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Abstract  

High-frequency gamma activity (HFA: 45–95Hz) on invasive-electroencephalogram coupled with 

verbal-memory encoding has laid the foundation for numerous studies testing the integrity of 

memory in diseased populations. Yet, the functional connectivity characteristics of networks 

subserving these HFA-memory linkages remains uncertain. By integrating this 

electrophysiological biomarker of memory encoding from IEEG with resting-state BOLD 

fluctuations, we estimated the segregation and hubness of HFA-memory regions in drug-resistant 

epilepsy patients and matched healthy controls. HFA-memory regions express distinctly different 

hubness compared to neighboring regions in health and in epilepsy, and this hubness was more 

valuable than segregation in predicting verbal memory encoding. The HFA-memory network 

comprised regions from both the cognitive control and sensorimotor processing networks, 

validating that effective verbal-memory encoding requires multiple functions, and is not 

dominated by a central cognitive core. Our results demonstrate a tonic intrinsic set of functional 

connectivity, which provides the necessary conditions for effective, phasic, task-dependent 

memory encoding. 

 

Key Words Verbal memory, High-frequency activity, Betweenness centrality, Hubness, 

Participation coefficient, Random forest 
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Abbreviations 

HFA – High frequency activity  

MEM - Brain regions showing HFA associated with verbal-memory encoding 

CN - Controls Nodes 

P.REC - Percentage of words recalled during IEEG memory testing 

CVLT - California Verbal Learning Test 

 

Highlights 

1. High gamma memory activity in IEEG corresponds to specific BOLD changes in resting-

state data. 

2. HFA-defined memory regions had lower betweenness centrality relative to neighbouring 

control nodes in both epilepsy patients and healthy controls. 

3. The betweenness centrality hubness of the HFA-memory network was distinct from other 

cognitive networks.  

4. HFA-memory network shares regional membership and interacts with multiple cognitive 

networks required for successful verbal memory encoding. 

5. HFA-memory network hubness predicted both concurrent task (phasic) and baseline 

(tonic) verbal-memory encoding success. 
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 Introduction 

Human high-frequency activity (HFA: 45–95Hz) captured using invasive electroencephalography 

(IEEG) is associated with neuronal firing during episodic memory encoding, termed the 

‘Subsequent Memory Effect’ (SME)(Burke JF et al., 2015;Greenberg JA et al., 2015;Jensen O et 

al., 2007). The majority of this work has been done in patients undergoing IEEG implantation for 

drug-resistant epilepsy (DRE)(Burke JF, et al., 2015;Greenberg JA, et al., 2015;Lega B et al., 

2014;Long NM et al., 2014;Solomon EA et al., 2017). This link between HFA and verbal-memory 

encoding has been validated using both power-amplitude analysis and phase synchronization 

(Burke JF, et al., 2015;Burke JF et al., 2013;Greenberg JA, et al., 2015;Lega B, et al., 2014;Long 

NM, et al., 2014). Despite these well-established linkages, little is known about the network 

organization and the degree to which these HFA regions either possess distinct network features 

relative to other brain regions or rely on abnormal organizational properties due to epilepsy. The 

impact of seizures on the brain is known to go beyond the epileptogenic zone (Burns SP et al., 

2014;Fahoum F et al., 2012;Tracy JI et al., 2015). While evidence exists to suggest that memory-

relevant regions in the epileptic brain can take up normative network roles in an effort to preserve 

function (Jin SH et al., 2015;Powell HW et al., 2007;Solomon EA, et al., 2017;Tracy J et al., 2014), 

the network properties characterizing these memory regions in health and in disease are unclear. 

In this study, we integrate IEEG with resting-state fMRI (rsfMRI) data to characterize the network 

architecture of a task-defined HFA-memory network and understand its relationship to the 

functional connectivity of a broader set of intrinsic resting-state networks. Graph theory has been 

a useful tool for mapping functional networks and characterizing their properties during task and 

at rest. Two important graph indices that are essential in characterizing brain regions and their 

functionality include: (1) clustering coefficient, which captures network segregation and local 
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information processing and (2) betweenness centrality, which captures hubness and the degree of 

importance held by a region that connects two or more modules (Power JD et al., 2013). Through 

network neuroscience measures of hubness and segregation, we define and broaden our 

understanding of the network characteristics that support memory encoding, and reveal the 

contribution of multiple intrinsic networks to successful memory encoding. 

 Prior studies combining IEEG and fMRI have shown a good correspondence between HFA 

and blood oxygen level dependent (BOLD) contrast signal, offering a key link between 

electrophysiological and hemodynamic properties of human memory (Axmacher N et al., 

2008;Jacques C et al., 2016;Khursheed F et al., 2011;Logothetis NK et al., 2001;Rugg MD et al., 

2002). Integrating IEEG with rsfMRI has the advantage of sampling the wider brain regions, 

allowing us to test the correspondence between the information embedded in the faster dynamics 

of IEEG data (i.e., HFA) and the slower BOLD response (Esposito F et al., 2013;Mizuhara H, 

2012;Mizuhara H et al., 2005;Murta T et al., 2017). In this study, we address four specific 

questions: First, how does the resting-state functional connectivity (rsFC) of the HFA-memory 

network involved in verbal-memory encoding differ from neighboring regions that lack significant 

SME? Second, are the network characteristics of HFA-memory regions in epilepsy patients 

generalizable, or, do they differ from those of matched healthy controls? Third, by discovering the 

key features of the HFA-memory network and studying their relationship to other intrinsic 

networks, can we reveal the trait-like properties of the intrinsic state, as well as the constituent 

cognitive processes that are necessary for effective memory encoding? Fourth, are HFA-memory 

network characteristics associated with and able to predict clinically relevant verbal-memory 

performance in epilepsy?  
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2 METHODS 

2.1 Participants 

Thirty-seven patients with DRE were recruited from the Thomas Jefferson University 

(TJU) Comprehensive Epilepsy Center. They underwent IEEG implantation (subdural, depth, or 

both) to localize the epileptogenic zone and guide potential surgical management of their seizures 

(Figure 1) (Table 1). Site and reason for implantation were determined by multimodal pre-surgical 

evaluation including neurological history and examination, video-EEG, MRI, PET, and 

neuropsychological testing (Sperling MR et al., 1996). Specific to this study, patients underwent a  

3T-MRI scan (rsfMRI+T1MPRAGE) (Philips Achieva, Amsterdam, Netherlands), pre-surgical 

neuropsychological assessment (NPA) to provide a baseline indication of the patients verbal-

memory skills, followed by IEEG implantation and monitoring (Nihon Kohden EEG-1200, Irvine, 

CA) during which patients participated in verbal episodic memory testing (free-recall paradigm). 

This provided behavioral measures at two stages of clinical evaluation: percent recall from a word-

list memory test administered simultaneously with IEEG recording (P.REC) and the sum-total of 

words recalled from a similar memory test administered during baseline neuropsychological 

testing (CVLT Total Learning - CVLT-TL) (Supplementary Methods, Data Acquisition).  

Patients were excluded from the study for any of the following reasons: previous brain 

surgery; medical illness with central nervous system impact other than epilepsy; contraindications 

to MRI; or hospitalization for any Axis I disorder listed in the Diagnostic and Statistical Manual 

of Mental Disorders, IV. Depressive disorders were allowed given the high comorbidity of 

depression and epilepsy (Tracy et al., 2007). Healthy controls (HC, N=37) were recruited to match 

the patients in age, gender, handedness, and education. All participants provided written informed 

consent as per the TJU Institutional Review Board requirements. 
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2.2 IEEG acquisition and free-recall testing 

IEEG data were recorded from neurosurgical patients performing delayed free recall of 

categorized and unrelated word lists. The task was presented at the bedside using PyEPL software 

and the IEEG data was simultaneously recorded using the Nihon-Kohden IEEG system [sampling 

rate >500Hz] (Geller AS et al., 2007). Participants were instructed to commit each list of words to 

memory. Recalled responses were digitally recorded and parsed/scored offline using the 

University of Pennsylvania Total Recall program (http://memory.psych.upenn.edu/TotalRecall) 

(Supplementary figure 1). Participants performed up to 25 recall trials in a single recall session 

(Supplementary Methods). 

HFA power was compared between words that were subsequently remembered or forgotten 

(through retrospective binning of responses), providing a measure of the subsequent memory effect 

(SME) at each bipolar pair. HFA power was calculated on logarithmically spaced wavelets ranging 

from 44–100 Hz, on a notch filtered (58-62Hz) data (Supplementary Methods, Data Analysis for 

details). For every bipolar pair and encoding period (1600ms/word), the difference in spectral 

power during memory formation was calculated by computing t-statistic, comparing the 

distributions of event-averaged power values associated with all successful and unsuccessful 

encoding trials.  

Subsequently, anatomic localization of bipolar pairs (computed as the mid-point between 

the two contacts) was accomplished using 2 independent processing pipelines for depth and surface 

electrodes which were later transformed to MNI space similar to previous studies (Burke JF, et al., 

2013;Kragel JE et al., 2017). 
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2.3 Functional MRI data acquisition and preprocessing 

All participants (patients and healthy controls) underwent a rsfMRI scan using single shot 

echo planar gradient echo sequence (120 volumes; 34 slices; TR = 2.5s, TE = 35ms; flip angle 

(FA) = 90°, FOV=256 mm, 128×128 matrix, resolution: 2×2×4mm) in a 3T MRI scanner (Philips 

Achieva). T1-MPRAGE images (180 slices, 256×256 isotropic 1mm voxels; 

TR/TE/FA=640ms/3.2ms/8°, FOV=256 mm) were also collected. Patients were instructed to stay 

awake, keep their eyes closed, and stay relaxed. All imaging data were preprocessed using Data 

Processing Assistant for rsfMRI Advanced Edition (http://www.rfmri.org/DPARSF)(Yan CG et 

al., 2010), a MATLAB toolbox based on Statistical Parametric Mapping-8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) using the standard pipeline for rsFC 

(Supplementary Methods). 

2.4 Graph Theory analysis 

Using the Lausanne’s 234 ROI atlas, 234 by 234 correlation-matrices were calculated at 

individual subject level, which were used subsequently to construct weighted undirected graphs. 

Minimal Spanning Tree (MST) based networks were derived to ensure the same number of 

connected nodes for all subjects, allowing for reliable group-level comparisons and yielding a 

series of graphs with connection density ranging from 5% to 50% in increments of 1% (van 

Diessen E et al., 2013) (Supplementary Methods). The density range of 5% to 50% was chosen for 

the following reasons: (1) network measures are relatively constant over this range  (Alexander-

Bloch AF et al., 2010); (2) previous work has suggested that above a density of 50% graphs 

become more random (Humphries MD et al., 2006) and prone to non-biological features and noise 

(Kaiser M et al., 2006). Using these graphs, clustering coefficient (CC) and betweenness centrality 
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(BC) were calculated using Brain Connectivity Toolbox (www.brain-connectivity-toolbox.net) 

(Rubinov M et al., 2010).   

2.5 Defining HFA-memory regions (MEM) and their neighboring control nodes 

(CNs) for rsfMRI analysis 

Brain regions where IEEG showed significant SME with increased HFA were termed HFA-

memory regions (MEM). Brain regions where IEEG recorded HFA, but the results did not survive 

statistical significance for successful memory encoding were termed Control Nodes (CNs). 

The 3731 IEEG bipolar contacts for all the patients were superimposed into a single MNI 

coordinate space, referred to as the “super-brain” (Figure 1, Supplementary figure 2 and 5).  
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Figure 1: Network construction and statistical analysis 

This study pipeline illustrates the multi-staged approach in the study. Only patients underwent 

IEEG implantation, whereas the rsfMRI was acquired in both the patients and in healthy controls. 

The IEEG electrodes pooled from all the subjects were used to create a ‘super-brain’ to test the net 

memory encoding effect in the high gamma frequency (high frequency activity: HFA). For every 

HFA-memory region, three sets of neighboring controls nodes (CNs) were determined based on 

their Euclidean Distances (CN.1: first closest ED, CN.2: second closest ED and CN.RAND: a 

single random ED among the first 5 closest EDs). For all the 103 regions (MEM+CNs) together, 

we tested which of the graph measures, clustering coefficient (CC) or betweenness centrality (BC) 

were significantly different between MEM and CNs using a mixed-model ANOVA. We then 

tested the association of these graph measures with clinical memory performance (CVLT-TL and 

P.REC) using the random forest model. 
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The MNI coordinates of these contacts were then warped to the nearest 3D Cartesian 

coordinates in the Euclidean space of each of the ROIs of the Lausanne atlas (Hagmann P et al., 

2008). In order to avoid the probability of the algorithm wrongly assigning the electrodes to 

subcortical structures, we excluded these regions, yielding an atlas with 222 implant-relevant regions. 

Each electrode coordinate was warped to the coordinate of the nearest ROI of the Lausanne atlas 

(Supplementary Methods, Supplementary Figures 2 and 5). This allowed us to group the 3731 
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contacts into their respective 222 ROIs. Once this was done, the t-values of the multiple electrodes 

within each ROI were submitted to a positive tailed one-sample t-test to determine if there was a 

significant increase in HFA power between words that were encoded and words that were forgotten. 

To account for multiple comparisons, the P-values generated for the 222 ROIs were subjected to FDR 

correction (Genovese CR et al., 2002). The FDR corrected significant ROIs were considered to 

exhibit memory-relevant encoding effects, henceforth referred to as MEM ROIs. 

For every MEM, we identified the nearest 5 CNs based on their Euclidian distance (ED), as 

these neighboring CNs had the highest chance of being implanted and providing contrasting HFA 

recordings. The ROIs closest to MEM were grouped as first control nodes (CN.1) and second closest 

as CN.2. To avoid bias of the distance from the MEM, we chose a random ROI among the first 5 

EDs, and refer to these as the ‘random distance control nodes’ (CN.RAND) (Supplementary Methods, 

Figure 2, Supplementary Figure 3). 

2.6 Hubness and Participation coefficient of the HFA-memory network in 

comparison with the intrinsic networks 

Since the HFA-memory network was found to have regions distributed widely over the brain, 

we were interested in looking at whether the HFA-memory regions had membership in other intrinsic 

networks. Hence, we assigned the different regions of the Lausanne’s atlas to the different intrinsic 

networks as defined by Gu et al (Gu S et al., 2015). Along with BC, we also estimated the participation 

coefficient (PC) using BCT (https://sites.google.com/site/bctnet/). While BC indicates regions that 

have considerable influence within a network by virtue of their control over information passing 

between others, it does not reveal anything about the diversity of inter-network connections of 

individual nodes. In contrast, PC helps identify influential nodes in a network that are likely to be 
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highly connected to other networks and, as a result, communicate and exert influence over these other 

networks.   

2.7 Statistical analysis  

Chi-square or t-tests, as appropriate, were used to compare the groups on demographic and 

clinical variables (p<0.05 was considered significant). To assess group (patient vs controls), region 

(MEM vs CN), and group-by-region effects, we ran a two-way ANOVA on the graph indices (CC 

and BC) at two levels: 1) the ‘composite network’ level and 2) ‘individual region’ level. At a 

‘composite network’ level, the average-CC (AvgCC) and average-BC (AvgBC) across the separate 

MEM and CNs were calculated and served as the primary dependent variables in the ANOVAs. The 

ANOVAs contrasting the MEM with the three available CN ROI’s (CN.1, CN.2, and CN.RAND) 

were run in separate models. At the ‘individual region’ level, the NodalCC and NodalBC of MEM 

and CNs served as the primary dependent variables in the ANOVAs. A MEM was considered 

significantly different from the CNs only when each MEM was shown to be reliably different from 

all three CNs (CN.1, CN.2, and CN.RAND) using Boolean conjunction analysis (Supplementary 

figure 4) (Figure 1) (Supplementary Methods). This method ensured that MEM ROIs with a 

significant difference in graph indices to only a single CN were not considered valid. Throughout the 

analysis, multiple comparison correction was calculated using the false discovery rate (pFDR) (Figure 

1). The difference in AvgBC and AvgPC of the HFA-memory network in comparison with the 

intrinsic networks was tested using repeated measures ANOVA with Fisher's Least Significant 

Difference (LSD). 
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2.8 Multivariate machine learning to predict free-recall performance 

We used a ‘Random Forest’ (RF) model to determine the relationship between fMRI graph 

indices (NodalBC and NodalCC, i.e., the predictor variables) and free-recall performance (P.REC 

and CVLT-TL, tested separately, i.e., the response variable). CVLT-TL is sensitive to memory 

encoding and immediate recall, comparable in this sense to the P.REC measure. (Table 1). RF is 

an efficient, supervised machine learning method that identifies both linear and non-linear brain-

behavior relationships, allows simultaneous testing of multivariate interactions, and shows 

superior resilience to overfitting (Breiman L, 2001). The algorithm exploits random decision trees, 

which use a subset of the observations through bootstrapping techniques. In short, from the original 

data set a random selection of the training data is sampled and used to build a model. The model 

is then tested on the data not included in the training sample, referred to as “out-of-bag”. Every 

time a model was built and applied to its “out-of-bag” data, the importance of each variable (VI) 

was estimated based on the increase of prediction error when “out-of-bag” data for that variable 

was permuted, while all others were left unchanged (Liaw A et al., 2002). 

We first ranked the predictors using variable importance (VI) to identify the most relevant 

network properties using a permutation-based method (Altmann A et al., 2010). Briefly, we 

estimated the true VI for each predictor for 1000 repetitions. Next, we established a null 

distribution of VIs for every predictor by estimating their VI from models trained with the response 

variable randomly permuted a 1000 times. Based on the true VI, the VI of each predictor from 

each random permutation, a probability can be estimated based on its corresponding normal 

cumulative null distribution, with a variable considered significant if the probability is larger than 

95%. Lastly, we selected predictors whose VIs were found significant at least 950 times over the 

1000 repetitions, to build RF models and predict the response. The association between the 
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predictions and actual scores was tested using a right-tailed Pearson correlation. In addition, 

stepwise linear regression models (SRM) on the two response variables were run with the selected 

predictors from the RF models serving as independent variables, allowing us to explore any 

directional or ranking effects among the predictors (details in Supplementary Methods, Data 

Analysis). 

3 RESULTS 

3.1 Demographic and clinical characteristics of the groups (patients and controls) 

The demographic details of the patients and healthy controls are listed in Table 1 (also 

Supplementary Table 1). They were matched for age, gender, handedness, years of education, and 

head micro-movement during rsfMRI (p>0.05). Relative to same age peers, the DRE patients had 

CVLT-TL performance in the average range (t=48, age-normed), indicating intact memory 

encoding ability. 

 

Table 1: Demographic and clinical characteristics 

Both DRE patients and healthy controls were matched for age, gender, handedness, education. 

After estimating the head motion we noticed that the values were low, as well as comparable, 

between the two groups. Further demographic data specific to the DRE patients have been 

enumerated in this table. 

Sample Group   Patients Controls 
F/T/χ2 P 

 (N)   37 37 

Age (M±SD)  36.86±10.69 33.91±12.65 1.08 0.28 

Gender (M/F)  21/16 24/13 0.23 0.63 

Education (years, M±SD)  13.67±2.62 14.2±1.72 -1.39 0.16 

Handedness (R:L)   30/7 26/11 0.66 0.41 

Head Motion (FD_Jenkinson)  0.12±0.01 0.10±0.04 -0.90 0.36 
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Free-recall Measures      

P.REC  21.15±9.2%    

CVLT-TL  48.4±11.2%    

Age at Epilepsy Onset 

(M±SD; years) 
 

20.94±13.19 - - - 

Duration of Epilepsy (M±SD; 

years) 
 

15.92±10.25 - - - 

Seizure Type   - - - 

 FOIA  6 - - - 

 FOIA+BTCS  17 - - - 

 FOIA/FOA  4 - - - 

 FOIA/FOA+BTCS  6 - - - 

 FOA+BTCS  4 - - - 

Anti-Epileptic Drugs   - - - 

VGNC 
CBZ,OXC,LTG, 

PHT 
24 - - - 

GABAa Agonist PB, BZD, Pr 7 - - - 

SV2a Receptor Mediated LVA 15 - - - 

CRMP2 Receptor Mediated LCM 8 - - - 

Multi-Action 
VPA, TPM, 

ZNS 
17 - - - 

VGCC PGB, GBP 4 - - - 

M: Mean, SD: Standard Deviation, FOA: Focal Onset Aware Seizures, FOIA: Focal Onset 

seizures with Impaired Awareness; BTCS: focal seizures progressing to bilateral tonic-clonic 

seizures, VGNC: Voltage-gated sodium channel blockers: CBZ: carbamazepine, OXC: 

oxcarbazepine, PHY: phenytoin, GABAa Agonist: Gamma amino butyric acid a receptor 

agonist: PB: barbiturates; BZDs: benzodiazepines (diazepam, lorazepam, clonazepam, 

clobazam); SV2a Receptor-Mediated AEDs: LVA: levetiracetam; CRMP2 Receptor-Mediated 

AEDs: LCM: lacosamide; VGCC: Voltage-gated calcium channel: PGB: pregabalin; GBP: 

gabapentin; Multi-action AEDs: VPA: valproate; TPM: topiramate; Pr: Primidone 
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3.2 Defining HFA-memory regions and their neighboring control nodes 

Brain regions where IEEG showed significant SME with increased HFA were termed 

HFA-memory regions (MEM) (Figure 1). MEM regions included the ventral stream (lateral 

occipital regions and the inferotemporal surface consisting of the fusiform gyri, n.b., areas 

necessary for visual recognition), and through their connections with the medial temporal lobe 

formed a circuit supporting memory consolidation. MEM areas also included discrete regions of 

bilateral lateral neocortices involving the left rostral middle frontal, inferior temporal, cingulate, 

postcentral, inferior parietal, insular (LrMFG, LITG, LPostCinG, LIstCinG, LIPL, LInsG), 

bilateral superior frontal, parietal, inferior temporal, and fusiform gyri (B/LSFG, B/LSPG, 

B/LITG, B/LFusG) (pFDR<0.0058). The corresponding control regions (CNs – CN.1, CN.2, and 

CN.Rand) were identified based on the Euclidean distance proximity of neighboring ROIs to MEM 

ROIs (Table 2 and Figure 2). 

 

Table 2: The IEEG derived HFA-memory regions (MEM) mapped to the Lausanne 

atlas brain ROIs and the corresponding control nodes (CN.1, CN.2, and CN.RAND) 

The 3731 electrodes after being assigned to the different brain regions were tested for significant 

subsequent memory effect (MEM). Once these regions were derived based on nearest Euclidean 

distances we determined the three neighboring control nodes (CN.1, CN.2, and CN.RAND). 

 

ROI# MEM ROI# CN.1 ROI# CN.2 ROI# CN.RAND 

26 RSFG.7 32 RPreCG.2 25 RSFG.6 38 RParaCG.2 

33 RPreCG.3 36 RPreCG.6 27 RSFG.8 47 RPostCG.3 

57 RSPG.4 56 RSPG.3 29 RcMFG.2 55 RSPG.2 

78 RLatOG.3 76 RLatOG.1 44 RIstCinG.1 65 RIPG.5 

79 RLatOG.4 77 RLatOG.2 58 RSPG.5 74 RPeriCaL1 

80 RLatOG.5 83 RLinG.3 65 RIPG.5 77 RLatOG.2 
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84 RFusG.1 86 RFusG.3 66 RIPG.6 81 RLinG.1 

85 RFusG.2 89 REntRG.1 81 RLinG.1 93 RITG.3 

87 RFusG.4 95 RMTG.1 82 RLinG.2 94 RITG.4 

94 RITG.4 96 RMTG.2 88 RPHG.1 115 RAmy 

120 LparsOrb.1 117 LLatOrbFG.2 93 RITG.3 116 LLatOrbFG.1 

124 LparsTri.1 119 LLatOrbFG.4 97 RMTG.3 129 LrMFG.3 

128 LrMFG.2 127 LrMFG.1 118 LLatOrbFG.3 134 LSFG.2 

130 LrMFG.4 129 LrMFG.3 125 LparsOp1 135 LSFG.3 

132 LrMFG.6 133 LSFG.1 126 LparsOp2 136 LSFG.4 

138 LSFG.6 141 LSFG.9 131 LrMFG.5 139 LSFG.7 

140 LSFG.8 142 LcMFG.1 135 LSFG.3 142 LcMFG.1 

158 LPostCinG.2 157 LPostCinG.1 137 LSFG.5 157 LPostCinG.1 

159 LIstCinG.1 165 LPostCG.6 144 LcMFG.3 177 LSPG.6 

166 LPostCG.7 180 LIPG.2 152 LPreCG.8 182 LIPG.4 

174 LSPG.3 183 LIPG.5 154 LParaCG.2 188 LPC.5 

179 LIPG.1 186 LPC.3 170 LSMG.4 201 LFusG.2 

203 LFusG.4 201 LFusG.2 173 LSPG.2 217 LSTG.1 

209 LITG.3 205 LEntRG.1 194 LLatOG.4 218 LSTG.2 

210 LITG.4 212 LMTG.2 200 LFusG.1 220 LSTG.4 

211 LMTG.1 217 LSTG.1 204 LPHG.1 221 LSTG.5 

213 LMTG.3 219 LSTG.3 208 LITG.2 222 LTransTG.1 

223 LIns.1 222 LTransTG.1 220 LSTG.4 231 LAccu 

226 LIns.4 225 LIns.3 224 LIns.2 233 LAmy 

ROI# - The ROI numbering as per the atlas; MEM – IEEG defined ROIs which were 

significant for HFA-memory activity; CN – Control nodes that are measured at 3 different 

Euclidean Distances; R.superiorfrontal (RSFG), R.precentral (RPreCG), R.superiorparietal 

(RSPG), R.lateraloccipital (RLatOG), R.fusiform (RFusG), R.inferiortemporal (RITG), 

L.parsopercularis (LparsOp), L.parstriangularis (LparsTri), L.rostralmiddlefrontal (LrMFG), 

L.superiorfrontal (LSFG), L.posteriorcingulate (LPostCinG), L.isthmuscingulate (LIstCinG), 

L.postcentral (LPostCG), L.superiorparietal (LSPG), L.inferiorparietal (LIPG), L.fusiform 
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(LFusG), L.inferiortemporal (LITG), L.middletemporal (LMTG), L.insula (LIns), R.lingual 

(RLinG), R.entorhinal (REntRG), R.middletemporal (RMTG), L.lateralorbitofrontal 

(LLatOrbFG), L.caudalmiddlefrontal (LcMFG), L.precuneus (LPC), L.entorhinal (LEntRG), 

L.superiortemporal (LSTG), L.transversetemporal (LTransTG), R.caudalmiddlefrontal 

(RcMFG), R.isthmuscingulate (RIstCinG), R.inferiorparietal (RIPG), R.parahippocampal 

(RPHG), L.precentral (LPreCG), L.paracentral (LParaCG), L.supramarginal (LSMG), 

L.lateraloccipital (LLatOG), L.parahippocampal (LPHG), R.paracentral (RParaCG), 

R.postcentral (RPostCG), R.pericalcarine (RPeriCaL), R.amygdala (RAmy), L.accumbensarea 

(LAccu), L.amygdala (LAmy) 

 

 

Figure 2: HFA-memory regions (MEM) and their corresponding Control Nodes 

(CNs) 

The warm yellow color represents the MEM ROIs (MEM) and the cool cyan color represents the 

controls nodes (CNs) which are the first Euclidean neighbors. The brain regions were illustrated 

in the BrainNet Viewer (http://www.nitrc.org/projects/bnv/). 
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3.3 Network-level differences in hubness and segregation of HFA-memory regions 

and neighboring control nodes (region-effect), and between patients and controls 

(group-effect) 

We sought to differentiate the network properties (segregation: AvgCC and hubness:  

AvgBC) in rsFC data of the MEM regions compared to the CNs, while simultaneously 

differentiating properties that differed in the epilepsy patients compared to controls. For each of 

the graph indices, we performed three separate ANOVAs involving a comparison between MEM 
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and different sets of CNs as a validation to ensure that any observed difference in segregation or 

hubness were related to actual memory encoding differences and not merely the choice of 

comparative CNs. ANOVAs on AvgBC revealed a significant main effect of region, with MEM 

having a lower AvgBC compared to CNs (MEM vs CN.1--, F’s>14.16, FDR-p’s <3.4x10-3; MEM 

vs CN.2 -- F’s> 20.16, FDR-p’s <2.8x10-4; MEM vs CN.RAND -- F’s> 23.63, FDR-p’s <6.6x10-

6). Neither the main effect of the group nor the interaction between group and region was 

significant in any of the models. 

 ANOVAs on AvgCC revealed a significant main effect for group, with patients having a 

lower AvgCC compared to controls (Patient vs Controls for MEM vs CN.1 -- F’s> 8.2827, FDR-

p’s<0.004; Patient vs Controls for MEM vs CN.2 -- F’s> 7.1628, FDR-p’s <0.0088; Patient vs 

Controls for MEM vs CN.RAND -- F’s> 8.1457, FDR-p’s <0.007). Neither the main effect of the 

region (MEM vs CN.1, CN.2, and CN.RAND) nor the interaction between group and region was 

significant (Figure 3).  

 

Figure 3: Network-level ANOVAs on AvgCC and AvgBC testing group-by-region 

effects 

Composite network level (AvgCC and AvgBC) differences in MEM and CN (region-effect) 

between patients (PAT) and controls (CON) (group-effect). The black asterisks indicate that the 

main effects of group (for AvgCC) and the region (for AvgBC) were significant across network 

thresholds from 5-50%. Significant (Sig), * indicates the sparsity range in which the network 

differences are prominently different, yellow inset provides a magnified view of the difference in 

the AvgBC in the mid sparsity range.  
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3.4 Nodal-level differences in segregation and hubness of the HFA-memory regions 

and neighboring control nodes (region-effect), and between patients and controls 

(group-effect) 

The above network-level analyses made clear that hubness differed between the MEM and 

CNs irrespective of group, while segregation differed between the groups irrespective of regional 

differences. Because such effects may hide differences at a nodal level. We applied similar 

ANOVAs to BC and CC estimated at the nodal level (NodalBC and NodalCC respectively). 

ANOVAs on NodalBC revealed a significant main region-effect, revealing that NodalBC 

was reduced in MEM compared to CNs involving the left rostral middle frontal gyrus. The main 

effect of group and the group-by-region interaction was not significant (Table 3). 

ANOVAs on NodalCC revealed a significant group-effect, revealing again that NodalCC 

was reduced in patients compared to controls across regions involving left caudal middle frontal 

gyrus, left inferior parietal gyrus, left precuneus, right fusiform, and lateral occipital gyri of the 

MEM (Table 3). Neither the main effect of the region nor the group-by-region interaction was 

significant.  

Hence, both at the composite network and individual nodal level we found that hubness 

(BC) helps distinguish HFA-memory regions from their neighboring control regions, while 

segregation (CC) helps to distinguish patients from controls.  
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Table 3: ANOVAs on NodalCC or NodalBC testing group-by-region Effects.  

NodalCC showed significant group-effect (patients had a lower NodalCC compared to controls 

irrespective of whether they were MEM or CNs). NodalBC showed significant region-effect 

(HFA-memory regions had lower NodalBC compared to CNs). 

 

MAIN EFFECTS 

NodalCC  

(Significant group-effect: Patient vs Control) Fs FDR-p’s 

RLatOG.3 >5.9921 0.0057 

RLatOG.4 >4.7211 0.0062 

RFusG.1 >4.1904 0.0277 

RFusG.2 >4.5526 0.0300 

LSPG.3 >4.3929 0.0044 

LITG.4 >4.2426 0.0136 

NodalBC  

(Significant region-effect (MEM ROI’s vs CN) 
  

LrMFG.4 >4.4909 0.0004 

Regions of interest (ROIs), Clustering coefficient (CC), Betweenness Centrality (BC), HFA-

Memory regions (MEM), Controls Nodes (CN) (Here we used the Boolean conjunction 

analysis to allow for only for those MEM regions significantly different between different 

comparisons with the three CN to be significant), F statistic of ANOVA (Fs), p values of 

ANOVA corrected for false discovery rate (pFDR), R.lateraloccipital (RLatOG), R.fusiform 

(RFusG), L.inferior temporal (LITG), L.superiorparietal (LSPG), L.rostralmiddlefrontal 

(LrMFG) 

 

3.5 HFA-memory network decomposition among the established intrinsic networks 

To help clarify the functional attributes of hubness that we uncovered about the HFA-

memory network, we estimated the degree to which this network shared regions with well-

established intrinsic networks (Figure 4a). For this, we estimated the percentage contribution of 
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the different intrinsic networks to the HFA-memory network (n.b., percentages avoids bias from 

the different number of ROI’s that constitute each intrinsic network). We discovered that the HFA-

memory network had a diverse “membership”, sharing only modest overlap with any single 

intrinsic network, reflecting the complex set of cognitive and sensorimotor processes involved in 

effective memory encoding. For instance, the HFA-memory network comprised only 16% of the 

temporal lobe network regions (TN), 12% of the frontoparietal network (FPN), 14% of the dorsal 

attention network (DAN), and 13% of the cingulo-opercular network (COpN), amounting to a 

large 55% membership in what are often referred to as cognitive control systems (Figure 4a). This 

stands in contrast to very limited membership (15%) and overlaps with the task-negative default 

mode network (DMN), and 6% with the sensory-motor networks (SMN). The visual nature of 

verbal-memory encoding explains the overlap with the visual integration network (VIN, 24%) 

(Figure 4a). Noting that the HFA-memory regions do not constitute an intrinsic network, nor a 

surrogate for any one of them, we sought to determine if the BC of the HFA-memory network 

differed from that of the intrinsic networks. A repeated-measures ANOVA was performed to 

compare the AvgBC of the HFA-memory network with the AvgBC of the nine intrinsic networks. 

Due to the varying cognitive roles and responsibilities of these networks, it is reasonable to expect 

each intrinsic network would possess their own distinct range of BC scores. To test this, we 

assigned the brain parcels of the Lausanne’s atlas as established by Gu et al, to nine well-

established intrinsic, functional networks and ranked the networks according to their AvgBC 

values (Gu S, et al., 2015). These networks were of two broad categories, cognitive control systems 

(e.g., COpN, FPN, and DAN) and sensorimotor processing networks (e.g., SMN, VIN and AN). 

The HFA-memory network ranked 4th (AvgBC: 200±42) against the 9 intrinsic networks and 

differed significantly from all but one in AvgBC (Figure 4b and 5) (Supplementary Table 2a, b).  
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Figure 4: Nature of hubness of the HFA-memory network 

(a) Pie-graph shows percent contribution of each intrinsic network to the HFA-memory 

network. (b) The bar graph in the second panel shows distinct optimal BC at which HFA-memory 

network operates in relation to the rest of the intrinsic networks. DMN and the FPN, which form 

the core hubs in the brain had the highest BC values. (c) The comparative bar graph shows the 

difference in BC of HFA member ROIs of an IN compared to BC of the other nodes in the same 

IN. (TN-temporal network, VIN-visual integrated network, SMN-sensorimotor network, DAN – 

dorsal attention network, COpN – cingulo-opercular network, FPN- frontoparietal network, DMN 

– default mode network). (d) The box and whisker plot shows the participation coefficient of the 

HFA-memory network in comparison with the different intrinsic networks.
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To further understand the nature of the overlap between intrinsic networks and the HFA-

memory network, we tested whether the BC of ROIs of an intrinsic network that contributed to the 

HFA-memory regions differed from those that did not form a part of the HFA memory network. 

We found reliable differences only for the FPN (HFA_FPN vs Other_FPN: t=-3.63, p=2.9x10-4) 

and COpN (HFA_COpN vs Other_COpN: t=-3.47, p=5.2x10-4), in each case revealing higher BC 

for the regions of intrinsic networks not part of the HFA-memory network (Figure 4c, 

Supplementary Table 3). Accordingly, the BC levels of HFA-memory regions involved in intrinsic 

networks (e.g., HFA_COpN and HFA_FPN) can be said to differ from the non-memory regions 

of these intrinsic networks (Other_COpN, Other_FPN). It was important to determine if this effect 

was driven by a patient vs control group difference. A two-way ANOVA showed that while the 

main effect of regional HFA status was significant (HFA_FPN vs Other_FPN: F=19.53, p=1.9 

x10-5; HFA_COpN vs Others_COpN: F=12.56, p=0.001), neither the main effect of group (patient 

vs control) nor the group-by-network interaction was significant (Supplementary Figure 6). The 

major finding was that cognitive control networks have a higher BC compared to the HFA-memory 

and sensorimotor processing networks.    
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Figure 5: ANOVA testing the difference in hubness of the different networks in the 

brain in comparison to the HFA-memory network 

This matrix shows the difference in the hubness scores of the 9 intrinsic networks in 

comparison to the HFA memory network. While the HFA memory network appears to be a diverse, 

composite network with contributions from other INs. overall it does have a BC value distinct 

from 9 of the INs.  In fact, with the exception of the DMN, all the INs display BC values distinct 

from at least 5 of the other INs. The values in the cells represent the significant comparisons of the 

post-hoc analysis of the ANOVA [Bonferroni corrected P-value <0.05 (Pcorr) was considered 

significant]. 
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Having established the diverse membership of the HFA network, and the tendency of the 

INs to operate at different hubness levels, we next sought to verify the actual level of 

communication and interaction the HFA network displays with the intrinsic networks. To 

accomplish this, we defined the external connection of the HFA-memory network in relation to 

the different intrinsic networks through the use of a participation coefficient (AvgPC). 

Participation coefficient measures the extent to which regions within a network connect to 

networks other than its own, with a higher participation coefficient indicating that the regions 

connect with a variety of other networks. PC helps identify influential nodes in a network that are 

likely to be highly connected to other networks and, in turn, influence them. The cognitive control 

networks were found to have a higher AvgPC compared to the sensorimotor processing networks 

(Figure 4d and 7, Supplementary table 3a and b). Importantly, the HFA-memory network 

possessed AvgPC levels similar to that of the cognitive control networks, implying that along with 

its shared membership with these networks, inter-communication between the HFA-memory 

network and these control networks plays a major role in the implementation of memory encoding 

(Figure 4d, Supplementary table 3b).  

3.6 Multivariate Machine Learning to Predict Verbal-memory Performance in 

Epilepsy Patients 

Through both global and nodal analyses, we have established that in the resting-state the 

HFA-memory network is characterized by its hubness property and not regional segregation. As a 

final step, we wanted to test if either hubness or segregation were relevant to an individual’s 

clinical memory performance. To accomplish this, random forest (RF) models were used to test 

the relationship between verbal-memory performance (CVLT-TL and P.REC) and the graph 

indices of HFA-memory regions (segregation and hubness). Though the two memory scores were 
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clinically related (CVLT-TL, total recall across five trials and P.REC, the average percent recall 

across all trials), they were not collinear (r=0.27, p=0.12). A regression RF model on CVLT-TL 

showed that NodalBC of four MEM variables significantly predicted CVLT-TL performance 

(Figure 6a: NodalBC of ROI 1 and 2 of RFusG, LITG, and LSFG). The model was found to be 

accurate, as we found that actual CVLT-TL scores were correlated with the predictions made with 

these four significant MEM NodalBC predictors (r=0.8, p=2.04x10-8) (Figure 6c). A stepwise 

regression model (SRM) confirmed that among the 4 predictors, a linear model built with NodalBC 

of RFusG2 and LSFG6 emerged as significant predictors of CVLT-TL (F=10.599, dof=2, 

p=<0.0001: RFusG2-- beta= -0.53, t=-3.7, p=0.001, VIF=1.52; LSFG6-- beta=0.47, t=3.27, 

p=0.003, VIF=1.02).  

The regression RF model on P.REC with the MEM NodalBC variables as predictors 

revealed six MEM variables with significant variable importance values (Figure 6b: NodalBC of 

LIstCinG, LrMFG, LITG, LIns, RLatOG, and RPreCG). We found that P.REC was significantly 

correlated with the predictions made with these six significant MEM NodalBC measures (r=0.88, 

p=2.14x10-11; Figure 6d), indicating that the RF model was accurate. An SRM model testing the 

six predictors with P.REC produced no significant predictors. Thus, the RF method produced a 

more sensitive and complex model of the relationship between hubness and memory performance, 

likely stemming from the fact that SRM only detects linear, not non-linear, relationships, noting 

that RF captures both.  

In the RF models with the MEM NodalCC as predictors, none of the NodalCC measures 

were deemed significant in >95% of the permutations. Thus, none of these variables demonstrated 

a reliable ability to predict either P.REC or CVLT-TL performance.  
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This modeling work established that resting-state hubness of the HFA-memory regions not 

only predicted the verbal-memory performance during the IEEG testing, but also baseline levels 

of neuropsychological memory. Regional segregation showed no relation to either of these 

memory performances.  

 

 

Figure 6: Random Forest Models to establish a relationship between hubness and 

verbal-memory performance 

Random forest models help establish both linear and non-linear relationships between predictors 

and response. (a) BC of the HFA-memory regions (MEM) were used to predict CVLT-TL. The 

BC of the MEM were sorted by the number of times they were selected as a significant predictor 

based on 1000 permutations of the random forest (RF) model. LITG, LSFG, and RFusG were 

significantly associated with the CVLT-TL performance, (b) BC of the HFA-memory regions 

(MEM) were used to predict P.REC. The BC of the MEM were sorted by the number of times they 

were selected as a significant predictor based on 1000 permutations of the RF model. LIstCingG, 

LrMFG, LITG, LIns, RLatOG, and RPreCG were significantly associated with the P.REC memory 

performance. (c) Prediction of CVLT-TL performance made with BC of the MEM ROIs, (d) 

Prediction of P.REC performance during IEEG monitoring made with BC of the MEM ROIs. 

Measures exceeding beyond the blue line (the blue line indicates the p<0.05 threshold, below 

which none are considered significant). California verbal learning test (CVLT), number of times 

selected in the RF model (N), Betweenness Centrality (BC), High-Frequency Activity (HFA), 

correlation coefficient (r), probability value (p).  
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4 DISCUSSION 

 A fundamental question in network neuroscience regards the specific relationship between 

intrinsic network architecture and task-defined regional brain activity. Thus, the goal of this study 

was to focus on the understanding of the broader network features that underlie and support 

memory functionality, particularly when such functionality is defined through a regionally limited 

and sparse technology such as IEEG. We demonstrated that by integrating spectral markers of 

memory encoding (HFA) with rsfMRI data, one can identify network features of an IEEG-derived 
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verbal-memory network. This method also allowed us to reveal the diversity of memory encoding 

operations by revealing the contributions of multiple functional networks to successful memory. 

Given the inherent presence of a diseased sample when using IEEG data, we tested the generality 

of our findings by determining if the observed memory encoding network characteristics, as 

embedded in resting-state data, were similar in DRE patients and healthy controls. To assess the 

clinical validity of these memory network characteristics, we tested whether these characteristics 

were associated with actual, baseline verbal-memory performance. In summary, with a combined 

IEEG-rsfMRI approach, we were able to layout the network characteristics and multifaceted 

intrinsic cognitive components associated with successful verbal-memory encoding.   

The data demonstrates that BC, a measure of hubness, as opposed to CC, a measure of segregation, 

is important for driving memory-encoding networks toward successful recall. Studies have 

indicated that in the human brain, the highest hub scores localize in the DMN and FPNs (Power 

JD, et al., 2013;van den Heuvel MP et al., 2013). (Cole MW et al., 2013;van den Heuvel MP, et 

al., 2013), a finding consistent with our data. Compared to these dominant networks in the brain, 

we found that the HFA-memory network had a lower hub score, but nonetheless a level of hubness 

that sustained and supported successful memory encoding during IEEG testing. The apparent 

lower hub score for the HFA-memory network (i.e., AvgBC of MEM vs CN), appeared to emerge 

from the fact that the control nodes with which they were compared were located in regions with 

hierarchically higher hub scores. While there have been studies showing the hippocampus to be a 

part of the brain’s hub architecture (Van Den Heuvel MP et al., 2011), there has been no study 

outside of this current data to show, one, the distinctiveness of the hub score (AvgBC) of a memory 

network and, two, it’s standing relative to the hubness values of other cognitive control networks.  
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The hubness value of the HFA-memory network was not related to the presence of epilepsy, and 

was obtained in the setting of normative baseline memory scores.  As a point of contrast, we show 

that the DRE patients and healthy controls differed with respect to the regional segregation (CC) 

of both the HFA-memory network and their neighboring control nodes. This segregation effect 

appeared to be a consequence of epileptic pathophysiology, a finding consistent with the previous 

literature (Haneef Z et al., 2014).  

 Nodal hubness and segregation mirrored the above composite network findings. During 

the estimation of memory encoding during IEEG testing, we excluded electrodes and regions that 

were a part of the clinically hypothesized epileptogenic zone in order to avoid the effect of epileptic 

interictal and ictal discharges on the estimation of HFA-memory regions, both in terms of affecting  

a patient’s ability to encode words, as well as the power changes related to the epileptic discharges 

in IEEG data. This is in accord with previous studies which have shown that significantly altered 

BC localized and lateralized to the epileptogenic regions in both IEEG and rsFC (Haneef Z, et al., 

2014;Wilke C et al., 2011). Excluding those regions from analysis helped establish that the region-

effects we observed at both the network level (AvgBC) and nodal level (NodalBC) were, indeed, 

associated with successful encoding. Note, in the setting of intact CVLT–TL performance, the 

appearance of regional AvgBC effects points to the likelihood that the various HFA-memory 

regions work in unison to maintain the integrity of verbal-memory encoding. The positive 

relationship we observed in the RF model between task positive, cognitive control regions and 

stronger memory performance is evidence of the way cognitive control benefits memory. The 

negative relationship seen between some NodalBC values and memory performance is less clear. 

On this point, there is literature showing that the areas involved in the early stages of memory 

encoding such as the ventral attention stream (i.e., RFUSG2) may be de-activated later in the 
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memory encoding process (Burke JF, et al., 2015). Unfortunately, the low temporal resolution of 

rsfMRI would blur and be insensitive to this shift in activity, potentially leading to a negative 

correlation. 

To clarify further the nature of the HFA-memory hubness findings, we compared the BC 

of the HFA-memory network to well-known intrinsic networks. In work utilizing network 

controllability measures, Gu and colleagues (Gu S, et al., 2015) argued that the controllability of 

each of the intrinsic networks is unique. Applying this concept to the hubness results, we did see 

that the different cognitive networks operated at different hubness levels even in the resting-state. 

(n.b., the same networks examined by Gu et al. 2015).   

Importantly, we noted that the membership of different intrinsic networks in the HFA-

memory network makes clear that the HFA-memory network utilizes a diverse set of intrinsic 

functionalities to drive successful verbal-memory encoding. The HFA-memory network has major 

membership (55%) from cognitive controls systems that call upon attentional resources (DAN), 

lexical/semantic processing and memory consolidation (TN), and top-down control of executive 

functions (FPN, trial-specific control and selective attention; COpN, control of overall task goals 

and error monitoring) (Vaden KI, Jr. et al., 2013). Interestingly, we found that the HFA-memory 

regions that share membership with the intrinsic networks tend to operate at the same level of 

hubness as other constituents of the intrinsic network, with the exception of FPN and COpN 

networks (Figure 4c). These members of the HFA-memory network had a lower BC. (Sheffield 

JM et al., 2015). Other HFA-memory regions, utilizing cognitive processes that are part of other 

intrinsic networks, appear to operate at hubness levels that are comparable and optimal for the 

intrinsic networks as a whole (Figure 4c). Thus, out data indicates that effective memory encoding 

is not dominated by a central cognitive core, but is the result of a diverse set of componential 
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functions distributed across multiple intrinsic networks, largely involving task-positive networks, 

all toward the goal of maximizing subsequent recall. This distribution across multiple regions is 

likely reflective of adaptive “associative” encoding, consistent with the extensive literature 

showing that recruitment of multiple cognitive and sensory processes is a crucial feature of an 

effective memory (Cowan N, 2017;Tulving E et al., 1996).  

In order to go beyond a basic demonstration of the functional diversity of the HFA-memory 

network through data showing regional overlap, we investigated the interaction of the HFA-

memory network with the different intrinsic brain networks. Participation coefficient analysis 

showed that regions of the HFA-memory network connect with a diverse set of intrinsic networks, 

participating at a level higher than the VIN, AN, SMN which constitute the sensorimotor 

processing systems. The HFA-memory network operates at a level of AvgPC comparable to TN 

and DMN, though lower than the FPN, COpN and DAN, implying that the HFA-memory network  

communicates intensively with the cognitive control networks to achieve effective memory. 

Lastly, we verified through RF modelling that the hubness of selected HFA-memory 

regions were significantly associated with both baseline verbal-memory performance (CVLT-TL) 

and successful recall during simultaneous IEEG-memory encoding (P.REC). The regions found to 

be predictive of memory performance are consistent with literature showing language and 

executive function  processes (working memory, attention) mediate memory encoding, with such 

processes bringing semantic associations to bear during memory engram formation or utilizing a 

“central executive”  to manipulate incoming information in working memory (Gutchess AH et al., 

2005). Thus, similar to the data looking at the overlap with the intrinsic networks, the RF model 

pointed to the multivariate nature of memory encoding. Indeed, learning during the trials of the 

CVLT can be achieved through auditory attention and very short-term “holding” and covert verbal 
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recitation of the information, i.e., good performance does not require long-term memory storage. 

The fact that this involved mostly left as opposed to right hemisphere regions could potentially 

point to a material-specific effect related to the word lists and covert verbal processing (Campoy 

G, 2008;Cowan N, 2008). Overall, our data shows that the hubness of regions matters more than 

segregation for the prediction of both baseline verbal-memory encoding abilities and successful 

recall following periods of HFA-associated memory encoding activity.  

The two modalities we use, IEEG and rsfMRI, measure two biologically and technically 

unrelated signals (direct activity of neuronal ensembles and metabolic-rate-driven synchronous 

fluctuations in cerebral-blood-flow, respectively), each based on very different spatio-temporal 

scales. We employed a method of using the IEEG HFA derived memory regions in individual 

subjects and transforming them into a cortex-based intrinsic functional connectivity patterns. The 

advantage of such an integrated technique is multifold. First, from a statistical viewpoint, isolating 

HFA-memory regions allowed us to avoid, in both the inter- and intra-group comparisons, a large 

number of brain regions that are unassociated with memory encoding, reducing the chances of 

Type I error. The multiple comparisons performed in this study were restricted to the 29 regions 

and their corresponding controls regions, as opposed to correcting for ROIs of the entire 

Lausanne’s atlas. Second, the method of building a ‘Super-Brain’ allowed us to take advantage of 

the fine-grained temporal sequencing of cognitive events in IEEG, and reduce but not eliminate 

the problem of sparse spatial sampling. The use of a ‘Super Brain’ is widely established in 

cognitive studies to map reliable networks associated with memory encoding and retrieval 

(Greenberg JA, et al., 2015;Kragel JE, et al., 2017). Third, IEEG is a spatially constrained 

investigative modality (i.e., sparse sampling). However, integration of the data with a modality 

such as rsfMRI allowed for evaluation of function throughout the brain even if patients were not 
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implanted in those regions. This advantage has been exploited in previous studies involving 

isolation of the epileptogenic zone (Aghakhani Y et al., 2015), and in establishing task related 

BOLD-gamma relations (Esposito F, et al., 2013). Fourth, this type of integration opened up the 

door to studying the correspondence between BOLD signal changes and different frequency 

ranges, along with their linked behavioral activity. Indeed, linkages between neuronal synchrony 

and cognitive functions may be highly specific to the frequencies in which they occur. For instance, 

sensorimotor functions are regulated by beta synchrony (Brovelli A et al., 2004), and the 

correspondence between BOLD response and visual and auditory IEEG activity is regulated by 

synchrony (Esposito F, et al., 2013). Among the many different frequencies that can be studied in 

the IEEG, there has consistently been a close correspondence of the gamma band component of 

the local field potentials in the cerebral cortex with the BOLD signal for different motor, sensory 

and cognitive neuronal functions (Lachaux JP et al., 2007). Our results are certainly another 

example of this correspondence.  

A handful of studies have performed network analysis directly on memory task-IEEG 

signals, studying the network synchrony present during encoding process (Burke JF et al., 

2013;Solomon EA, et al., 2017;Vecchio F et al., 2016). Such studies have emphasized different 

properties of the gamma frequency band-width, including spectral power changes, phase locking 

value, and exact low resolution topographical analysis (eLORETA). These studies have found that 

increased gamma spectral power, asynchronous gamma oscillations coupled with synchronous 

theta and increased gamma-smallworldness, were associated with better verbal and non-verbal 

episodic memory performance. Solomon et al., examined high gamma during verbal-memory and 

observed both synchronous and asynchronous activity. They found that regions in frontal, 

temporal, and medial temporal lobe cortex  asynchronous with other regions, displayed a high level 
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of connection strength, implying a high level of centrality or hubness within the memory network, 

a finding broadly consistent with the current results (Solomon EA, et al., 2017). Our study, 

however, adds to the literature by showing that through repetitive processes of memory encoding, 

gamma frequency activity can establish synchrony to the point that even slow moving resting-state 

BOLD fluctuations reflect their network impact. This network impact can be best characterized as 

establishing a level of hubness distinct from other INs, yet spatially overlapping several INs, 

particularly those involved in cognitive control. In the first study of its kind, applying an integrated 

IEEG-fMRI method, we have shown that established markers of memory encoding correspond to 

meaningful network differences captured by rsfMRI. In clinical terms, knowing a region is a hub, 

playing an important role in multi-regional and multi-functional connectivity, may inform 

technologies trying to identify the most effective targets to electrically or pharmacologically 

stimulate for cognitive enhancement in areas such as memory (Ezzyat Y et al., 2017;Ezzyat Y et 

al., 2018;Kucewicz MT et al., 2018), or  perhaps be used to identify the areas with sufficient 

influence over targets to generate effective neurofeedback loops (Hohenfeld C et al., 2017;Murphy 

AC et al., 2017). Lastly, in the setting of clinical disorders such as epilepsy, knowledge of the 

broader functional network in which a given region is embedded, both its proximity to the seizure 

onset zone (Horak PC et al., 2017;Towgood K et al., 2015), and the degree to which it operates as 

a core hub of the functional network, may contribute to the risk/benefit calculus of resecting a 

region, essentially allowing clinicians to better account for the network context and 

behavioral/cognitive impact of surgery.  

In terms of the limitations of this study, the hippocampus was not significant for SME 

because it was found that in 11 of 37 subjects hippocampal electrodes were excluded from analysis 

as they were part of the seizure onset zone or interictal zone, though they constitute an important 
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part of the episodic memory network. Electrodes with higher epileptiform activity from regions 

such as the hippocampus, which is known to be involved episodic memory, were not included in 

the analyses, and the few electrodes that remained in these regions were not statistically significant 

for HFA. (Supplementary figure 8)(Yarkoni T et al., 2011). Note, the clinical memory performance 

of this cohort of DRE patients was within the normal range making the point that while the 

hippocampus is a crucial structure in memory encoding, it’s actually the entire network associated 

with encoding that maintains the integrity of the function. We also want to acknowledge that there 

are a large number of network centrality measures, each with their own sensitivities to aspects of 

network architecture. Betweenness centrality has the assumption that short paths lengths are an 

important part of centrality, and that a region inter-connecting or “between” the separate modules 

is important, leaving open the question as to whether the BC hub itself is actually densely 

connected.  

Conclusion: 

 In conclusion, the present study establishes that IEEG integrated with rsfMRI is a useful 

method for establishing the network characteristics associated with cognitive processes such as 

verbal-memory encoding. By combining group-level ‘IEEG-derived-memory’ findings with 

individual level rsfMRI data, we showed that repetitive gamma band frequency activity can 

establish synchrony to the point that even slow moving resting-state BOLD fluctuations reflect 

their network impact. Through this methodology, we were able to characterize key network 

features of HFA-memory related activity and demonstrate the integrative role played by other 

intrinsic cognitive networks. Accordingly, we have extended the field’s understanding of HFA-

memory-related activity beyond statements of isolated, regional functionality. By decomposing 

the HFA-memory network into its intrinsic cognitive components we were able to demonstrate 
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that effective verbal-memory encoding is not dominated by a central cognitive core, but is the 

result of a complex set of computational functions distributed across multiple intrinsic networks. 

We show that the HFA-memory network operates at distinct hubness levels, as do other intrinsic 

networks, all toward the goal of maximizing subsequent verbal recall, thereby clarifying the 

conditions of the baseline, tonic state that support effective, phasic, task-dependent memory 

encoding. We also verify that this trait-like network feature holds true for both epilepsy patients 

and healthy controls. We show that hubness matters more than segregation for the prediction of 

both baseline verbal-memory encoding success and recall following periods of HFA-associated 

memory encoding. Lastly, our DRE patients possessed intact episodic memory encoding and 

comprised a sample with regionally diverse epileptiform dysfunction. In this context, our data can 

be seen as displaying  the diverse set of regional hubness levels and functionalities potentially 

available to support effective memory encoding through compensatory brain reorganization.    
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