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Abstract  
Brain activity can be modelled as a temporal network of interconnected regions. Recently, in 
network neuroscience, temporal network models have gained popularity and their network 
properties have been related to cognition and behaviour. Here we demonstrate that 
calculating nodal properties that are dependent on temporal community structure (such as 
participation coefficient) in time-varying contexts leads to misleading results due to 
fluctuations of the community structure over time. Further, we present a temporal extension 
to the participation coefficient measure (temporal participation coefficient) that 
circumnavigates this problem by considering all community partitions a node is assigned to 
through time. Initially, we demonstrate that when controlling for temporal communities, 
different nodes and time-points are identified as hubs when compared to current 
approaches. The proposed method allows us to track a node's integration through time while 
adjusting for the possible changes in community structure of the overall network 
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Networks of empirical data are a mathematical representation of a recorded 
phenomenon. Network representations are valuable because there is an array of quantifiable 
properties of a network that can reveal structure or dynamics. To advance understanding of 
the modelled system, the properties identified need to be relatable to the underlying 
phenomena of interest. One example of this is the identification hubs, which are highly 
interconnected nodes in the network that can be identified using a network-level measure 
(e.g. participation coefficient). After identifying hubs, these nodes can then be interpreted as 
having an important role of controlling information within the network. Our knowledge of the 
phenomenon can be advanced because the network-level measure translates to something 
about the empirical phenomenon.  

There are recent extensions to network theory that allow for the interrogation of 
multilayer networks (Kivelä et al 2014). One particular type of multi-layer network is temporal 
network theory, in which a network representation is derived at multiple “snapshots” through 
time (Holme & Saramäki 2012).  This approach has been used to answer questions 
regarding how nodes, edges, and communities in a network fluctuate in time. To generate 
knowledge about the underlying network, we also require that the temporal network 
measures can be mapped back to, or interpreted in terms of, the phenomena they are 
modelling. Thus, when deriving a time series of network measures (e.g. per node), the 
values must be comparable across network snapshots. There are many metrics available for 
quantifying regional topological signatures within temporal networks. Some measures are 
temporal extensions of static measures (e.g. TempoRank is a temporal extension of 
PageRank (Rocha & Masudal 2014)) whereas others apply static measures to each 
time-point (e.g. Bola & Sabel 2015 found changes in rich club coefficients applied to multiple 
time-points). When applying static measures in a temporal network context, it is important to 
ensure that the interpretability or clarity of the measure is not changed or distorted when 
used through time.  

The participation coefficient (PC) is an example of a measure that has been taken 
from static network theory and applied to networks at multiple time-points in neuroimaging. 
Briefly, the PC quantifies a node based on the diversity of its connections to other nodes 
across a community partition (Guimera et al 2005). When the PC has been applied through 
time, it has often been combined with using a community partition derived for each snapshot 
(e.g. Betzel et al 2015, Shine et al 2016, Pedersen et al 2017, Tanimizu et al 2017, Xie  et al 
2018, Fukushima et al 2018; Fukushima & Sporns 2018; Shine et al 2018; Rizkallah et al 
2019). Importantly, the PC for any given node is relative to the community partition used to 
calculate it (Figure 1A): if the community partition changes, then the participation coefficient 
may change. In the two examples in Figure 1A, the shaded node has the same edges but 
the communities are different, entailing that the participation coefficient changes.  

A problem with the interpretation of the PC emerges when it is compared between 
two (or more) snapshots of a network with different community partitions. The PC is a 
measure that is relative to the overall community structure of the network. When community 
boundaries are allowed to fluctuate, as is the case in temporal networks, the participation 
coefficients calculated at different time points are not based upon the same 
community-context. This is not an issue in a static network where each node is assigned to 
one community, nor is it a problem if PC is calculated at multiple time-points in relation to the 
same static community partition. In temporal networks, communities can merge, split, 
disappear and reappear through time (Granell et al 2015). In the brain, it is known that 
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community structure changes in response to task and cognitive demands (Vatansever et al., 
2015;  Braun et al., 2015; Thompson et al 2019).  Since community structure can change 
between temporal snapshots of the brain, in each temporal snapshot where the PC is 
calculated has a different community-context and each PC estimate is thus relative to 
different community-contexts. We argue that calculating the PC per time-point with a 
temporal community structure is not quantifying the intended property. As a result, the 
crucial link between the network measure and concrete interpretation breaks down and it 
becomes unclear what conclusions can be drawn about brain networks on the basis of such 
comparisons.  

Let us illustrate the problem introduced above by calculating the participation 
coefficient through time on some toy network examples. Consider a time series of 
participation coefficients when the community partition is static (Figure 1B). For the two 
different snapshots in time, there is a change in the edges of the shaded node, which 
changes the participation coefficient of that node. Specifically, in the second snapshot, the 
connections of this node have become evenly distributed across nodes in all communities. 
We can easily relate the two PC values for the two different snapshots to each other, and it 
makes sense to interpret the increase in the nodes participation coefficient as an increase in 
the nodes interaction with communities outside of its own. 

If instead the community partitions vary over time (Figure 1C), the changes in edges 
leads to the shaded node being classed as part of the blue community instead of the red 
community. The node’s participation coefficient, in light of this change in community 
membership, is reduced.  However, when viewing the two different values of participation 
coefficient in Figure 1C, we are unable to say if the difference is because of a switch in the 
edges or the community assignment. In the second snapshot, the participation coefficient 
has changed - it has decreased - but not because the node decreased its participation (i.e. 
its role in the network) but because the node changed community membership when it 
increased its connection strengths with the blue community relative to the first time-point. 
Hence, the interpretation of a temporal series of participation coefficients as reflective of a 
change in intra-community connections is impeded by the extent with which the modular 
structure of the network is changing over time. That is, none of the PC values in a 
time-series can be directly compared to each other nor can we directly translate the abstract 
measure to an external phenomena. 
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Figure 1: Different ways to calculate the participation coefficient through time. The 
participation coefficient for the shaded node is shown below each network/snapshot. The 
border of each node shows the assigned community of the node. There are two different 
edge weights possible. (A) Two examples of the participation coefficient illustrating how the 
measure is relative to the community partition. (B) When a static community template is 
applied across multiple temporal snapshots. (C)  When a temporal community parcellation is 
applied to multiple snapshots. These values can not be directly compared. (D) An example 
showing that community partitions are driven by changes in edges that do not directly 
connect to the node of interest. The difference between the two time-points are within the 
blue community in time-point 1. This changes the community partition and will change the 
participation coefficient of the shaded node. 

 
A possible objection to this argument is that the temporal communities are calculated 

on the edges themselves, entailing that there is an interconnection between the 
community-context and the edge-context of a node. This objection does not fully take into 
account how communities are calculated. Communities take into account the “global edge 
context” (i.e. all edges in a network and how they relate to each other) whereas the 
participation coefficient only considers the “local edge context” (i.e. all edges connected to 
one node). There is no necessary relationship between these two (exemplified in Figure 1D). 
A node’s strength can increase with no effect on the community partition. Alternatively, a 
node can change its community assignment with no change to its own edges.  
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Figure 2: The temporal participation coefficient . Our suggested correction for the 
problem in Figure 1CD is to calculate the participation coefficient of each time-point in 
relation to all possible community contexts the node can be in. The participation coefficient in 
relation to each possible temporal community context is shown under each community 
partition. This fix makes the participation coefficient of the shaded node with temporal 
communities commensurable. 
 

Temporal communities contain more information than one static community partition 
and it is understandable there is a desire to calculate the participation coefficient in relation 
to fluctuating community structure. We present a possible solution to the problem outlined 
above: the temporal participation coefficient. The crux of the problem is that the participation 
coefficient of a node is relative to the community partition of the network that it is calculated 
against. If, instead, each participation coefficient estimate is calculated by considering all 
possible community partitions that the node is known to have been in, then the participation 
coefficients will be comparable across time points as each estimate is now relative to the 
same community context (Figure 2). This solution calculates the local edge context at a 
time-point with all possible community contexts, weighted by their frequency of each 
community. Then it considers how a node is participating relative to the possible community 
structure it can have. In figure 2, each TPC estimate is calculated relative to both community 
contexts. This entails that the shaded node at the second time-point does in fact have the 
larger participation. As both time-points have their different edge-contexts calculated relative 
to the same set of community partitions, these values can now be compared.  

The solution we present does not fit all possible use-cases. One major limitation is 
that it can only be applied when the network can return to previous states. Some temporal 
communities may only be possible after certain events have transpired - e.g. during a 
contagious outbreak, patients could form communities in the hospital. Using our proposed 
TPC fix on such a data set would entail that post-infection communities could in principle 
exhibit the pre-infection topographic structure, which would be unrealistic. Thus, the 
proposed solution only covers networks which can theoretically return to similar states again. 
This is a reasonable assumption of networks such as the brain. In other cases, quantifying 
variations in how nodes relate to their community assignments (e.g. Bassett et al 2011) or 
using time-varying measures in relation to static communities (e.g. Fransson et al 2018) may 
be more prudent analysis alternatives. The ultimate lesson here is that network measures 
need to be chosen based on what is known about the system under investigation, and their 
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sensitivity to relevant and irrelevant properties of the underlying phenomena needs to be 
validated on a case by case basis. 

We have presented a theoretical problem and a potential fix. However, we have yet 
to show that the problem has any effect on data itself or if our fix corrects it. It could be the 
case that there is no difference when applying the TPC then the PC with temporal 
communities. 

To demonstrate that there is indeed a difference between the different ways to 
calculate participation, we use data from the Midnight Scan Club resting-state fMRI (Gordon 
et al 2017) which is available on openneuro.org (ds000224). We extracted time series from 
200 functionally-defined parcels (using the parcellation of Schaefer et al 2018) from the 
preprocessed data available on openneuro. Time-varying connectivity estimation was done 
by using weighted Pearson correlations with weights based on the Euclidean distance 
between time-points (Thompson et al 2017; Thompson & Fransson 2018) which is a method 
that performs well at tracking a fluctuating covariance and also preserves topographical 
properties of the connectivity matrices (Thompson et al 2018). All negative edges were set to 
0 prior to calculating the communities or participation. We calculated the temporal 
communities using the Louvain algorithm (Blondel et al 2008) with the resolution parameter 
of  1 . Temporal consensus clustering was performed on the temporal communities 
(Lancichinetti et al 2012). We also calculate static functional connectivity using Pearson 
correlations and a static community parcellation with the same parameters as the temporal 
communities. We abbreviate the different participation coefficient methods as follows: static 
participation coefficient (static PC), participation coefficient per time-point with static 
communities (PCS), participation coefficient per time-point with temporal communities (PCT), 
temporal participation coefficient (TPC) 

We begin by asking the question: how are nodes with high static PC affected by the 
temporal communities? This is important as, if nodes with high participation have little 
change in their community context, this issue we raise may be redundant. To do this, we 
compare the flexibility (i.e. how many times a node changes community, Bassett et al 2011) 
with the static participation coefficient (Figure 3AB). Here we see that nodes with high 
participation increase in their flexibility. If nodes with high participation always remained in 
the same communities, calculating the PC with temporal communities would be less 
problematic. Here however we see that these nodes are switching their community 
allegiance the most. 
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Figure 3 (A) Static participation coefficient versus the flexibility for one subject/session. (B) 
Same as A but for all subjects. (C) Temporal participation coefficient versus the participation 
coefficient per time point with temporal communities for one subject/session. (D) Same as C, 
but for all subjects.  

 
Nodes that switch temporal communities have high static PC, thus it seems 

concerning for participation calculated through time relative to different community partitions. 
Now we contrast the PCT with the TPC to see whether they compute similar values or 
whether they diverge. First we begin by considering all time-points and all nodes together. A 
heteroskedastic relationship between the two coefficient emerges (Figure 3CD, Bartlett test 
for heteroskedasticity: all subjects: T = 153221.9, p < 0.001; example subject: T = 1902.3,  
p<0.001). This heteroskedastic relationship will entail that, while both methods may identify 
the points that have the highest participation, the relationship quickly then breaks down.  

To illustrate the extent that the methods diverge, we compared three different 
versions of participation coefficient (TPC, PCS and PCT). For each method we then identified 
the highest 5, 10 and 20 percent of values for both for the top time-points for each node and 
the top overall values. We then quantified the overlap of each of the different methods 
(Figure 4). If we try and find when each node has its highest participation, we find that the 
PCT has the most unique nodes. When pooling all nodes and time-points together, the 
overlap of all three methods reached over 60% with large thresholds, but was under 40% for 
lower thresholds. This shows that the choice of calculating the participation matters. Finally 
we also observe that, the TPC and the PCS overlapped the most of the different versions 
(reaching 80% of nodes in some instances and always over 60% when combining the paired 
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and triple intersections). This is reassuring for TPC as we know the PCS is a valid method. 
And the divergence that happens between the TPC and PC with static communities is due to 
the TPC utilizing the temporal community information.  

 

 
Figure 4: intersection of high participation coefficient from different methods.  Here we 
compare three different participation coefficient methods (temporal participation coefficient, 
participation coefficient with temporal communities and participation coefficient with static 
communities). Here we see the intersection of each combination of three methods. The left 
figure considers, for each subject, the top x% time-point for each node. The right figure, for 
each subject, the top x% across all nodes and time-points. Error bars show standard 
deviation.  
 

We have outlined why the PCT is problematic. Further we have proposed a solution 
that fixes the problem. We have also shown the importance of the fix by illustrating how the 
two different methods will find very different candidate hubs. The extent of the divergence 
between PCT, PCS and TPC will depend on how much the communities fluctuate. This will 
depend on both the parameters, time-varying connectivity method, community detection 
algorithm, and the ground truth.  

Here the focus has been on temporal communities and its recent application within 
network neuroscience. However, this can also be a more general warning for such nodal 
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measures that are relative to the community structure when applied in multilayer cases (e.g. 
the segregation-integration difference (Fransson et al 2018) could not be extended to 
temporal communities without the fix we propose here).  

Our hope is that this article highlights the problematic nature of quantifying temporal 
nodal measures relative to a fluctuating temporal community partitions. We have offered one 
possible solution for this problem which we have shown will reveal candidate “hubs” that are 
detected compared with current practices.  
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