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Abstract:  We report an artificial intelligence (AI) based method to predict the molecular structure of 

proteins, focused here on an important subclass of proteins dominated by alpha-helix secondary structure, 

as found in many structural biomaterials such as keratin and membrane proteins. Fast yet accurate 

predictions of an unknown protein’s 3D all-atom structure can yield a pre-screened set of candidate 

proteins to be investigated further via large-scale protein expression in bacteria or yeast.  However, 

classical molecular simulations are greatly limited by the time scale and significant computational cost 

needed for the complete folding of a long peptide into a complex structure from scratch, which can easily 

exceed the capability of a supercomputer. To accelerate simulations at low computational cost here we 

report an innovative machine learning method to offer a high-throughput prediction of the protein 

structure, as well as the material and biological functions from purely the protein sequences. To achieve 

this, we designed a novel Multi-scale Neighborhood-based Neural Network (MNNN) model that is 

capable of learning the neighborhood structured information in the raw protein sequence trained on the 

database of over 120,000 protein structures. The method directly predicts the phi-psi dihedral angles of 

the backbone of each constituting amino acid, which is then used to construct the full all-atom 3D 

structure of the corresponding protein without any template or co-evolutional information. We find that 

our machine learning model can accurately predict all dihedral angles of any target sequence. The 

prediction yields a maximum average error of 2.1 Å of the predicted 3D structure compared with 

experimental measurement. We find that the predicted folded structure from MNNN consumes less than 

six orders of magnitude time than classical molecular dynamics simulations, offering extremely fast 

folding predictions. Our results suggest that the MNNN model can be used to greatly accelerate the 

prediction of protein structures.  

Keywords: Protein; artificial intelligence; machine learning; deep neural networks; folding; structure 

prediction; computation   

Introduction 

The development of rational techniques to discover new proteins for use in variety of applications ranging 

from agriculture to biotechnology remains an outstanding materials design problem1,2. In fact, proteins 

represent the key construction materials of the living world, and offer enormous diversity in function, and 

hence a powerful platform for potential for use in bioengineering, medicine and materials science. Among 
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several universal secondary structures, alpha-helices (AHs) are a universal motif of many biological 

protein materials. These protein domains play a crucial role in the signaling and deformation behavior of 

cytoskeletal protein networks in cells (e.g. intermediate filaments, as well as actin) 3,4, and in determining 

the mechanical properties of hair, hoof, feather and many other important structural protein materials 

(e.g., keratin) 5. Several silk proteins also possess helical structures, which impart toughness and 

antimicrobial properties to the final material 6–8. AHs are also the most common structural motif in 

cellular membrane proteins, which are responsible for transport of matter, cell recognition, docking and 

signal transduction. In these materials, nanostructured AH based protein domains universally define their 

nanoscale architecture. Although the Protein Data Bank (PDB) 9 provides a rich resource of folded protein 

structures and their all-atom 3D geometries (~120,000 protein structures to date), this database only 

includes a tiny portion of all proteins known to exist. Most proteins, however, are only known by their 

sequence and a limited set of associated functions (such as the 147,413,762 protein sequences given in 

uniprot.org 10), and their high-resolution protein structure remains unknown. Indeed, it is difficult to 

identify the complex structure of a protein from a pure experiment, which requires advanced tools 

including Nuclear Magnetic Resonance, X-Ray Diffraction or Cryo-electron microscopy, as well as 

protein crystal samples. Many proteins cannot be investigated in that way and hence, their full 3D 

structure, full set of functions (including roles in disease etiology or as platform for biomaterials) remains 

elusive. 

The protein dynamics revealed by atomistic simulation in an accurate solvent model condition can 

provide an accurate description of how a protein changes its conformation toward the state with lower 

free energy. It has been demonstrated that the 3D folded structure of a protein can be obtained from a 

computational simulation of protein folding directly from the sequence information11,12. However, the 

final equilibrated structure greatly depends on the initial conformation, as the structure can easily be 

trapped at a local energy minimum, while the global energy minimum can only be reached by crossing 

energy barriers, which are very rare transition events that must happen during a classical molecular 

dynamics (MD) simulations. A typical protein of ~100 amino acids could require few seconds to fold. As 

classical MD computes the interactions and motions of a large number of atoms stepwise and as each time 

increment must be on the order of 1~2 fs 13, it would require 1015 computational integration operations for 

the full simulation of the folding trajectory, which goes beyond the capability of most supercomputers. 

Other methods such as the Replica Exchange Method 14 effectively combine different simulation 

algorithms to greatly accelerate the folding calculation compared with classical MD, but are still not fast 

enough to provide rapid results.  

Artificial intelligence (AI), enabled by deep learning (DL) techniques, has demonstrated its advantage in 

solving sophisticated scientific problems that involve multiple physics interactions that are challenging to 

directly model or non-polynomial problems that require extremely large computational power that cannot 

be solved by brute force 15. Recent work has suggested that it may provide a feasible way to achieve fast 

prediction of protein structures by utilizing efficient algorithms of searching a high-dimensional 

parameter space for the most accurate prediction. In several materials-focused studies, such a data-driven 

material modeling for optimized mechanical properties of materials, it has shown its great potential in 

advancing conventional multiscale models in terms of efficiency and speed of predictions 16–19. However, 

it is believed that the capability to optimize the multiscale and multiparadigm architecture of materials 

features a high sensitivity to environmental factors, as needed in sensors, electronics and for multi-

purpose material applications 20.  

Computational approaches for dihedral angle predictions or direct protein folding can be categorized into 

two general categories. The first category leverages existing identified protein structure templates 23 or co-

evolving residues information within protein families 24 to derive a sequence-to-structure contact map. 

However, these conventional methods are often limited to analyzing small proteins due to the high 
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computational cost. More importantly, they are unable to predict structures for which no existing protein 

templates or co-evolution information can be used. The second category attempts to explore more 

advanced machine learning methods, especially recent deep learning techniques, to build an end-to-end 

architecture for directly predicting dihedral angles 25 or 3D structures of proteins 22. However, all deep 

learning methods reported thus far still heavily rely on domain specific input features beside the primary 

amino-acid sequence, making it hard to generalize new protein sequences with have no known 

information about these input features.  

In this paper, we present a Multi-scale Neighborhood-based Neural Network (MNNN) model for 

predicting dihedral angles directly from the sequence neighborhood by taking into account both raw 

sequence neighborhood and secondary sequence neighborhood. It is worth noting that our model takes 

only primary raw amino-acid sequence as inputs and directly predicts dihedral angles without any 

template or co-evolutional information. To fully exploit the information of the secondary structure 

information, we also propose to use a data-driven approach (clustering techniques such as K-means 

clustering) to compute the possible number of secondary structure classes instead of the conventional 

eight-class categorization. Our experimental results show that our MNNN model can accurately predict 

the complete set of dihedral angles of a target sequence with small prediction errors (see Materials and 

Methods for details).  

The outline of the paper is as follows. We describe the design, training and validation of the proposed 

MNNN model, and then proceed to apply the model to make predictions of existing proteins and de novo 

sequences. We report a series of all-atom explicit solvent molecular simulations to confirm the stability of 

the predicted proteins. To demonstrate that the MNNN model can make accurate predictions for de novo 

sequences outside of the training set, we experimentally synthesize a short sequence that is not included 

in the PDB and fully characterize its structure content in experiment, and compare it with both MNNN 

and MD predictions. This three-way validation confirms the predictive power of our approach.   

Results 

Integrated Framework for Protein Design 

We report an integrated framework that combines MNNN, MD and experimental protein synthesis for 

protein designs, as shown in Fig. 1. Compared to experience-based trial-and-error for protein synthesis, 

this framework allows high-throughput in silico prediction of protein structures and related material 

functions that provide a rational basis for the design of de novo protein materials. We focus on achieving 

a capability of fast prediction of alpha-helical proteins because as one of the major universal secondary 

structural motifs, alpha helices provide a platform for materials design with wide ranging implications in 

a variety of application areas. For example, experimental studies revealed that α-keratin (found in wool, 

hair and hooves), fish slime threads, desmin and vimentin are all composed of alpha-helices and are thus  

stretchable and tough protein materials.  

Despite the relatively simple geometry and well-known mechanical functions of alpha-helical proteins, 

fast predictions of their all-atom 3D folded structure is crucial to identify biological functions of a protein 

(e.g., binding, docking, assembly into higher-order structures, or specific biological properties such as 

antimicrobial).  To achieve this goal, our MNNN model learns how the phi-psi angles are mapped to 

specific peptide sequences for all proteins with known 3D structures in PDB. It can then make predictions 

of the phi-psi angles for any given protein sequence. These predicted angles, combined with the raw 

sequence information, are then used to build an all-atom 3D folded protein structure that can serve as the 

input geometry for further refinement through conventional MD simulations (see Materials and Methods 

for details). This multi-stage process can be used, for instance, to test the predicted protein’s thermal 

stability at room temperature. Our learning and simulation procedure hence provides a robust 
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computational basis that helps to select and verify the most promising sequences that can lead to alpha 

helix structures.   

Neural Network Architecture for Dihedral Angle Prediction 

Our deep learning regression model for predicting dihedral angles directly from the sequence 

neighborhood is based on a data-driven partition of design space of a protein structure, as shown in Fig. 2. 

Comparing to existing template or co-evolutional based machine learning models for protein structure 

prediction, our model has the capability of directly predicting protein structures solely from primary raw 

protein amino-acid sequences. Specifically, our model is an end-to-end machine learning system that only 

requires raw protein sequences as data inputs and produces phi-psi angle prediction as outputs. To fully 

exploit all hidden structured information in the protein sequence, we take both raw and secondary 

sequence neighborhood information into consideration. By considering the raw sequence neighborhood, 

our model is able to learn the correlation among the subsequent continuous amino-acids. Similarly, the 

secondary sequence information provides important structure information about the raw amino-acid 

sequence and thus serves as additional constraints for a MNNN model to achieve a better angle 

prediction. However, the existing partition of the design space of protein structures (e.g., established 

methods such as DSSP 21) only considers an eight-class human-engineered categorization, which may or 

may not be sufficient to characterize the diversity of natural structures.  

To address this challenge, we develop a data-driven approach to compute the possible number of 

secondary structure classes. We use advanced clustering techniques such as K-means clustering on all 

PDB data with different cluster numbers and verify its degree of matching in comparison with the 

benchmark PDB structure, as shown in Figs. 2A and B. We found that when the class number is set to 

256, the error between simulated structure with the benchmark result is reduced to a small level. Since the 

secondary structure of neighboring amino acids will influence the subsequent secondary structure of the 

next amino acid, it is important to consider the neighboring  K number of secondary structure prediction 

information when predicting dihedral angles of the next amino acid. When training a MNNN model (Fig. 

2C), both data embeddings representing the raw amino acid sequence and their secondary structure are 

incorporated to learn a refined embedding. We then use the refined embeddings of the neighboring 

amino-acids for phi-psi dihedral angle predictions of a given sequence of amino acids. 

Benchmark for Prediction of Protein Structures 

For structure predictions, we find that the MNNN model exhibits a significant advantage and enlarged 

potential over conventional methods, such as all-atom MD simulations for protein folding. Six well-

characterized coiled-coil peptides 22–25 were chosen as benchmark proteins to test the efficiency and 

accuracy of our MNNN model. The root-mean-square deviation (RMSD, see Materials and Methods) of 

the MNNN-predicted structures is compared to the available structures in the PDB for the six peptides 

were computed. The outcomes, as summarized in Table 1, are compared against protein folding with 

classical MD simulations with implicit and explicit solvent models. It is shown that the largest error given 

by MNNN is merely 2.11 Å, which is much better than folding the peptide from a fully extended form in 

MD, either in implicit (12.9±4.2 times the error) or explicit (10.4±4.6 times the error) solvents. Most 

importantly, the time needed to obtain the predicted folded structure from MNNN is significantly smaller 

(less than six orders of magnitude) than classical MD simulations (with the least requirement of 

computing hardware). This outcome suggests that the MNNN model can offer a powerful way to predict 

protein structures.  

Moreover, it is also important to notice that the structures given by the MNNN model not only agree well 

with available structures in the PDB, but also yields predictions with good overall thermal stability. As 

summarized in Table 1 and shown in Fig. 3, the structure predicted by the MNNN model only appear to 
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have a very small thermal fluctuations in all-atom MD simulation (with RMSD<1.8 Å). It is also noted 

that the implicit solvent model (much less computationally expensive than explicit solvent models), no 

matter whether they start from the fully extended form or from the structure given by the MNNN model, 

does not yield good predictions for either folding or structure refinement purposes.   

De novo Protein Design and Structural Validation 

Besides the six small proteins whose 3D structures are already resolved, we test the accuracy and 

efficiency of our MNNN algorithm in protein folding prediction on de novo proteins whose molecular 

structure is unknown. To this end, a peptide of 28 amino acids (named AmelF3_+1) extracted from the 

coiled-coil domain of the Apis mellifera silk protein (AmelF3)7  was chosen (Fig. 5A). The results of the 

MNNN model developed in this study to predict the structure of AmelF3_+1 are compared with structure 

homology prediction tools including Optimized Protein Fold Recognition (ORION) and Iterative 

Threading Assembly Refinement (I-TASSER), as shown in Fig. 5B. ORION is a sensitive method based 

on a profile-profile approach that relies on a good description of the local protein structure to boost distant 

protein structure predictions, while I-TASSER features a hierarchical approach for protein structure and 

function prediction that identifies structural templates from the PDB, with full-length atomic models 

constructed by iterative template-based fragment assembly simulations. The prediction by our MNNN 

model is an alpha-helix , which overall agrees with the results of the other two methods, both of which 

also predict alpha-helical proteins. We use the three predicted structures and compare their dynamic 

behaviors in 100 ns MD simulation in explicit solvent (Fig. 5B). It is found that the structure predicted by 

the MNNN model is more thermodynamically stable than the other two, particularly significantly better 

than the I-TASSER model, which almost unfolded during the middle of the simulation run. ORION is 

limited by template availability, and the prediction of the highest scoring structure may not be of the same 

length as the targeted sequence and one may need to balance between structure integrity and accuracy. 

To validate the computational results, the peptide AmelF3_+1 was synthesized and characterized 

experimentally. The circular dichorism (CD) spectrum of AmelF3_+1 (Fig. 5C) shows a major 

combination of alpha-helical, beta-turns and random coils conformations 26,27, with the relative contents 

being 57%, 24% and 14%, respectively, as estimated by the CONTINLL program 26,28. Moreover, 

potential peptide assembly into higher-order structures was captured by TEM, as shown in Fig. 5D, from 

which we can see that the peptide assembles into either nanofibers of around 10 nm in width and several 

microns in length or nanoparticles of diameters ranging from 10-35 nm. The secondary structure analysis 

was also independently confirmed by ATR-FTIR and Raman spectroscopy, the spectra of which are 

complementary in the Amide I and III bands, with well-established peak assignments for different 

secondary structures 29–31. From the FTIR spectrum of AmelF3_+1 (Fig. 5E), a major peak at 1656 cm-1 

in the Amide I region along with the two peaks at 1323 and 1304 cm-1 in the Amide III region indicate 

predominant alpha-helical conformations of the peptide. The Raman spectrum of AmelF3_+1 (Fig. 5F) 

gives similar structural information, with two more hidden alpha-helical peaks (i.e., 1295 cm-1 and 1281 

cm-1) clearly seen. It is anticipated that with the correct buffer condition, more stable alpha-helical 

conformation of the AmelF3_+1 peptide can be achieved.      

Discussion and Conclusion  

In this paper we reported a new approach to accurately and rapidly predict the structure of de novo 

proteins directly from the primary protein sequence. Proteins are the most abundant building blocks of all 

living things, and their geometry is linked intimately to functional properties. The AI based approach to 

design new proteins opens the door to generative methods that can complement conventional protein 

sequence design methods. Future work could expand the method to include other secondary structures, 

and achieve a broader, more comprehensive structure prediction capacity.  
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Materials and Methods 

Data Preparation for Training and Translating Predictions to 3D All-Atom Protein Structures 

We develop a custom script to obtain the phi-psi angle and sequence information of each of 126,732 

natural protein structures composed of only standard amino acids that are currently available in the PDB. 

We wrote our own bash script that allows using DSSP to compute the phi-psi angles of the backbone by 

reading the 3D structure files that are automatically downloaded from PDB and using open source Unix 

software to build a highly structuralized database for training (Fig. 1). We develop a post-process script to 

take the (phi, psi) angle as predicted by MNNN to combine with the rest of the geometric parameters 

given by the intrinsic coordinates within the CHARMM force field to build the all-atom protein structure, 

which allow to run energy minimization and molecular dynamics to validate the thermal stability of the 

protein structure.  

Neural Network Training and Validation 

The multi-scale neighborhood-based neural network model predicts dihedral angles directly from 

sequence neighborhood, by taking into account both raw sequence neighborhood and secondary sequence 

neighborhood. Our model consists of three main steps: 

A) We compute character embedding for each amino acid (can be done using a variety of popular 

techniques) and then refine these embeddings with sequence neighborhood information. For 

instance, one can use long short-term memory (LSTM) or bidirectional LSTM (Bi-LSTM) to 

compute character embeddings.  One can also use other character embedding techniques such as 

fasttext, glove, word2vec or transformer to compute character embeddings. In this paper, we 

choose to first use Bi-LSTM layer to compute character embeddings of primary amino-acid. Then 

we apply a convolutional neural network (CNN) layer to take into account sequence 

neighborhood information based on computed character embeddings of each amino acid.  

B) Based on refined character embeddings of amino acid sequence, we apply another LSTM layer to 

perform dihedral angles prediction. For the first amino acid, it uses only its own hidden 

representation to predict dihedral angles. For the second and subsequent amino acids, we augment 

the embedding from the previous K number of embeddings of predicted secondary structure 

character and then predict dihedral angles.  

C) Once dihedral angles are predicted, we use these two embeddings to further predict secondary 

structure characters as additional constraints. In conventional models there are typically eight 

different secondary structure characters in total. However, this choice is ad-hoc and there are 

large sets of structural features that are not well covered by this categorization. Therefore, we 

propose to use a data-driven approach (clustering techniques such as k-means clustering) to 

compute the possible number of secondary structure classifications.  

Our overall loss function for our MNNN model consists of three parts: i) a loss function with RMSE of 

the predicted Phi angle and the real ones; ii) a loss function with RMSE of the predicted Psi angle and the 

real ones; iii) a loss function for matching the predicted secondary structure class with real classes (from 

data-driven approach). Note that the angles are represented by trigonometric functions (i.e., an angle is 

converted to a pair of its sine and cosine values for numerical stability during model training). We then 

split the PDB data into train/validation/test datasets and train the model with train/validation data and test 

our models with test data. We further compute the L1 norm of dihedral angles of any target sequence 

within average L1-norm errors for the phi-psi angle pair. Throughout our experiment, we set the 

neighborhood parameter in our MNNN model to be 21. On the test dataset, we obtain average L1 errors 

of 22 degrees and 37 degrees for the Phi-Psi angles respectively. The training error is similar to the test 

error. 
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Molecular modeling  

We use two force fields (CHARMM19 with implicit solvent 32, and CHARMM27 with explicit solvent 
33), with each of them starting from two different extreme configurations (full extended chain, and a 

structure with phi-psi angles predicted from MNNN), to perform individual long-time simulations (100 

ns) for each of the protein sequence. During the simulation, the change of the molecular conformation is 

benchmarked by quantitatively comparing with the corresponding protein structure within the PDB.  

𝑅𝑀𝑆𝐷(𝑡) = √
∑ [(𝑥𝑖𝑀𝐷

(𝑡)−𝑥𝑖𝑃𝐷𝐵)
2
+(𝑦𝑖𝑀𝐷

(𝑡)−𝑦𝑖𝑃𝐷𝐵)
2
+(𝑧𝑖𝑀𝐷

(𝑡)−𝑧𝑖𝑃𝐷𝐵)
2
]𝑛

𝑖=0

𝑛
    (1) 

Where n is the number of all the backbone atoms of each amino acid of the peptide (N, C, CA, O) and 

(𝑥𝑖𝑀𝐷
(𝑡), 𝑦𝑖𝑀𝐷

(𝑡), 𝑧𝑖𝑀𝐷
(𝑡)) is the Cartesian coordinates of the backbone atoms given by the MD 

simulation at time t, while (𝑥𝑖𝑃𝐷𝐵 , 𝑦𝑖𝑃𝐷𝐵 , 𝑧𝑖𝑃𝐷𝐵) is the Cartesian coordinates of the backbone atoms of the 

protein structure within the PDB. In the CHARMM model, the mathematical formulation for the 

empirical energy function has the form:  

𝐸 = ∑𝐸𝑏𝑜𝑛𝑑 + ∑𝐸𝑎𝑛𝑔𝑙𝑒 + ∑𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + ∑𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 + ∑𝐸Urey−Bradley + ∑𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 (2) 

Each energy term is given by 𝐸𝑏𝑜𝑛𝑑 = 𝐾𝑖𝑗(𝑟 − 𝑟0)
2 is the bond term that defines how two covalently 

bonded atoms interact in the stretching direction, 𝐸𝑎𝑛𝑔𝑙𝑒 = 𝐾𝑖𝑗𝑘(𝜃 − 𝜃0)
2 is the angle term that defines 

how the angel among three covalently bonded atoms with one central atom changes under external force, 

𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = 𝐾𝑖𝑗𝑘𝑙[1 + cos⁡(𝑛𝜙 − 𝛿)] is the dihedral term that defines how the dihedral angel among four 

covalently bonded atoms with one central bond changes under external force, 𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 =

𝐾𝑖𝑗𝑘𝑙(𝜔 − 𝜔0)
2 is the improper angle term that defines how the improper angle among four covalently 

bonded atoms with one central atom changes under external force, 𝐸Urey−Bradley = 𝐾𝑢(𝑢 − 𝑢0)
2 is the 

Urey Bradley term that accounts for angle bending and 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝜖𝑙𝑗 [(
𝑅

𝑟𝑖𝑗
)
12

− (
𝑅

𝑟𝑖𝑗
)
6

] +
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗𝜖
 is the 

nonbonded term that accounts for the van Der Waals (VDW) energy and electrostatic energy. In all-atom 

force fields, water molecules generally can be treated either explicitly or implicitly for MD simulations.  

We use the CHARMM19 all-atom force field to model the atomic interactions for the straight chain and 

the MNNN predicted model. The solvent effect for this force field is generally considered by using the 

implicit Gaussian model (EEF1) for the water solvent32. The use of the implicit solvent model has 

advantages to accelerate the sampling speed of molecular configurations. We use the CHARMM c37b1 

package to run the simulation for energy minimization and structural equilibration. Because there is no 

explicit water or pressure control, we do not apply any constraint to ensure the simulation stability. The 

time step used for implicit solvent simulations is 1 fs.  

Starting from the initial geometry built using the backbone dihedrals (with (phi, psi)=(180, 180) for 

each amino acid for a straight chain, and (phi, psi) defined by MNNN for another model), combining 

with the rest of the geometric parameters given by the intrinsic coordinates within the CHARMM force 

field, we follow the following protocol to equilibrate the structure: 1) Energy minimization (2,000 

Steepest Descent steps followed by 2,000 Adopted Basis Newton-Raphson steps); 2) Equilibration runs 

for 50 ps (NVT ensemble with Nose-Hoover temperature control), where the temperature rises linearly 

from 240 K (beginning) to 300 K (end); 3) Equilibration runs for 100 ns (NVT ensemble with Nose-

Hoover temperature control), where the temperature stays at 300 K. We record the coordinates for each 10 

ps, compare with the PDB structure by RMSD to measure how far is the folded structure away from the 

PDB structure.  

Besides implicit solvent, we use the CHARMM27 force field implemented by the explicit TIP3P water 

model and run simulation with NAMD package v2.1334 with the support of Graphical Processing Units 

(GPUs), which greatly outperforms Central Processing Unit (CPU) performance. Our model starts from 
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the equilibrated structure obtained by using the implicit solvent model described above. All simulations 

run in a NPT ensemble under a constant temperature (300 K) and constant pressure (1 atmosphere) 

controlled by Langevin thermostat and barostat. The simulation time step is 2 fs with rigid bonds model 

for all the covalent bonds between hydrogen atoms and other heavy atoms. We use particle mesh ewald 

(PME) function with a grid width <1 Å to calculate the electronic interaction because and it is an efficient 

method to accurately include all the long-distance electrostatics interactions. A cutoff length of 10 Å is 

applied to the van der Waals interactions and to switch the electrostatic forces from short range to long-

range forces.  

The initial protein structure for explicit solvent simulation is built the same way as the implicit models. 

We use Visual Molecular Dynamics (VMD) 35  to add a solvent box around the protein structure with 

water at a distance of least 10 Å from the protein structure. The net charge of the system is set to zero by 

adding NaCl of overall concentration of 0.1 Mol/L, and each ion is initially randomly placed in the 

solvent box with the actual ratio of ions adjusted to neutralize the system. We follow the following 

protocol to equilibrate the structure: 1) Energy minimization (10,000 conjugate gradient steps); 2) 

Equilibration runs for 100 ns (NPT ensemble), where the temperature stays at 300 K. We record the 

coordinates for each 10 ps, compare with the PDB structure by RMSD to measure how far is the folded 

structure away from the PDB structure. 

Peptide synthesis 

The peptide used in this study was synthesized by GenScript (Piscataway, NJ), with free N- and C- 

termini. Peptides were synthetized using standard Fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase 

peptide synthesis (SPPS) and purified by reverse-phase high-performance liquid chromatography (RP-

HPLC) to a purity of 95% or higher. 

Circular Dichroism (CD) Spectroscopy 

Circular Dichroism (CD) spectra were recorded from 190 to 260 nm using a JASCO J-1500 spectrometer, 

with each spectrum averaged from three consecutive scans, the wavelength step being 0.5nm and the scan 

rate being 50 nm/min. Samples of 1mg/ml in deionized water were measured in a 0.1mm path length 

quartz cuvette (Starna Cells, Inc.). Secondary structure estimation was performed using the CONTINLL 

program with a reference set of 48 soluble proteins. 

Fourier-transform Infrared Spectroscopy (FTIR) 

ATR-FTIR measurements were performed on a Nicolet 6700 FT-IR spectrometer (Thermo Scientific) 

equipped with a liquid-nitrogen-cooled microscope. Spectra were collected in reflection mode with ATR 

correction using a germanium crystal. Each spectrum was collected from 4000 to 650 cm-1 with a 

resolution of 4 cm-1 and 64 scans. The relative fractions of different secondary structures were determined 

by Fourier self-deconvolution (FSD) of the Amide I band (1705-1595 cm-1) and Gaussian curve-fitting of 

the deconvoluted spectra using Origin. 

Raman Spectroscopy 

Raman spectroscopy were performed using a Renishaw Invia Reflex Raman confocal microscope 

equipped with a 1” CCD array detector (1024 × 256 pixels), a 532 nm laser and a 100× objective. Each 

spectrum was collected in the 101 - 2736 cm-1 range and as an accumulation of 20 scans to increase the 

signal-to-noise ratio (3 seconds exposure per scan). 

Transmission Electron Microscopy (TEM) imaging 

Transmission electron micrographs were recorded using a Tecnai G2 Spirit TWIN (LaB6 filament, 120 

kV) equipped with a Gatan CCD camera. Continuous-film carbon-coated copper grids (Ted Pella, CA) 

were glow discharged and used for negatively stained samples. Briefly, 5 µL peptide samples of 1 mg/ml 
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in deionized water were pipetted onto the grid, wicked off after 2 minutes, washed with water and then 

stained with 5 µL 2% uranyl acetate for 1 minute before being wicked off. The grid was then left to dry 

before imaging. Dimensional measurements of the peptide assemblies were performed on ten different 

micrographs using DigitalMicrograph (Gatan Inc.). 
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Tables 

Table 1: This table summarizes the computational efficiency for different simulation and prediction 

methods and their error (RMSD as given by Eq. (1)), by comparing to the 3D structure as well as 

experimental results. 

Sequence 

# 

Straight+EEF 

(100 ns)* 

MNNN +EEF 

(100 ns)* 

Straight+Tip3 

(100 ns)** 

MNNN +Tip3 

(100 ns)** 

MNNN 

prediction *** 

Time 

(hour) 

Errend 

(Å) 

Time 

(hour) 

Errend 

(Å) 

Time 

(hour) 

Errend 

(Å) 

Time 

(hour) 

Errend 

(Å) 

Time for 

prediction 

Err 

(Å) 

seq 1 38.3 14.7 38.4 11.5 46.9 8.6 115.5 1.8 0.65 sec 2.11 

seq 2 41.0 12.6 43.0 11.9 121.6 10.8 113.1 1.8 0.65 sec 0.71 

seq 3 41.0 11.1 41.4 8.7 121.3 9.8 113.9 1.4 0.65 sec 1.01 

seq 4 39.9 11.0 39.4 10.5 121.4 7.0 32.3 1.5 0.65 sec 1.10 

seq 5 46.2 11.2 43.2 10.6 121.5 10.5 37.3 0.9 0.65 sec 0.68 

seq 6 36.3 13.8 38.5 10.4 114.8 10.6 32.7 1.1 0.65 sec 0.89 

 
* computed by 1 Xeon CPU core 

** computed by 4 Xeon CPU cores + GPU (one of Nvidia 1070, 1080 or 1080 Ti) 

*** computed by 1 i7 CPU 
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Figures 

 

Figure 1: Overall flowchart of the algorithm reported in this paper. Taking the entire Protein Data Bank 

(composed of ~120,000 protein structures) as the training set, we extract the sequence information, along 

with the phi-psi angle information from each Protein Data Bank file for the high-resolution protein 

structure. We further label the dihedral angles by considering the natural distribution of phi-psi angle to 

reduce the degree of freedom and use the structural labels, combined with the sequence information to 

train a MNNN model, which allows us to predict the phi-psi angle of any sequence and thus build the 

atomic structure together with the other intrinsic coordinate parameters. We run long-time MD 

simulations to quantify the acceleration of MNNN prediction and the stability of the structure given by 

MNNN result. The result is compared with experimental synthesis and characterization, which provide 

feedback to improve the quality of the MNNN model.   
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Figure 2: Strategy to reduce the design space of backbone conformations while achieving a high fidelity 

and overall architecture of our proposed MNNN model. A) We use a K means clustering algorithm to 

categorize all phi-psi angles in PDB into 256 clusters, which effectively reduces the infinite combination 

of phi-psi angles to the value of one of the cluster center (0..255). B) This panel shows the performance of 

using a different number of clusters in representing a protein structure (blue color, PDB ID: 1ACW), in 

comparison with the PDB structure (red). It is shown that for a 256 cluster choice, the error is reduced to a 

small level. C) The architecture of our MNNN model (step A, B, and C) takes into account both 

information of raw sequence neighborhood and of secondary sequence neighborhood. In step A, we 

compute character embedding for each amino acid using any popular techniques and then refine these 

embeddings with sequence neighborhood information. In step B, we apply another LSTM layer to 

perform dihedral angles prediction based on refined character embeddings of amino acid sequence. In 

Step C, we use these two embeddings to further predict secondary structure characters as additional 

constraints based on predicted dihedral angles.  
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Figure 3: Summary of all sequences investigated for benchmarking, and a brief summary of the 

prediction results. A) The six sequences and their corresponding structure id in PDB. B) The snapshots of 

the protein structures as obtained from the PDB. C) The result of MNNN and the RMSD value from PDB 

structures given in panel B.  
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Figure 4: Benchmark results of all six sequences as summarized in Fig. 4. Each of them include different 

starting conformations (arbitrary straight chain and result obtained by MNNN) and different force fields 

and solvent models (Tip3P explicit solvent and EEF1 implicit solvent), with panels (A), (B), (C), (D), (E) 

and (F) for protein 4DZM, 4DZL, 3R4A, 3R3K, 4PN8 and 4PNA, respectively. 
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Figure 5: Synthesis and characterization of a de novo peptide sequence that is not part of the Protein Data 

Bank. A) Amino acid sequence of honeybee silk protein AmelF3, with the coiled-coil domain highlighted 

in red and the peptide (AmelF3_+1) sequence shown in bold. B) Results of 100 ns MD simulation 

starting from the predictions given by ORION, I-TASSER and the MNNN model. Snapshots taken every 

20 ns of each simulation are overlaid for comparison. C) CD spectrum of AmelF3_+1 in deionized water. 

D) Representative transmission electron micrograph of the AmelF3_+1 peptide, depicting nanofiber 

formation. E) FTIR spectrum of AmelF3_+1 film, with alpha-helical peaks labeled in red, turns in 

magenta, and random coils in olive. The inset shows Fourier self-deconvolution and secondary structure 

peak fitting of the Amide I band. F) Raman spectrum of AmelF3_+1 film, with the peaks labeled by the 

same color notation for secondary structures as used in the FTIR spectrum, blue represents beta-sheet. 
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