.  

Of particular interest are the colocalized sQTLs mapping to CCDC92 and PGS1. 

PGS1 encodes an enzyme known as Phosphatidylglycerophosphate Synthase 1, which 

is involved in the synthesis of the anionic phospholipids phospatidylglycerol and 

cardiolipin. SNPs in PGS1 are associated with changes in triglyceride levels during 
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diabetes treatment.23 The second SNP in the credible set for this sQTL falls within the 

canonical splice site of the splicing event (as demonstrated by the red arrow in Figure 

4d). Further, the differentially spliced intron for PGS1 is associated with a transcript that 

is predicted to undergo nonsense-mediated decay (PGS1-002). The CCDC92-ZNF664 

locus has also been implicated in many different metabolic disorders, including type-2 

diabetes and coronary heart disease.24 The lead sQTL SNP at this colocalized locus 

has been associated with variation in total cholesterol, metabolic syndrome, and waist 

circumference in previous studies.24  

 

Discussion 

In sum, we demonstrate the utility of using iPSC-derived hepatocyte-like cells for 

the identification of lipid-relevant sQTLs. Our sQTL scans identify thousands of sQTLs 

in both iPSC and HLC lines, and the lead sQTL variants are enriched near canonical 

splice sites and are located close to their associated splice event, indicating that fine-

mapping the causal genes and variants for these sQTLs is feasible. Regarding the 

degree to which sQTLs are shared across cell-types, we find that if a spliced isoform is 

expressed across both cell types, the sQTL effect is also often shared. Although this 

finding is in line with previous sQTL analyses, it is may be due to the fact that lowly 

expressed splice events are often removed during more stringent filtering processes.  

Our colocalization analysis of the HLC sQTLs with GWAS loci from the GLGC 

identifies several interesting genes and variants that underlie blood lipid level variation. 

Further, the fact that: 1) our HLC sQTLs generally colocalize with different GWAS loci 

than the HLC eQTLs, and 2) the colocalized sQTLs nominate different genes than the 
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eQTLs, indicates that sQTLs likely provide information pertaining to the causal genes 

and molecular mechanisms underlying complex traits that may not otherwise be 

captured by eQTL analysis alone.  

One limitation of this study is the fact that Leafcutter cannot distinguish between 

types of sQTL events and may miss variants associated with alternative transcription 

start sites and alternative polyadenylation. As more differential splicing and sQTL 

detection methods are published, comparing the results of these various methods may 

provide a more nuanced assessment of the role of sQTLs in complex disease. Another 

limitation is that the GTEx v6 liver RNA-seq data was processed differently than the 

iPSC and HLC data, which may have resulted in the inability to detect the same sQTLs 

across cell types at the intron level. The use of primary liver tissue samples to interpret 

and replicate specific sQTLs we have cataloged here would be an important direction 

for future work.  

In summary, sQTL discovery in iPSC-derived cells may serve as an approach 

complementary to primary tissue QTL discovery efforts and provide a model system in 

which to identify and functionally characterize sQTLs relevant for complex trait variation.  

 

Methods  

iPSC derivation and differentiation into HLCs 

As previously described,15 iPSC cell lines were generated from the peripheral 

blood mononuclear cells (PBMCs) of 91 human subjects in good health and without 

cardiovascular disease. In brief, PBMCs were obtained from the subjects’ blood, 

cultured with cytokines, and expanded into erythroblasts. Erythroblasts were then 
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transduced with Sendai viral vectors expressing Oct4, Sox2, Klf-4, and c-Myc. Once 

transduced, cells were transferred to culture containing mouse embryonic feeder cells. 

Colonies of iPSC cells were then moved to hESC medium until at least cell passage 12. 

Once established on the hESC medium, iPSC lines were removed from feeder culture 

and passaged at least 5 times before use in HLC differentiation. iPSC quality control 

procedures included mycoplasm testing, quantification of pluripotency markers,25 and 

confirmation of Sendai vector loss through RNA-sequencing. HLC differentiation from 

the iPSCs was conducted using feeder-free differentiation.13 RNA sequencing was used 

to confirm the expression of hepatocyte-specific genes in the HLC lines. Albumin, ApoB, 

and triglycerides were also assayed to confirm HLC quality.   

 

Genotyping and quality control  

DNA was extracted from each donor with the QIAsymphony SP system 

(QIAGEN) and genotyped on the Infinium Human CoreExome-24 BeadChip (Illumina). 

Variants missing >5% of total genotypes and variants that deviated from Hardy-

Weinberg equilibrium were removed. Haplotypes were phased using SHAPEIT2 and 

missing genotypes were imputed to the 1000 genomes phase 3 multi-ethnic panel. 

Following imputation, the same missingness and Hardy-Weinberg filters were applied to 

the imputed data.  

 

RNA sequencing data generation 

As previously described,15 RNA was extracted from iPSC and HLC cells using 

the RNAeasy mini kit (QIAGEN) and assayed with the Agilent RNA 6000 Kit and 
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Bioanalyzer. Libraries were prepared using TruSeq Stranded mRNA Library Prep Kit 

(Illumina). Sequencing was performed at the University of Pennsylvania’s Next 

Generation Sequencing center using Illumina Hi-Seq 2000/2500 Systems with 

100bp/125bp paired-end reads. Target read depth for each sample was 50 million 

reads. We assessed quality of the raw FastQ files using FastQC26 and used 

TrimGalore!27 to trim adaptors. We then aligned trimmed reads that passed FastQC 

quality control to hg19/GRCh37 reference using the 2-pass mode of STAR aligner.28 

Whole transcriptome RNA-sequencing data was generated for 89 iPSC and 86 HLC 

samples - we used the data from 83 individuals who had data from both iPSC and HLC 

lines and that passed differentiation and quality control standards.  

 

Splicing quantification  

Alternative splicing events were quantified in both iPSC and HLC samples using 

Leafcutter 0.2.7 (http://davidaknowles.github.io/leafcutter/index.html, Accessed 

December, 2017), which uses split-mapped RNA-sequencing reads that span two 

different exons to identify excised introns. It then identifies groups of excised introns that 

share donor/acceptor splice sites. The proportion of reads that map to the individual 

introns within these intron groups (or “clusters”) are then used as quantitative estimates 

of alternative splicing. The intron clusters used in this analysis were identified using the 

Leafcutter: “python leafcutter_cluster.py -j juncfiles.txt -m 50 -o clusters -l 500000.” 

 

Differential splicing and expression analysis 
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We identified introns that are differentially spliced between iPSC and HLC 

samples using the differential splicing function of Leafcutter. The differential splicing 

analysis was then run using: “leafcutter_ds.R --num_threads 4 --

min_samples_per_group 10 --min_coverage 6 --exon_file=gencode19_exons.txt.gz 

clusters_perind_numers_noXY.counts.gz SVAconfounderMatrix.txt.” The 

gencode19_exons.txt.gz file is provided on the Leafcutter GitHub, and the SVA 

confounder matrix was generated using the SVA R package.29  

Of the genes that were identified as differentially spliced, we conducted 

overrepresentation analysis of KEGG Pathway annotations using the R package 

ClusterProfiler.30 The background set of genes was comprised of all of the genes that 

were used for differential splicing analysis (i.e., was “successfully” tested for differential 

splicing analysis, in that it passed filtering thresholds). To compare iPSC and HLC 

samples based on patterns of alternative splicing, we conducted principal components 

analysis on the iPSC/HLC splicing phenotypes (normalized, standardized intron ratios) 

using the R package prcomp.  

Using the DESeq2 R package31, we performed differential expression analysis 

between the 83 donor-paired iPSC and 83 HLC RNA-Seq samples on all transcripts that 

had at least 20 samples across all 166 RNA-Seq samples with 6 or more RNA-seq 

reads mapping. DESeq2 was run with a confounders matrix made up of 24 surrogate 

variables generated from the quantile normalized, standardized TPMs of the transcripts 

that met the previously mentioned expression thresholds. The surrogate variables were 

generated using the SVA R package.29 Transcripts were considered differentially 
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expressed in the iPSCs or HLCs if they had a Benjamini and Hochberg adjusted p-value 

of ≤0.05 and a log2-fold-change of 2 or greater. 

 To compare iPSC and HLC samples based on patterns of gene expression, we 

also conducted principal components analysis on the iPSC/HLC normalized, 

standardized TPMs using the R package prcomp. 

Finally, we used the ClusterProfiler30 R package to perform KEGG pathway 

enrichment analysis on the differentially expressed transcripts in both the HLC samples 

and the iPSC samples. The pathway enrichment analysis was done with a q-value 

cutoff of 0.05 and using a background set containing all transcripts that were tested for 

differential expression. 

 

sQTL identification  

Clusters were identified within iPSC and HLC samples using the Leafcutter call: 

“python leafcutter_cluster.py -j juncfiles.txt -m 50 -o clusters -l 500000.” Intron 

proportions were standardized across individuals for each intron, and read ratios were 

quantile-normalized across introns using: “python prepare_phenotype_table.py 

perind.counts.gz -p1.” We tested for association between variants with MAF>0.05 and 

within 100kb of a given intron cluster using linear regression as implemented with 

QTLtools (v2-184, http://fastqtl.sourceforge.net/).32 To obtain the FDR <5% sQTLs used 

for the majority of the analyses, we used the “-permute 1000 10000 --grp-best” adaptive 

permutation command to obtain the most significant variant-intron pair per gene. sQTL 

scans for both iPSC and HLC samples were also run without permutations for use in 

qvalue, METASOFT, and colocalization analyses, since permuted results only output p-
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values for the most highly associated SNP per intron cluster/gene. In each scan we 

controlled for PEER factors, sex, and four genotype based principle components 

(calculated on the VCF of all genotypes filtered for variants MAF > 0.05 using 

EIGENSTRAT’s smartpca – genotypes were first LD pruned with PLINK using 

R2=0.8).33,34 PEER factors were estimated on the standardized, quantile-normalized 

splicing phenotypes matrix and were included as covariates in the regression. sQTL 

scans were run for both iPSC and HLC samples over a range of 1-20 PEER factors to 

determine the number of factors that maximized the numbers of sQTL discovered for 

each cell type. Five PEER factors were used in the HLC sQTL scan, while six PEER 

factors were used in the iPSC sQTL analysis. QTLtool’s adaptive permutations scan 

outputs p-values adjusted for the number of introns tested per gene. We then further 

corrected these p-values across genes using the Benjamini and Hochberg method to 

obtain a global false discovery rate.35  

For the sQTL scan conducted in the GTEx v6 liver samples (n=96), a similar 

procedure was followed in order to obtain the nominal sQTLs used for the replication 

analysis. We used regression as implemented by FastQTL36 to obtain the nominal p-

values used for replication qvalue analyses. Due to differences in data processing and 

ethnicity of the samples, 3 genotype PCs and 5 PEER factors were included as 

covariates.  

 

Enrichment analysis  

Annotations. Splice site windows were obtained by taking Gencode v19 exon 

annotations and setting intervals 3bp into an exon and 8bp beyond an exon boundary to 
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encompass the range of base pairs that encompass canonical binding sites for splicing 

machinery. Genomic regions were ascertained from Gencode v19 annotations using the 

GenomicFeatures R package.37 We retained known protein coding transcripts, and then 

obtained annotations for introns, 5’ UTR, 3’ UTR, coding sequence, and promoters 

using the intronsByTranscript, fiveUTRsByTranscript, threeUTRsByTranscript, cdsBy, 

and promoters functions, respectively. RNA binding protein peaks were downloaded 

from eCLIP files from ENCODE.38 Using the data from the same eCLIP paper that 

provided the ENCODE RBP files, we identified 33 RBPs implicated in either splicing 

regulation of 3’ processing. For each RBP, we took the intersection of each of the 

replicate peak files, then combined all of these intersected files to get one BED file of 

“RBP peaks.” 

Enrichment analysis using GoShifter. GoShifter39 was used to determine the 

degree to which iPSC and HLC sQTLs (FDR <5%) were enriched in the annotations 

described above. We used LD files calculated with PLINK34 on our FDR <5% sQTLs to 

get the groups of SNPs in LD of R2>0.8 required for running GoShifter, which creates 

“circularized” loci and shifts annotations within these regions to provide a null 

distribution with which to compare the observed results. Odds ratios were calculated 

using the fisher.test function in R.  

 

Distance to 5’ and 3’ ends of genes and location within introns 

sQTL variants were identified as being upstream, downstream, or within the 

excised intron with which they were associated. We then plot the distance of the variant 

to the 5’ or 3’ end of the intron cluster. If the sQTL variant fell in between the exons 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659326doi: bioRxiv preprint 

https://doi.org/10.1101/659326
http://creativecommons.org/licenses/by/4.0/


18 
 

within the excised intron, intron length was divided by 10 and the sQTL was assigned to 

one of these deciles.  

 

Replication analysis in primary liver tissue  

 We used the R package qvalue17,40 to calculate the π0 values for the distribution 

of iPSC and HLC sQTL SNP-gene pairs in GTEx v6 liver data. For each of the SNP-

gene pairs in the FDR < 5% iPSC and HLC sQTL scan, we pulled the nominal p-values 

for these same pairs out of the GTEx v6 liver sQTL scan to obtain an estimate of the 

replication rate.  

 

Cell-type specificity analyses 

To evaluate the degree to which sQTLs are shared between cell-types, we used 

METASOFT41 to calculate the posterior probabilities (m-values) that an sQTL 

discovered in iPSC samples is also an sQTL in HLC samples, and vice-versa. An sQTL 

was considered associated with both cell types if the m-value was ≥0.9 for both cell-

types. An sQTL was considered HLC-specific if the m-value was ≥0.9 in HLCs and <0.1 

in iPSCs. Similarly, sQTLs were considered iPSC-specific if the m-value was ≥0.9 in 

iPSCs and <0.1 in HLCs.42 To facilitate comparisons between sQTLs and eQTLs, we 

conducted METASOFT analysis on the top one thousand sQTLs from our iPSC and 

HLC permutation scans. The same procedure was used for our iPSC and HLC eQTLs.  

 

eQTL identification  
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Aligned RNA-seq reads were assigned to Gencode v19 genomic annotations 

using the R package featureCounts.43 Transcripts were filtered for HLC and iPSC 

samples separately and were kept for analysis if at least 10 samples had 6 or more 

mapped RNA-seq reads. Raw featureCounts transcript counts were converted to TPMs. 

For each sample, the distribution of TPMs were normalized to the empirical average 

quantiles across samples using the R function normalizeQuantiles, and then, for each 

gene, for each cell type, the distribution of TPMs was transformed to the quantiles of the 

standard normal distribution, using the R function qqnorm. We tested for association 

between bi-allelic variants with MAF>0.05 and within 1Mb of a given transcript 

(beginning or end of transcript) using linear regression as implemented with QTLtools 

(v2-184, http://fastqtl.sourceforge.net/). To obtain the FDR <5% eQTLs used for the 

majority of the analyses, we used the “--permute 1000 10000” adaptive permutation 

command to get the most significant variant-gene pair. eQTL scans for both iPSC and 

HLC samples were also run without permutations for use in METASOFT and 

colocalization analyses, since permuted results only output p-values for the most highly 

associated SNP per gene. 

As with the sQTL analysis, in each eQTL scan we controlled for PEER factors44, 

gender, and four genotype based principle components (calculated using 

EIGENSTRAT’s smartpca, and first LD pruned R2=0.8 with PLINK).33,34 PEER factors 

were estimated using on the standardized, quantile-normalized TPMs calculated from 

the featureCounts output and were included as covariates in the regression. eQTL 

scans were run for both iPSC and HLC samples over a range of 1-30 PEER factors to 

determine the number of factors that maximized the numbers of eQTLs discovered for 
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each cell type. 20 PEER factors were used in the HLC eQTL scan, while 16 PEER 

factors were used in the iPSC eQTL scan. QTLtools’ adaptive permutation scan outputs 

p-values adjusted for the number of variants tested per gene. We then further corrected 

these p-values across genes using the Benjamini and Hochberg method to obtain a 

global FDR.35 

 

Credible Set Calculations 

 To calculate 95% credible sets for each of the iPSC/HLC FDR < 5% sQTLs, we 

used the process described in Maller et al. 2012 to identify sets of variants with a 95% 

probability of containing the causal variant.45  

 

Colocalization analyses 

Using the default parameters for the R package coloc20 (CRAN v3.1) we 

conducted colocalization analysis between each of the GWAS traits from the Global 

Lipids Genetics Consortium46 (HDL-C, LDL-C, TG, and TC) and the FDR <5% eQTL-

gene and sQTL-gene pairs from our HLC samples. For each GLGC trait, we ranked 

genome-wide significant variants by p-value and chose the most significant variants 

within 100kb windows of each other. If any of the FDR <5% eQTL/sQTL variants fell 

within 100kb of these GLGC variants, we conducted colocalization analysis on all 

variants within 100kb of the GWAS variants, using the p-values obtained from our 

nominal sQTL/eQTL scans. We used the MAF estimated from the GLGC.  
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Figure 1. Differential splicing analysis: a) PCA of normalized splicing phenotypes; b) 

enrichment of KEGG pathways for differentially spliced genes with a delta PSI ≥ 0.1. P-

values were adjusted for multiple testing using the Benjamini and Hochberg correction.  
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Figure 2. Characteristics of FDR <5% sQTLs: a) distance of iPSC sQTLs to splice 

event, b) distance of HLC sQTLs to splice event, c) enrichment of iPSC/HLC sQTLs in 

genomic annotations - boxplot whiskers calculated as interquartile range*1.5. ***P < 

0.001; **P< 0.01; *P<0.05 
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Figure 3. Percentage of the top one thousand: a) HLC sQTLs, b) iPSC sQTLs c) HLC 

eQTLs, d) iPSC eQTLs, e) sQTL that is present in HLCs only, f) sQTL that is identified 

in both HLCs and iPSCs. 
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Table 1. HLC sQTL Genes that Colocalize with GLGC Loci 
GLGC GWAS sQTL - Genes 
HDL CCDC92-ZNF664, DR1, GSDMB, PGS1 
LDL HCP5-MICA, RPAP2 
TG CCDC92-ZNF664, APOC1, PDXDC1 
TC HCP5-MICA, M6PR, ALI109827.1, RPAP2 

 
Table 2. HLC eQTL Genes that Colocalize with GLGC Loci 
GLGC GWAS eQTL - Genes 
HDL RBM6, PGAP3 
LDL SPTY2D1, SYPL2, FRK, TBKBP1, RPAP2 
TG ANGPTL3, AL138847.1 
TC SPTY2D1, ANGPTL3, FRK, TBKBP1, AL138847.1 
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Figure 4. PGS1 colocalization result: a) sQTL and b) GWAS locuszoom plots for PGS1 

locus, c) boxplots of normalized splicing ratios for sQTL across genotype groups, d) 

location of credible set SNP relative to associated exon-exon junction (indicated by red 

arrow). Position Weight Matrices used to create the sequence logo obtained from Abril 

et al. 2005.47 
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Figure 5. CCDC92 colocalization result: a) sQTL and b) GWAS locuszoom plots for 

CCDC92 locus, c) boxplots of normalized splicing ratios for sQTL across genotype 

groups for sQTL mapping to CCDC92. 
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Supplementary Figure 1. Genes that are differentially expressed between iPSC and 

HLC samples (FDR <5%): a) PCA of normalized TPMs, b) Volcano plot of differentially 

spliced genes (FDR <5%), c) KEGG pathway enrichment analysis for genes that are 

differentially expressed more highly in HLC relative to iPSC, d) KEGG pathway 

enrichment analysis for genes that are differentially expressed less highly in HLC 

relative to iPSC. 
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Supplementary Figure 2. P-value histograms for nominal sQTL and eQTL scans.  
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Supplementary Figure 3. Credible sets for iPSC, HLC sQTLs and eQTLs. Boxplot 

whiskers calculated as 1.5 * interquartile range. Not pictured: 62 sets for iPSC sQTLs, 

200 sets for iPSC eQTLs, 73 sets for HLC sQTLs, 116 sets for HLC eQTLs.  
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