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ABSTRACT

Long non-coding RNAs (IncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing
IncRNA expression across cells and tissues is key to understanding their role in determining phenotypes including disease.
We present here FC-R2, a comprehensive expression atlas across a broadly-defined human transcriptome, inclusive of over
100,000 coding and non-coding genes as described by the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study.
This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2
atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human
samples. In particular, we (a) identify tissue specific transcription profiles for distinct classes of coding and non-coding genes,
(b) perform differential expression analysis across thirteen cancer types, providing new insights linking promoter and enhancer
IncRNAs expression to tumor pathogenesis, and (c) confirm the prognostic value of several enhancers in cancer. Comprised of
over 70,000 samples, FC—-R2 will empower other researchers to investigate the roles of both known genes and recently described
IncRNAs. Access to the FC-R2 atlas is available from https://jhubiostatistics.shinyapps.io/recount/, the
recount Bioconductor package, and http://marchionnilab.org/fcr2.html.
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Introduction

Long non-coding RNAs (IncRNAs) are commonly defined as transcripts devoid of open reading frames (ORFs) longer than
200 nucleotides, which are often polyadenylated. This definition is not based on their function, since IncRNAs are involved in
distinct molecular processes and biological contexts not yet fully characterized'. Over the past few years, the importance of
IncRNAs has been clarified, leading to an increasing focus on decoding the consequences of their modulation and studying
their involvement in the regulation of key biological mechanisms during development, normal tissue and cellular homeostasis,
and in disease! ™.

Given the emerging and previously underestimated importance of non-coding RNAs, the FANTOM consortium has initiated
the systematic characterization of their biological function. Through the use of Cap Analysis of Gene Expression sequencing
(CAGE-seq), combined with RNA-seq data from the public domain, the FANTOM consortium released a comprehensive atlas
of the human transcriptome, encompassing more accurate transcriptional start sites (TSS) for coding and non-coding genes,
including numerous novel long non-coding genes: the FANTOM CAGE Associated Transcriptome (FANTOM-CAT)*. We
hypothesized that these IncRNAs can be measured in many RNA-seq datasets from the public domain and that they have been
so far missed by the lack of a comprehensive gene annotation.

Although the systematic analysis of IncRNAs function is being addressed by the FANTOM consortium in loss of function
studies, increasing the detection rate of these transcripts combining different studies is difficult because the heterogeneity
of analytic methods employed. Current resources that apply uniform analytic methods to create expression summaries from
public data do exist but can miss several IncRNAs because their dependency on a pre-existing gene annotation for creating the
genes expression summaries>®. We recently created recount2’, a collection of uniformly-processed human RNA-seq data,
wherein we summarized 4.4 trillion reads from over 70,000 human samples from the Sequence Reads Archive (SRA), The
Cancer Genome Atlas (TCGA)?, and the Genotype-Tissue Expression (GTEx)® projects’. Importantly, recount2 provides
annotation-agnostic coverage files that allow re-quantification using a new annotation without having to re-process the RNA-seq
data.

Given the unique opportunity to access lastest results to the most comprehensive human transcriptome (the FANTOM-
CATproject) and the recount2 gene agnostic summaries, we addressed the previous described challenges building a comprehen-
sive atlas of coding and non-coding gene expression across the human genome: the FANTOM-CAT/recount2 expression atlas
(FC—R2 hereafter). Our resource contains expression profiles for 109,873 putative genes across over 70,000 samples, enabling

an unparalleled resource for the analysis of the human coding and non-coding transcriptome.

Results

Building the FANTOM-CAT/recount2 resource
The recount2 resource includes a coverage track, in the form of a BigWig file, for each processed sample. We built the

FC-R2 expression atlas by extracting expression levels from recount2 coverage tracks in regions that overlapped unambiguous
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exon coordinates for the permissive set of FANTOM-CAT transcripts, according to the pipeline shown in Figure 1. Since
recount2’s coverage tracks does not distinguish from between genomic strands, we removed ambiguous segments that presented
overlapping exon annotations from both strands (see Methods section). After such disambiguation procedure, the remaining
1,066,515 exonic segments mapped back to 109,869 genes in FANTOM-CAT (out of the 124,047 starting ones included in the
permissive set). Overall, the FC-R2 expression atlas encompasses 2,041 studies with 71,045 RNA-seq samples, providing
expression information for 22,116 coding genes and 87,763 non-coding genes, such as enhancers, promoters, and others

IncRNAs.
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Figure 1. Overview of the FANTOM-CAT/recount2 resource development. FC—R2 leverages two public resources, the
FANTOM-CAT gene models and recount2. FC-R2 provides expression information for 109,873 genes, both coding (22,110)
and non-coding (87,693). This latter group encompasses enhancers, promoters, and others IncRNAs.

Validating the FANTOM-CAT/recount2 resource
We first assessed how gene expression estimates in FC—-R2 compared to previous gene expression estimates from other projects.
Specifically, we considered data from the GTEx consortium (v6), spanning 9,662 samples from 551 individuals and 54 tissues
types’. First, we correlated gene expression levels between the FC—R2 atlas and quantification based on GENCODE (v25) in
recount? for the GTEx data, observing a median correlation > 0.986 for the 32,922 genes in common. This result supports the
notion that our pre-processing steps to disambiguate overlapping exon regions between strands did not significantly alter gene
expression quantification.

Next, we assesed whether gene expression specificity, as measured in FC-R2, was maintained across tissue types. To
this end, we selected and compared gene expression for known tissue-specific expression patterns, such as Keratin 1 (KRT1),
Estrogen Receptor 1 (ESRI), and Neuronal Differentiation 1 (NEURODI) (Figure 2). Overall, all analyzed tissue specific

markers presented nearly identical expression profiles across GTEx tissue types between the alternative gene models considered
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(see Figure 2 and S1), confirming the consistency between gene expression quantification in FC-R2 and those based on

GENCODE.
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Figure 2. Tissue specific expression in GTEx. Log2 expression for three tissue specific genes (KRT1, NEURODI, and
ESRI) in GTEx data stratify by tissue type using FC—-R2 and GENCODE based quantification. Expression profiles are highly
correlated and expressed consistently in the expected tissue types (e.g., KRTI is most expressed in skin, NEUROD! in brain,
and ESRI in estrogen sensitive tissue types like uterus, Fallopian tubes, and breast). Correlations are shown on top for each
tissue marker. Center lines, upper/lower quartiles and Whiskers represents the median, 25/75 quartiles and 1.5 interquartile
range, recpectively.

Tissue-specific expression of IncRNAs

It has been shown that, although expressed at a lower level, enhancers and promoters are not ubiquitously expressed and are
more specific for different cell types than coding genes*. In order to verify this finding, we used GTEx data to assess expression
levels and specificity profiles across samples from each of the 54 analyzed tissue types, stratified into four distinct gene
categories: coding mRNA, intergenic promoter IncRNA (ip-IncRNA), divergent promoter IncRNA (dp-IncRNA), and enhancers
IncRNA (e-IncRNA). Overall, we were able to confirm that these RNA classes are expressed at different levels, and that they
display distinct specificity patterns across tissues, as shown for primary cell types by Hon et al.*, albeit with more variability

likely due to the increased cellular complexity present in tissues. Specifically, coding mRNAs were expressed at higher levels
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than IncRNAs (log2 median expression of 6.6 for coding mRNAs, and of 4.1, 3.8 and 3.1, for ip-IncRNA, dp-IncRNA, and
e-IncRNA, respectively). In contrast, the expression of enhancers and intergenic promoters was more tissue-specific (median =
0.41 and 0.30) than what observed for divergent promoters and coding mRNAs (median = 0.13 and 0.09) (Figure 3). Finally,
when analyzing the percentage of genes expressed across tissues by category, we observed that coding genes are, in general,
ubiquitous, while IncRNAs are more specific, with enhancers showing the lowest percentages of expressed (mean ranging from

88.42% to 41.98%, see Figure 3B), in agreement with the notion that enhancer transcription is tissue specific'”
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Figure 3. Expression profiles across GTEXx tissues. A) Expression level and tissue specificity across four distinct RNA
categories. The Y-axis shows log2 expression levels representing each gene using its maximum expression in GTEX tissues
expressed as transcripts per million (TMP). The X-axis shows expression specificity based on entropy computed from median
expression of each gene across the GTEx tissue types. Individual genes are highlighted in the figure panels. B) Percentage of
genes expressed for each RNA category stratified by GTEXx tissue facets. The dots represent the mean among samples within a
facet and the error bars represent 99.99% confidence intervals. Dashed lines represent the means among all samples.

Differential expression analysis of coding and non-coding genes in cancer

We analyzed coding and non-coding gene expression in cancer using TCGA data. To this end, we compared cancer to normal
samples separately for 13 tumor types, using FC—-R2 re-quantified data. We further identified the differentially expressed genes
(DEG) in common across the distinct cancer types (see Figure 4). Overall, the number of DEG varied across cancer types
and by gene class, with a higher number of significant coding than non-coding genes (FDR < 0.01, see table 1). Importantly,

a substantial fraction of these genes was exclusively annotated in the FANTOM-CAT, suggesting that relying on other gene
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models would result in missing many potential important genes (see Table 1). We then analyzed the consensus among cancer
types. A total of 41 coding mRNAs were differentially expressed across all the 13 tumor types after global correction for
multiple testing (FDR < 10, see Supplementary table S1). For IncRNAs, a total of 28 divergent promoters, 4 intergenic
promoters, and 3 enhancers were consistently up- or down-regulated across all the 13 tumor types after global correction for

multiple testing (FDR < 0.1, see Supplementary tables S2, S3, S4, respectively).

Table 1. Differentially expressed genes in cancer. The table below summarizes the number of significant DEG

(FDR < 0.01) between tumor and normal samples across the 13 cancer types analyzed for each gene class considered (coding
mRNA, ip-IncRNA, dp-IncRNA, and e-IncRNA). Counts are reported separately for DEG up- and down-regulated in cancer,
and values in parenthesis represents the number of genes exclusively annotated in the FANTOM-CAT gene model. Mean and
standard deviation across cancer types is shown at the bottom.

dp-IncRNA e-IncRNA ip-IncRNA mRNA
Cancer type Total Up Down Up Down Up Down Up Down
Bile 7010 200 (60) 313 (90) 186 (89) 203 (99) 47(12) 84 (17) 2658 (106) 3319 (97)
Bladder 7680 344 (125)  319(87) 140 (68) 149 (67) 65 (19) 82 (7) 3112 (201) 3469 (61)
Breast 15290 753 (291) 721 (202) 656 (377) 583 (305) 207 (50) 178 (32) 6109 (296) 6083 (244)
Colorectal 13685 490 (164) 592 (168) 381 (203) 400 (196) 130 (32) 160 (28) 5538 (371) 5994 (132)
Esophagus 4883 87 (21) 193 (50) 90 (38) 184 (103) 40 (11) 48 (2) 1921 (83) 2320 (77)

Head and Neck 10517 442 (138) 401 (96) 267 (139) 251 (112) 100 (23) 109 (18) 4329 (256) 4618 (53)

Kidney 15697  734(238) 820 (281)  535(299) 486(209) 203 (45) 200 (48) 6349 (525) 6370 (114)
Liver 10554 346 (94) 395(106) 230 (102) 248 (123) 90 (16) 112(19) 4164 (174) 4969 (95)
Lung 17143 864 (338) 835(304)  893(512) 729(396)  242(76) 213(39)  7523(532) 5844 (212)
Prostate 13183 686 (287) 654 (218)  418(254) 452 (214) 175(55) 167(30) 5153 (489) 5478 (128)
Stomach 11309 528 (213) 518(164)  462(291) 436 (240) 144 (51) 129(22) 4509 (558) 4583 (89)
Thyroid 14264  752(284) 804 (318)  527(295) 594 (332) 161 (39) 174 (47) 5403 (189) 5849 (308)
Uterus 12906 641 (285) 713(235)  454(263) 612(341)  210(79) 225(54)  5135(335) 4916 (181)
Mean 11855  528(195) 560 (178) 403 (225) 410 (211) 140 (39) 145(28) 4762 (317) 4909 (138)
St. Dev 3650 237(102) 218(89)  225(137) 189 (107) 67(23) 55(16) 1557 (167) 1234 (77)

Next, we reviewed the literature to assess functional correlates for these consensus genes. Most of the consensus up-
regulated coding genes (Supplementary Table S1) participate in cell cycle regulation, cell division, DNA replication and repair,
and chromosome segregation, and mitotic spindle checkpoints. Most of the consensus down-regulated mRNAs (Supplementary
Table S1) are associated with metabolism and oxidative stress, transcriptional regulation, cell migration and adhesion, and with
modulation of of DNA damage repair and apoptosis.

Down-regulated dp-IncRNAs were mostly those associated with immune cells (e.g., natural killer cells, T cell, and mature
B-cells). Three genes, RP11-276H19, RPL34-AS1, and RAP2C-AS1, were reported to be implicated in cancer (Supplementary

Table S2). The first controls epithelial-mesenchymal transition, the second is associated with tumor size increase, and the
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third is associated with urothelial cancer after kidney cancer transplantation''~!3. Among up-regulated dp-IncRNA, SNHG I

(Supplementary Table S2) was implicated in cellular proliferation, migration, invasion of different cancer types, and strongly

up-regulated in osteosarcoma, non-small lung cancer, and gastric cancer'® 13,
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Figure 4. Differential expression for selected transcripts from distinct RNA classes across tumor types. Boxplots
showing raw expression levels of differential expressed genes between tumor and normal tissue samples for all 13 tumor types
analyzed. For each tissue of origin, the most up-regulated (on the left) and down-regulated (on the right) gene for each RNA
class is shown. Center lines, upper/lower quartiles and Whiskers represents the median, 25/75 quartiles and 1.5 interquartile
range, recpectively. Color coding on top of the figure indicates the RNA class (red for mRNA, purple for dp-IncRNA, cyan
ip-IncRNA, and green for e-IncRNA. These genes were select after global multiple testing correction (see Supplementary
Tables S1, S2, S3, and S4)

Among the ubiquitously down-regulated ip-IncRNAs (see Supplementary Table S3), LINCO0478 has been previously
reported in many different tumors including leukemia, breast, vulvar, prostate, and bladder cancer'®2. In vulvar squamous
cell carcinoma, there is a statistical relationship between LINC00478 and MIR31HG expression and tumor differentiation!”.
Additionally, LINC00478 down-regulated in ER positive breast tumors was shown to be associated with progression, recurrence,
and metastasis'®. In contrast, increased expression of SNHG17 (an ip-IncRNA, see Supplementary Table S3), was associated
with short term survival in breast cancer, and with tumor size, stage, and lymph node metastasis in colorectal cancer?!-22,
Another ip-IncRNA, AC004463, (Supplementary Table S3), was found up-regulated in liver cancer and metastatic prostate
cancer??. Regarding the last IncRNA category considered here, we could not find any cancer association for common e-IncRNAs,
nevertheless one, RP5-965F6, was previously reported to be up-regulated in late-onset Alzheimer’s disease?*. The e-IncRNAs
category also yielded the lowest number of genes in common among all cancer types, reinforcing the concept that IncRNAs,

specially enhancers are expressed in a specific manner (Supplementary Table S4).

Finally, as a prototypical example, we considered prostate cancer (PCa), and we were able to confirm findings from previous
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reports for both coding and non-coding genes (see Supplementary Figure S2). For coding genes, we confirmed differential
expression for known markers of PCa progression and mortality, like ERG, FOXAI, RNASEL, ARVCF, and SLC43A1 25,26,
Similarly, we also confirmed differential expression for non-coding genes, like PCA3, the first clinically approved IncRNA
marker for PCa®>”-?8, PCAT1, a prostate-specific IncRNA involved in disease progression’’, MALATI, which is associated
with PCa poor prognosis®’, CDKN2B-AS1, an anti-sense IncRNA up-regulated in PCa that inhibits tumor suppressor genes
31,32

activity- , and the MIR135 host gene, which is associated with castration-resistant PCa’3.

Enhancer expression levels hold prognostic value

The number of IncRNAs involved in cancer development and progression is rapidly increasing, we therefore analyzed the
prognostic value of the IncRNAs we identified in our gene expression differential analysis in TCGA, as well as those previously
reported in other studies. To this end, Chen and collaborators have recently surveyed enhancers expression in nearly 9,000
patients from the TCGA3*, using genomic coordinates from the FANTOMS project®, identifying 4,803 enhancers with
prognostic potential in one or more tumor types in the TCGA. We therefore leveraged the FC—-R2 atlas to identify prognostic
coding and non-coding genes using Univariate Cox proportional hazard models, comparing our results for e-IncRNAs with
those reported by Chen and colleagues.

When we considered e-IncRNAexpression levels, we identified a total of 5,382 prognostic e-IncRNAs (FDR < 0.05), and
no single one was predictive across all cancer types. Overall, the number of significant prognostic e-IncRNAs varied across
tumors, ranging from 3 in head and neck cancer to 3,850 in kidney cancers (see Supplementary Table S6). Notably, two (out of
three) e-IncRNAs from our differential gene expression consensus list across all tumor types were also prognostic. Specifically,
CATG00000107122 was associated with worst prognosis in kidney cancer, while ENSG00000255958 was associated with
worse survival in stomach tumor. Overall, despite differences in annotation and quantification (see Supplementary Table S5),

we were able to confirm prognostic value for 2,765 e-IncRNAs out of the 4,803 reported by Chen et al**

, including “enhancer
227 (ENSG00000272666, which was highlighted as a promising prognostic marker for kidney cancer (Supplementary Figure
S3).

Finally, we analyzed the prognostic value for dp-IncRNAs, ip-IncRNAs, and mRNAs (See Supplementary Tables S7, S8,
and S9, respectively), and assessed the survival prognostic potential of our consensus genes across tumor types. Thirty-seven of
the 41 coding mRNAs, 22 of the 28 differentially expressed dp-IncRNAs, and two out of the four DE ip-IncRNAs, respectively,

were found to be prognostic (See Supplementary Tables S10, S11, S12, and S13). Kaplan-Meier survival curves for one selected

DE gene on each RNA subtype evaluated here are shown in supplementary figure S4.

Discussion

The importance of IncRNAs in cell biology and disease has clearly emerged in the past few years and different classes of
IncRNAs have been shown to play crucial roles in cell regulation and homeostasis*. For instance, enhancers — a major category

of gene regulatory elements, which has been shown to be expressed®3” — play a prominent role in oncogenic processes>®>’
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and other human diseases*?-*!

. Despite their importance, however, there is a scarcity of large-scale datasets investigating
enhancers and other IncRNA classes, in part due to the technical difficulty in applying high-throughput techniques such as
ChIP-seq and Hi-C over large cohorts, and to the use of gene models that do not account for them in transcriptomics analyses.
Furthermore, the large majority of the IncRNAs that are already known — and that have been shown to be associated with some
phenotype — are still lacking functional annotation.

To address these needs, the FANTOM consortium has first constructed the FANTOM-CAT meta-transcriptome, a com-
prehensive atlas of coding and non-coding genes with robust support from CAGE-seq data®, then it has undertaken a large
scale project to systematically target IncRNAs and characterize their function using a multi-pronged approach (Jordan et al.,
under review). In a complementary effort, we have leveraged public domain gene expression data from recount2’-*> to create a
comprehensive gene expression compendium across human cells and tissues based on the FANTOM-CAT gene model, with the
ultimate goal of facilitating IncRNAs annotation through association studies.

In order to validate our resource, we have compared the gene expression summaries based on FANTOM-CAT gene models
with previous, well-established quantification of gene expression, demonstrating virtually identical profiles across tissue types
overall and for specific tissue markers. We have then confirmed that distinct classes of coding and non-coding genes differ in
terms of overall expression levels and specificity patterns across cell types and tissues. Furthermore, with this approach, we
were also able to identify mRNAs, promoters, enhancers, and other IncRNAs that are differentially expressed in cancer, both
confirming previously reported findings, and identifying novel cancer genes exclusively annotated in the FANTOM-CAT gene
model, which have been therefore missed in prior analyses with TCGA data. Finally, we also analyzed the prognostic value of
the coding and non-coding genes we identified in our analyses, and confirmed the association with overall survival in TCGA
for measurable enhancers.

Collectively, by confirming findings reported in previous studies, our results demonstrate that the FC-R2 gene expression
atlas is a reliable and powerful resource for exploring both the coding and non-coding transcriptome, providing compelling
evidence and robust support to the notion that IncRNA gene classes, including enhancers and promoters, despite not being
yet fully understood, portend significant biological functions. Our resource, therefore, constitutes a suitable and promising
platform for future large scales studies in cancer and other human diseases, which in turn hold the potential to reveal important
cues to the understanding of their biological, physiological, and pathological roles, potentially leading to improved diagnostic
and therapeutic interventions.

Finally, all results and data from the FC—R2 atlas are available as a public tool. With uniformly processed expression data
for over 70,000 samples and 109,873 genes ready to analyze, we want to encourage researchers to dive deeper into the study of
ncRNAs, their interaction with coding and non-coding genes, and their influence on normal and disease tissues. We hope this
new resource will help paving the way to develop new hypotheses that can be followed to unwind the biological role of the

transcriptome as a whole.
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Methods

Data and pre-processing.

FANTOM CAT permissive catalog was obtained from the pre-FANTOMG6 consortium. This catalog initially comprised 124,245
genes defined by CAGE peaks published by Hon et al*. In order to remove ambiguity, BED files containing the coordinates for
each gene/exon were imported into an R session and processed with the GenomicRanges package*® by disjoining the exon
coordinates. To avoid losing strand information we processed it in a two-step approach by first disjoining overlapping segments
on the same strand and latter across strands (Figure 5). Genomic ranges (disjoined exons segments) that mapped back to
more than one gene were discarded. The expression values for these ranges were then quantified using recount.bwtool** (code
athttps://github.com/LieberInstitute/marchionni_projects). The resulting expression quantifications
were processed to generate RangedSummarizedExperiment objects compatible with the recount2 framework”-* (code
at https://github.com/eddieimada/fcr2). Thus FC-R2 provides expression information for coding mRNAs,
enhancers and promoters (divergent and intergenic) for 9,662 samples from the Genotype-Tissue Expression (GTEXx) project,
11,350 samples from The Cancer Genome Atlas (TCGA) consortium, and over 50,000 samples from the Sequence Read

Archive (SRA).

Correlation with other studies.

To test if the pre-processing step had a major impact on expression quantification, we compared our counts tables to the
published GTEx counts from recount2. The version 2 of the gene counts for the GTEx samples were downloaded from the
recount website (https://jhubiostatistics.shinyapps.io/recount/). We compared distribution of tissue
specific genes across tissues and computed the Pearson correlation for each gene in common across the original recount2 gene

counts estimates and our version.

Expression specificity of tissue facets.

We analyzed the expression level and specificity of each gene stratified by RNA class (i.e. mRNA, e-IncRNA, dp-IncRNA,
ip-IncRNA). Expression levels for each gene were represented by the maximum transcripts per million (TPM) of all samples
within a facet. To compute the gene specificity we followed the same approach used in Hon et al*. The 99.99 percent confidence
intervals for the expression of each category by facet were calculated based on TPM values. Genes with a TPM greater than

0.01 were considered expressed.

Identification of differentially expressed genes.

Differential gene expression was tested in 13 cancer types, comparing primary tumor with normal samples using TCGA FC-R2
gene expression summaries. Summaries for each cancer type were split by RNA class (coding mRNA, intergenic promoter
IncRNA, divergent promoter IncRNA and enhancer IncRNA) and analyzed independently. A generalized linear model approach

45

coupled with empirical Bayes standard errors™ was used to identify differentially expressed genes between the samples. The
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Figure 5. FANTOM-CAT genomic ranges. Representation of the disjoining and exon disambiguation processes. (A)
Representation of a genome segment and its annotation containing 3 genes with gene A having two isoforms, and genes B and
C with one isoform each. Each box can be interpreted as one nucleotide with boxes colored blue or orange to represent exons
on opposite strands. (B) Representation of disjoined exon ranges from example A. Each feature is reduced to a set of
non-overlapping genomic ranges, then genomic ranges mapping back to two or more genes are removed (crossed boxes). After
removal of ambiguous ranges, the remaining ranges are summarized at gene level. Grey boxes represent segments with
ambiguous strand.

model was adjusted for the three most variable coefficients for data heterogeneity as estimated by surrogate variable analysis
(SVA)*. Correction for multiple testing was performed across RNA classes by merging the resulting p-values for each cancer

type and applying the Benjamini-Hochberg method*’.

Prognostic analysis.

To evaluate the prognostic potential of the genes in FC-R2we applied a univariate Cox proportional regression model in
four RNA classes (22106 mRNAs, 17,404 e-IncRNAs, 6,204 dp-IncRNAs, and 1,948 ip-IncRNAs) comprised in FC-R2
across each of the 13 TCGA cancer types with available survival follow-up. Genes with FDR equal or less than 0.05 using
Benjamini-Hochberg®’ correction within the cancer type and RNA class, were selected as significant prognostic factors. To
indentify differentially expressed genes that portrait predictive potential, the DE lists were intersected with the significant

prognostic genes lists. Supplementary data from Chen et al** containing enhancers position and prognostic potential were
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obtained from the original publication and a liftover to hg38 genome assembly was performed to match FC—R2 coordinates in

order to compare the results.

Data Availability

All data is available in http://marchionnilab.org/fcr2.html. Expression data can be directly accessed through
https://Jjhubiostatistics.shinyapps.io/recount/ and the recount Bioconductor package (v1.9.5 or newer)
athttps://bioconductor.org/packages/recount as RangedSummarizedExperiment objects organized by The
Sequence Read Archive (SRA) study ID. The data can be loaded using R-programming language and is ready to be analyzed

using Bioconductor packages or the data can be exported to other formats for use in another environment.

Code Availability

All code used in this manuscript is available in: https://github.com/eddieimada/fcr2 and https://github.

com/LieberInstitute/marchionni_projects for reproducibility purposes.
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Exonic Intronic

d-IncRNA 1762 1665
i-IncRNA 1066 274
mRNA 10509 7254
other-RNA 7512 2121
pseudogene 1218 208
senseOverlap-RNA 2631 150
small-RNA 845 68
Total 34282 12247

Table S5. Remaping of Anderson’s enhancers list to the FANTOM-CAT permissive set. Since originally published, many of
enhancers contained in the Anderson’s list®>, were reassigned or removed during the assembly of the FANTOM-CAT based on
further evidence from the additional transcriptomic datasets used in the meta-assembly, as well as due to the information
obtained from orthogonal genomic and epigenomic information, such as DNase I hypersensitivity and other epigenomic marks,
as obtained from the Roadmap Epigenomics Project. Based on the new gene models in FANTOM-CAT, we verified the
overlapping between the original enhancers list and then summarized the results according to current RNA classes in the
FANTOM-CAT. The counts for the original enhancers that overlap with exons in the FANTOM-CAT gene models are shown in
the “Exonic” column on the left. The counts for the enhancers that did not map to any exon, but that were still within the gene
boundaries are shown in the “Intronic* column on the right.

Table S6. Survival analysis using Cox proportional regression showing the number of e-IncRNAs with prognostic value
accross the 13 cancer types. Non-significant column indicates the number of genes with FDR greater than 0.05. Cases
represents the number patients at the beginning of follow-up for each tumor type. Events is the number of death cases during
follow up. Median time is given in days.

Tumor type Non-significant ~ FDR < 0.05 Cases  Events  Median time
Kidney 13554 3850 881 227 N.A.
Uterus 16563 831 596 125 3365
Stomach 16850 554 392 158 940
Liver 16970 369 365 130 1694
Bladder 17234 153 407 178 1008
Thyroid 17277 111 504 16 N.A.
Breast 17305 96 1080 151 3941
Colorectal 17292 87 602 128 2532
Lung 17335 69 998 395 1531
Prostate 17332 53 496 10 N.A.
HeadNeck 17398 3 501 217 1671
Bile 15725 0 36 18 1220
Esophagus 17404 0 184 77 784

Table S7. Survival analysis using Cox proportional regression showing the number of dp-IncRNAs with prognostic value
accross the 13 cancer types. Non-significant column indicates the number of genes with FDR greater than 0.05. Cases
represents the number patients at the beginning of follow-up for each tumor type. Events is the number of death cases during
follow up. Median time is given in days.

Tumor type Non-significant ~ FDR < 0.05 Cases  Events  Median time
Kidney 4247 1957 881 227 N.A.
Uterus 5477 726 596 125 3365
Liver 5971 223 365 130 1694
Thyroid 6073 128 504 16 N.A.

Continued on next page
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Table S7. Survival analysis using Cox proportional regression showing the number of dp-IncRNAs with prognostic value

accross the 13 cancer types. Non-significant column indicates the number of genes with FDR greater than 0.05. Cases

represents the number patients at the beginning of follow-up for each tumor type. Events is the number of death cases during
follow up. Median time is given in days.

Tumor type Non-significant ~ FDR < 0.05 Cases  Events  Median time
Prostate 6134 69 496 10 N.A.
Colorectal 6161 41 602 128 2532
Stomach 6167 37 392 158 940
Bladder 6176 27 407 178 1008
Breast 6195 8 1080 151 3941
Lung 6202 2 998 395 1531
Bile 6078 0 36 18 1220
Esophagus 6204 0 184 71 784
HeadNeck 6204 0 501 217 1671

Table S8. Survival analysis using Cox proportional regression showing the number of ip-lncRNAs with prognostic value

accross the 13 cancer types. Non-significant column indicates the number of genes with FDR greater than 0.05. Cases

represents the number patients at the beginning of follow-up for each tumor type. Events is the number of death cases during
follow up. Median time is given in days.

Tumor type Non-significant ~ FDR < 0.05 Cases  Events  Median time
Kidney 1471 477 881 227 N.A.
Uterus 1660 287 596 125 3365
Liver 1864 78 365 130 1694
Colorectal 1896 46 602 128 2532
Thyroid 1909 37 504 16 N.A.
Stomach 1919 29 392 158 940
Bladder 1930 18 407 178 1008
Prostate 1929 18 496 10 N.A.
Breast 1931 17 1080 151 3941
Lung 1938 9 998 395 1531
HeadNeck 1944 3 501 217 1671
Bile 1866 0 36 18 1220
Esophagus 1947 0 184 71 784

Table S9. Survival analysis using Cox proportional regression showing the number of mRNAs with prognostic value accross
the 13 cancer types. Non-significant column indicates the number of genes with FDR greater than 0.05. Cases represents the

number patients at the beginning of follow-up for each tumor type. Events is the number of death cases during follow up.

Median time is given in days.

Tumor type Non-significant ~ FDR < 0.05 Cases  Events  Median time
Kidney 12933 9166 881 227 N.A.
Uterus 16698 5400 596 125 3365
Liver 18521 3571 365 130 1694
Prostate 21458 638 496 10 N.A.
Colorectal 21641 455 602 128 2532

Continued on next page

7118



Table S9. Survival analysis using Cox proportional regression showing the number of mRNAs with prognostic value accross
the 13 cancer types. Non-significant column indicates the number of genes with FDR greater than 0.05. Cases represents the
number patients at the beginning of follow-up for each tumor type. Events is the number of death cases during follow up.
Median time is given in days.

Tumor type Non-significant ~ FDR < 0.05 Cases  Events  Median time
Bladder 21674 424 407 178 1008
Thyroid 21721 374 504 16 N.A.
Stomach 21797 302 392 158 940
Lung 21922 177 998 395 1531
Breast 21998 101 1080 151 3941
HeadNeck 22020 78 501 217 1671
Bile 21952 0 36 18 1220
Esophagus 22099 0 184 71 784

Table S10. Differentially expressed mRNA genes with prognostic value across cancer types. Good indicates the Cox HR < 1.
Bad represents Cox HR > 1. N.P. refers that the given gene is non-prognostic on this cancer type

Bladder  Breast  Colorectal  HeadNeck  Kidney  Liver Lung  Prostate  Stomach  Thyroid  Uterus

ENSG00000065328  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. Bad
ENSG00000090889  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. Bad
ENSG00000091651  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. N.P.
ENSG00000092853  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. N.P.
ENSG00000093009  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000100162  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000102384  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. Bad
ENSG00000105011 N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000106268 ~ N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000112984  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000115163 ~ N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000117650  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000121152  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000126787  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000138180 ~ N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000144554  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000148773 ~ N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000156970  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. Bad
ENSG00000157456  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. N.P.
ENSG00000162062  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000165304  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000166508  N.P. N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000167513  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000169679  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000186185  N.P. N.P. N.P. N.P. Bad Bad N.P. Bad N.P. N.P. Bad
ENSG00000189057  N.P. N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P.
ENSG00000076555  N.P. N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000112425  N.P. N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000130988  N.P. N.P. N.P. N.P. Good Good N.P. N.P. N.P. N.P. Bad
ENSG00000133800  N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad

Continued on next page
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Table S10. Differentially expressed mRNA genes with prognostic value across cancer types. Good indicates the Cox HR < 1.
Bad represents Cox HR > 1. N.P. refers that the given gene is non-prognostic on this cancer type

Bladder  Breast  Colorectal ~ HeadNeck  Kidney  Liver  Lung  Prostate  Stomach  Thyroid  Uterus

ENSG00000138356 ~ N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000151623  N.P. N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000154330  N.P. N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000168546 ~ N.P. N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000170271  N.P. N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. Bad N.P.
ENSG00000185432  N.P. N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000198300  N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad N.P.

Table S11. Differentially expressed e-IncRNA genes with prognostic value across cancer types. Good indicates the Cox HR
< 1. Bad represents Cox HR > 1. N.P. refers that the given gene is non-prognostic on this cancer type

Bladder  Breast  Colorectal ~ HeadNeck  Kidney  Liver Lung  Prostate  Stomach  Thyroid  Uterus

CATG00000107122  N.P. N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000255958  N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad N.P. N.P.

Table S12. Differentially expressed dp-IncRNA genes with prognostic value across cancer types. Good indicates the Cox HR
< 1. Bad represents Cox HR > 1. N.P. refers that the given gene is non-prognostic on this cancer type

Bladder  Breast  Colorectal Kidney = Liver Lung  Prostate  Stomach  Thyroid  Uterus

CATG00000017193  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
CATG00000020461  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
CATG00000054098  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
CATG00000087995  N.P. N.P. N.P. N.P. N.P. N.P. Bad N.P. N.P. N.P.
CATG00000101363  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000235989  N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000247373  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000255717  N.P. N.P. N.P. Bad Bad N.P. N.P. N.P. N.P. Bad
ENSG00000257605  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000258384  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000260442  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000263412  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000270195  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000272455  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
CATG00000105517  N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000226237  N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000232160  N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000234492  N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000235652  N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000248980  N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000267414  N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000271849  N.P. N.P. N.P. Good N.P. N.P. N.P. N.P. N.P. N.P.
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Table S13. Differentially expressed ip-IncRNA genes with prognostic value across cancer types. Good indicates the Cox HR
< 1. Bad represents Cox HR > 1. N.P. refers that the given gene is non-prognostic on this cancer type

Bladder  Breast  Colorectal ~ HeadNeck  Kidney  Liver Lung  Prostate  Stomach  Thyroid  Uterus

ENSG00000196756 ~ N.P. N.P. N.P. N.P. Bad N.P. N.P. Bad N.P. N.P. Bad
ENSG00000260924  N.P. N.P. N.P. N.P. Bad N.P. N.P. N.P. N.P. N.P. N.P.
ENSG00000215386  N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad
ENSG00000263753  N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. N.P. Bad Bad
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Figure S1. Tissue specific expression in GTEx. Log?2 expression for tissue specific genes in GTEx data stratify by tissue
type using FC-R2 and GENCODE based quantification. Expression profiles are highly correlated and expressed consistently
in the expected tissue types. CD4 is most expressed in spleen, MYH11 and ACTAZ2 in tissues consisted of muscle cells, INS in

pancreas and its receptor INSR globally, KRT2 and KRT3 in skin.
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Figure S2. Expression levels for ncRNAs known to be involved in prostate cancer. Results are stratified by sample type.
Stars indicate significance from the t.test: p-value is less than 10 raised to the negative number of stars (p < 10754").
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Figure S3. KM curve for enhancer 22. Kaplan-Meier survival curve depicting ENSG00000272666 (enhancer22 in Chen et
al.>*) groups split by median expression level for kidney clear cell renal cell carcinoma (KIRC) cases.
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Figure S4. Kaplan-Meier survival curves depicting four selected differentially expressed genes holding predictive
value in kidney cancers. a. mRNA gene ENSG00000065328 (MCM10), b. e-IncRNA gene CATG00000107122 unique to
FANTOM-CAT, c. dp-IncRNA gene ENSG00000235989 (MORC2-AS1), d. ip-IncRNA gene ENSG00000196756 (SNHG17).
Low- and high-risk groups were split by median expression level for each gene. Statistical significance were assessed using
log-rank test.
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1 Supplementary Methods

Data and pre-processing.

We obtained files containing coordinates of updated gene models of FANTOM-CAT permissive set from the ongoing FANTOMG6
consortium. These files containing coordinates for 709,176 transcript models were imported into an R session and used to
create a Genomic Range object with the GenomicRanges package*® of all exons coordinates. Given the unstranded nature
of recount2 we opted to remove overlapping exons belonging to different gene models to avoid over-quantification of these
regions. To avoid losing strand information from annotation we first split exons coordinates by strand into two objects. We
then used the dis join function from Genomic Ranges package to generate disjoint segments in each strand, and then across
strands. (Figure 5). Each segment coordinate was then assigned to the corresponding overlapping gene model. Segments
that were assigned to more than one gene were discarded. The expression values for each segment was then quantified using

I** (code at https://github.com/LieberInstitute/marchionni_projects). The resulting

recount.bwtoo
expression quantifications were processed to generate RangedSummarizedExperiment objects compatible with the
recount2 framework”*? (code at ht tps: //github.com/eddieimada/fcr2). The expression values for each segment
was added to its respective gene model, resulting in the final object containing expression at gene level, which is distributed

through the recount package and recount2 website.

Correlation with other studies.

Due to the decision of removing segments overlapping with more than one gene model, we further investigated if removal
of these segments caused significant impact on expression levels. To achieve that we compared our GTEx counts tables to
the published GTEx counts from recount2. The version 2 of the gene counts for the GTEx samples were downloaded from
the recount website (https://jhubiostatistics.shinyapps.io/recount/). Next, we scaled each object to a
40M depth using the scale_counts function from recount package. After scalling, we obtained the intersection of the genes
across both objects and computed the Pearson correlation for each gene. We further selected a few tissue markers to evaluate

expression specificity across tissue types.

Expression specificity of tissue facets.

To analyze the expression level and specificity of each gene, we first scaled GTEx data to 40M depth using the scale_counts
function from recount package. Genes were then stratified by RNA class (i.e. mRNA, e-IncRNA, dp-IncRNA, ip-IncRNA) and
grouped by tissue type (n = 54 facets). The expression level for each gene was represented by the maximum transcripts per
million (TPM) of all samples within a facet. The expression specificity was calculated as the empirical entropy of the mean

expression values of each facet divide by the log2 of the number of facets, as follows

SPECIFICITY = 1 — (entropy(X)/logz(N))
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Where X is a vector of sample-average values for a given gene over all facets and N is the number of facets. The 99.99
percent confidence intervals for the expression of each category by facet were calculated based on TPM values. Genes with a

TPM greater than 0.01 were considered expressed.

Identification of differentially expressed genes.

To perform differential gene expression analysis across cancer types we relied on TCGA data scaled to 40M depth using the
scale_counts function from recount. We split each cancer dataset by RNA class (coding mRNA, intergenic promoter
IncRNA, divergent promoter IncRNA and enhancer IncRNA) and removed all metastatic samples prior analysis. Each RNA
class was treated independently.

The design matrices were created from a factor with two levels (Primary Tumor and Normal Tissue) by setting the normal
tissues as the intercept. For each RNA class we removed genes with low expression ( < 5 counts) in more than 1/3 of the total
samples in each cancer type. After filtering, we normalized raw libraries sizes using method TMM with calcNormFactors
from edgeR package. After normalization, we transformed the count data to log2-counts per million (logCPM), and estimated
the mean-variance relationship to compute appropriate observation-level weights using voom.

Finally, we run surrogate variable analysis (SVA)* using the permutation procedure proposed by Buja and Eyuboglu*® and
added the first three most variable coefficients as covariates in our design matrix. A generalized linear model approach coupled

with empirical Bayes standard errors®

was then used for identifying differentially expressed genes between the samples.
Correction for multiple testing was performed across RNA classes by merging the resulting p-values for each cancer type and

applying the Benjamini-Hochberg method*’.

Prognostic enhancers analysis.

Univariate Cox proportional regression were performed in four RNA subtypes (22106 mRNAs, 17,404 e-IncRNAs, 6,204
dp-IncRNAs, and 1,948 ip-IncRNAs) available through FC-R2 as predictors on each of the 13 TCGA cancer types with
available survival follow-up. The gene expressions were obtained across cancer types on TCGA data scaled to 40M depth using
the scale_counts function from recount. We split each cancer dataset by RNA class (coding mRNA, intergenic promoter
IncRNA, divergent promoter IncRNA and enhancer IncRNA) using only primary tumor samples gene expression. Some patients
had more than one sample, in such cases, the first sample was chosen for the gene expression levels. Each RNA class was
treated independently. Survival analysis including Cox proportional regression was done using R survival package*. Survival
data (follow-up and vital status) available in the phenotype data derived from recount2 expressionSets were used to create
survival objects for each of the 13 cancer types. Cox proportional regression was done for each cancer type using one gene at a
time (univariate regression) grouped on each of the four RNA categories surveyed. Genes were considered predictive if its FDR
were equal or less than 0.05, using Benjamini-Hochberg*’ correction. The correction was done within a cancer type grouping
all genes by RNA type (i.e. corrected for 22,106 genes if mRNA were surveyed). This procedure yielded the predictive genes

list broken-down in the four RNA categories reported. For reporting differentially expressed genes (DEG) among all cancer
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types that portrait predictive value, the DEG lists were surveyed on each of the significant prognostic genes lists generated
during the univariate Cox analysis by cancer types and summary tables reporting the genes predictive potential as good (HR
< 1), bad (HR > 1), and non-predictive (FDR > 0.05) were prepared. Kaplan-Meier curves were done using survminer R
package®”. Groups were defined using median gene expression level and significance were assessed by log-rank test (P-value <
0.05).

Supplementary data from Chen et al.>*

containing enhancers position and prognostic potential were obtained from the
original publication supplementary material. Liftover to hg38 genome assembly was performed to match FC—-R2 coordinates in
order to compare both resources. Prognostic genes list provided in Chen’s paper were compared to prognostic genes obtained

using FC-R2.
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