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Abstract. We propose a Generative Adversarial Network (GAN) model
named disease evolution predictor GAN (DEP-GAN) to predict the evo-
lution (i.e., progression and regression) of white matter hyperintensities
(WMH) in small vessel disease. In this study, the evolution of WMH is
represented by the “disease evolution map” (DEM) produced by sub-
tracting irregularity map (IM) images from two time points: baseline
and follow up. DEP-GAN uses two discriminators (critics) to enforce
anatomically realistic follow up image and DEM. To simulate the non-
deterministic and unknown parameters involved in WMH evolution, we
propose modulating an array of random noises to the DEP-GAN’s gen-
erator which forces the model to imitate a wider spectrum of alternatives
in the results. Our study shows that the use of two critics and random
noises modulation in the proposed DEP-GAN improves its performance
predicting the evolution of WMH in small vessel disease. DEP-GAN is
able to estimate WMH volume in the follow up year with mean (std) esti-
mation error of -1.91 (12.12) ml and predict WMH evolution with mean
rate of 72.01% accuracy (i.e., 88.69% and 23.92% better than Wasserstein
GAN).

Keywords: Evolution of WMH · DEP-GAN · disease progression.

1 Introduction

White matter hyperintensities (WMH) are neuroradiological features in T2-
weighted and fluid attenuated inversion recovery (T2-FLAIR) brain magnetic
resonance images (MRI) that have been associated with stroke and dementia
progression [13]. A previous study has shown that the volume of WMH on a pa-
tient may decrease (regress), stay the same, or increase (progress) over a period
of time [2]. In this study, we refer to these changes as “evolution of WMH”.

Predicting the evolution of WMH is challenging because the rate of WMH
evolution varies considerably across studies and patients [10], and factors that
influence their evolution are poorly understood [12]. Despite high WMH burden,
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hypertension, and increasing age have been commonly associated to the evolution
of WMH [10], bias in manual delineation of WMH towards progression when the
raters are aware of the scans’ time sequence [10] cannot be overlooked.

In this study, we propose an end-to-end training model for predicting the
evolution of WMH from baseline to the following year using generative adver-
sarial network (GAN) [4] and irregularity map (IM) [8,7]. This study differs to
the other previous studies on predictive modelling as we are interested in pre-
dicting the evolution of specific neuroradiological features in MRI (i.e., WMH in
T2-FLAIR), not in the progression of disease and/or its effect (e.g., progression
of cognitive decline in Alzheimer’s disease patient [3]). Predicting the evolution
of specific neuroradiological features in MRI is needed by physicians to estimat-
ing/indicating their probable size/location in the future.

The combination of GAN and IM is chosen because of several reasons. We use
IM as it enables us to represent the evolution of WMH at a voxel level precision
using “disease evolution map” (DEM) (full explanation in Section 2). On the
other hand, GAN is chosen as it is the state-of-the-art method to generate syn-
thetic images. Note that we would like to generate synthetic (fake) DEM which
mimics the true (real) DEM. Furthermore, both GAN and IM are unsupervised
methods which are not constrained to the availability of manual labels.

Our main contributions are listed as follows. Firstly, we propose a GAN
based model named disease evolution predictor GAN (DEP-GAN) to predict the
evolution of WMH. To our best knowledge, this is the first time a GAN based
model is proposed for this task. Secondly, we propose the use of two critics which
enforce anatomically realistic follow up image and modifications in DEM. Lastly,
we propose modulating an array of random noises to the DEP-GAN to simulate
the uncertainty and unknown factors involved in WMH evolution.

2 Representation of WMH Evolution using IM

Irregularity map (IM) in our context is a map/image that describes the “irregu-
larity” level for each voxel with respect to the normal brain white matter tissue
using real values between 0 and 1 [8]. The IM is advantageous as it retains some
of the original MRI textures (e.g., of the T2-FLAIR image intensities), including
gradients of WMH. IM is also independent from a human rater or training data,
as it is produced using an unsupervised method (i.e., LOTS-IM) [7].

Evolution of WMH at two time points can be obtained by subtracting the
baseline IM from the follow-up IM. We call the resulted image “disease evolution
map” (DEM) where its values range from -1 to 1. DEM’s values represent the
magnitude of the longitudinal change, where negative values mean regression
and positive values mean progression. As seen in Fig. 1, DEM calculated from
IM represents WMH evolution better than the one calculated from normalised
T2-FLAIR MRI. Note how both regression and progression (i.e. dark blue and
bright yellow pixels in the figure) are well represented on the DEM from IM at a
voxel level precision. T2-FLAIR MRI is not ideal to generate DEM as their voxel
values are rather a qualitative representation of the tissue’s spin-spin relaxation
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Fig. 1: Normalised T2-FLAIR (top) and corresponding irregularity maps (IM)
(bottom) produced by using LOTS-IM [7]. “Disease evolution map” (DEM)
(right) is produced by subtracting baseline images (middle) from follow up
image (left). In DEM, bright yellow pixels represent positive values (i.e., pro-
gression) while dark blue pixels represent negative values (i.e., regression).

time as it decays towards its equilibrium value. Whereas, IM is a quantitative
result of assessing how different each voxel is with respect to the ones that make
most of the brain tissue voxels (i.e. in T2-FLAIR MRI in this case) [7].

2.1 MRI data and IM generation

We used MRI data from all stroke patients (n = 152) enrolled in a study of stroke
mechanisms [12], imaged at three time points (i.e., first time (baseline scan), at
approximately 3 months, and a year after). This study uses the baseline and 1-
year follow-up MRI data (s = n×2 = 304), both acquired at a GE 1.5T scanner
following the same imaging protocol in [11]. T2-weighted, FLAIR, gradient echo
and T1-weighted structural images at all time points were rigidly and linearly
aligned using FSL-FLIRT [5]. The resulted working resolution of the images used
in this study is 256×256×42 with slice thickness of 0.9375×0.9375×4 mm. The
primary study that provided the data used a multispectral method to produce
the binary masks used to generate the brain tissue IMs (i.e. intracranial volume
(ICV), cerebrospinal fluid (CSF)), and stroke lesions (SL). The image processing
protocol is fully explained in [11]. For this study, we obtained IMs from each
patient FLAIR imaging data using LOTS-IM [7] with 128 target patches.

3 Disease Evolution Predictor GAN (DEP-GAN)

We propose a GAN model for predicting WMH evolution namely disease evo-
lution predictor GAN (DEP-GAN). DEP-GAN is based on the visual attribu-
tion GAN (VA-GAN) originally proposed to detect atrophy in T2-W MRI of
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Fig. 2: Schematic of the proposed DEP-GAN with 2 discriminators (critics).

Alzheimer’s disease [1]. DEP-GAN consists of a generator loosely based on U-
Net [9] and two convolutional network critics, where baseline images are feed
forwarded to the generator and fake/real images of follow up and DEM are feed
forwarded to two different critics (see Fig. 2).

Let x0 be the baseline (year-0) image and x1 be the follow up (year-1) image.
Then, DEM (y) is produced by simple subtraction of x1 − x0 = y. To generate
a fake DEM (y′) without x1, we use a generator function (M(x)), where y′ =
M(x0). Thus, a fake follow up image (x

′

1) can be easily produced by x
′

1 =
x0 + y′. Once M(x) is well/fully trained, x

′

1 (fake year-1) and x1 (real year-1)
are indistinguishable by a critic function D(x) while y′ (fake DEM) and y (real
DEM) are also indistinguishable by another critic function C(x). Full schematic
of DEP-GAN’s architecture (i.e., its generator and critics) is provided in the
supplementary material.

Unlike in the original VA-GAN model [1], two critics (i.e., D(x) and C(x))
are used to enforce both anatomically realistic modifications to the follow up
images [1] and anatomical reality of the modifier (i.e., DEM). In other words, we
argue that anatomically realistic DEM is also important and essential to produce
anatomically realistic (fake) follow up images.

In this study, we opted for using 2D networks rather than 3D networks
because there were only 152 MRI data (subjects) available. For comparison,
VA-GAN, which uses 3D networks, used roughly 4,000 MRI data (subjects) for
training, yet there was still an evidence of over-fitting [1]. 2D version of VA-GAN
itself has been tested on synthetic data [1] and available on GitHub1.

3.1 Non-deterministic and unknown factors of WMH evolution

The complexity in modelling the evolution of WMH is mainly due to its non-
deterministic nature, as the factors that influence it are not fully well known.
Previous studies have identified some associated factors (e.g., age, blood pres-
sure, and WMH burden), but their level of influence differs in each study [10,12].

To simulate the non-deterministic and unknown parameters involved in WMH
evolution, we propose modulating random noises (z ∼ N (0, 1)) to every layer of
the DEP-GAN’s generator using Feature-wise Linear Modulation (FiLM) layer
[6] (see green block in Fig. 3). In FiLM layer, γm and βm modulate feature maps

1 https://github.com/baumgach/vagan-code
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Fig. 3: Schematic of DEP-GAN’s generator with Feature-wise Linear Modulation
(FiLM) layer [6] (depicted in green block) to simulate the non-deterministic and
unknown parameters involved in WMH evolution.

Fm, where subscript m refers to mth feature map, via affine transformation:

FiLM(Fm|γm, βm) = γmFm + βm (1)

In this study, γm and βm for each residual block (ResBlock) are determined
automatically by convolutional layers (yellow blocks in Fig. 3). In this study, the
random noises follow Gaussian distribution of z ∼ N (0, 1) with the length of 32.

3.2 Loss function of DEP-GAN

We build DEP-GAN based on the improved Wasserstein GAN (WGAN-GP) that
finds the optimal M(x) generator function using training approach proposed in
[4]. We use a gradient penalty factor of 10 for all experiments. The optimisation
of M(x) is given by the following functions:

M∗ = arg min
M

max
D∈D

Lcritic(M,D) + arg min
M

max
C∈C
Lcritic(M,C) + Lreg(M) (2)

Lreg(M) = [λ1

∥∥∥x′

1 − x1
∥∥∥
1
+λ2(1−DSC(x

′

1, x1))+λ3

∥∥∥vol(x′

1)− vol(x1)
∥∥∥
2
] (3)

Lcritic(M,D) = Ex1∼P1
[D(x1)]− Ex0∼P0

[D(x0 +M(x0))] (4)

Lcritic(M,C) = Ex0,x1∼P0,P1
[C(x1 − x0)]− Ex0∼P0

[C(M(x0))] (5)

where x0 baseline images come from underlying distribution of P0, x1 follow
up images come from underlying distribution of P1, M(x0) are fake DEM, x

′

1 =
x0+M(x0) are fake follow up images, D and C are the set of 1-Lipschitz functions
[1,4], and ‖·‖1/‖·‖2 are the L1/L2 norm.

In summary, to optimise the generator M(x), we need to optimise Eq. 2,
which optimises both critics (i.e., D(x) and C(x)) based on WGAN-GP [4], and
regularise it with Eq. 3. The regularisation function (Eq. 3) simply says: a) fake
follow up images (x

′

1) have to be similar to real follow up images (x1) based
on L1 norm [1], b) WMH segmentation from x

′

1 has to be spatially similar to
WMH segmentation from x1 based on the Dice similarity coefficient (DSC), and
c) WMH volume (ml) from x

′

1 has to be similar to WMH volume from x1 based
on L2 norm. The WMH segmentation of x

′

1 and x1 is estimated by thresholding
their IM values (i.e., irregularity values) to be above 0.178 [7]. Each term in Eq.
3 is weighted by λ1, λ2, and λ3 which equals to 100 [1], 1 and 100 respectively.
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4 Experiment and Evaluation Setups

We used T2-FLAIR MRI data obtained at two different time points (i.e., 1
year interval) from 152 stroke patients. For testing, we selected 30/152 subject’s
data with visible increase (i.e., progression) (19 subjects) and decrease (i.e.,
regression) (11 subjects) in WMH volume. Thus, data from 122 subjects (i.e.,
244 baseline and follow up MR images) were used for training. As previously
described in Section 3, all tested models were trained in 2D (i.e., per slice)
manner. Out of all slices from training data, 20% of them were randomly selected
for validation. Thus, around 4,000 slices were used in the training process.

From the co-registered scans [11], we generated IM using LOTS-IM [7] with
128 target patches and removed the extracranial tissues and skull from the base-
line and follow up T2-FLAIR images. Then, T2-FLAIR values were normalised
between 0 and 1, similar to IM’s values. We also excluded the stroke lesions using
the SL masks obtained from previous analyses [2,12] as per [11].

We evaluated WGAN-GP, VA-GAN, and DEP-GAN with 1 critic (for follow
up data only) and compared their performances with DEP-GAN with 2 critics
(for follow up data and DEM). We used our implementation of 2D VA-GAN, fol-
lowing [1]. For WGAN-GP, we modified our implementation of VA-GAN so that
its critic learns to distinguish real/fake DEM, not follow up data. Furthermore,
T2-FLAIR was also used as input channel for the generator of DEP-GAN. On the
other hand, only IM was feed-forwarded to the critics of DEP-GAN/VA-GAN.

Following [1,4], all methods were optimised by updating the parameters of
critic(s) and generator in an alternating fashion where (each) critic is updated
5 times per generator update. Furthermore, for the first 25 iterations and every
hundredth iteration, critic was updated 100 times per generator update [1]. The
generator itself was updated 200 times (i.e., 200 epochs).

In this study, we used 3 evaluation metrics, i.e., 1) estimation error of WMH
volume in the follow up year, 2) prediction error of WMH evolution (i.e., whether
WMH in a subject will regress/progress), and 3) Dice similarity coefficient (DSC)
(i.e., evaluating the location of WMH evolution). Estimation error of WMH
volume (in ml) is calculated as Errvol = vol(x

′

1)−vol(x1). Whereas, to calculate
the DSC, we first performed subtraction between WMH segmentation of the
baseline image (x0) from WMH segmentation of the real (x1) and fake (x

′

1)
follow-up images. Then, we labelled each voxel as either “Shrink” (Sr.) if it has
value below zero, “Grow” (Gr.) if it has value above zero, or “Stay” (St.) if it has
value of zero. DSC itself can be computed as DSC = 2TP/(2TP+FP+FN) where
TP is true positive, FP is false positive and FN is false negative. As previously
mentioned, WMH correspond to IM values equal or higher than 0.178 [7] is used
as main reference (i.e., ground truth).

5 Result

All quantitative evaluations are listed in Table 1, where performance of DEP-
GAN-2C (i.e., with 2 critics) is compared to the performance of WGAN-GP,
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Table 1: Evaluations of predicting WMH evolution using volumetric error
(Errvol), accuracy of evolution prediction (Predevo), and Dice similarity coeffi-
cient (DSC). Abbreviations: “std.” for standard deviation, “med.” for median,
“Sr.” for shrink, “Gr.” for grow, “St.” for stay, and “Avg.” for average.

Method
Errvol (ml) Predevo (%) DSC

mean std. med. min max Sr. Gr. Avg. Sr. Gr. St. Avg.

WGAN-GP [4] -16.89 13.30 -15.58 -58.94 1.08 90.91 5.26 48.09 0.3082 0.1600 0.6926 0.3869
VA-GAN [1] -18.76 12.99 -16.57 -59.76 1.10 90.91 0.00 45.46 0.0409 0.2356 0.7011 0.3259
DEP-GAN-1C -4.11 12.12 -4.45 -46.20 33.67 81.82 15.79 48.80 0.3979 0.0862 0.6838 0.3893
DEP-GAN-2C -1.91 12.12 -1.89 -44.35 34.73 54.55 89.47 72.01 0.4833 0.1325 0.6606 0.4272

VA-GAN, and DEP-GAN-1C (i.e., with 1 critic). Depiction of real DEM and
fake (generated) DEM can be seen in supplementary materials.

From Table 1, we can see that DEP-GAN-2C performed better than the
other methods in all experiments. Estimating WMH volume, DEP-GAN-2C and
DEP-GAN-1C are the best and second-best methods with mean error of estima-
tion -1.91 ml and -4.11 ml (i.e., 88.69% and 75.67% better than WGAN-GP).
Whereas, WGAN-GP and VA-GAN largely underestimated the WMH volume.

DEP-GAN-2C also performed better than the other methods in evolution
prediction. DEP-GAN-2C correctly predicted WMH evolution with average rate
of 72.01% (i.e., 54.55% for shrink and 89.47% for growth). Whereas, WGAN-GP,
VA-GAN, and DEP-GAN-1C failed to predict the growth of WMH most of the
time. Note that this correlates with the estimation of WMH volume experiment.

In DSC evaluation, DEP-GAN-2C performed better than the other methods
with average DSC of WMH evolution 0.4272 (i.e., 0.4833, 0.1325, and 0.6606 for
shrink, growth, and stay respectively). On the other hand, WGAN-GP, VA-GAN,
and DEP-GAN-1C performed worse than DEP-GAN-2C where the average DSC
were 0.3869, 0.3259, and 0.3893 respectively.

6 Discussion and Future Work

In this study, we propose an end-to-end model named DEP-GAN with 2 critics
(DEP-GAN-2C) which outperformed WGAN-GP, VA-GAN, and DEP-GAN-1C
for predicting the evolution of WMH from 1 time point assessment without any
manual WMH label. Based on the results, DEP-GAN-2C had the best perfor-
mance amongst other methods in estimating both size and location of WMH in
the future/follow up. However, we found that identifying the position of WMH
evolution (especially for progression/growth) is the most challenging part of the
study as DSC metrics are still low for all methods. From visual inspection of
the fake (generated) DEM, we observe that: 1) VA-GAN emphasised major pro-
gression/regression, but it neglected minor ones which lead to very low DSC
on shrinking WMH; 2) DEP-GAN-1C produced better DEM than VA-GAN
thanks to better loss function and simulation of uncertainty/unknown factors,
but it does not look realistic like the DEM produced by DEP-GAN-2C; and
3) WGAN-GP produced surprisingly realistic DEM, but it fell short in other
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evaluations. In the future, the performance of DEP-GAN might be improved by
modulating other biomarkers (i.e., non-MRI) to the generator.
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Supplementary Materials

Fig. 4: Architecture of generator (top) and critics (bottom) of DEP-GAN. Note
the proposed additional randomness scheme is also depicted where random noises
are encoded using convolutional layers (yellow) and then modulated to the gen-
erator using FiLM layer (green) inside ResBlock (light blue).

Fig. 5: Comparison between real DEM and fake DEM generated from different
networks of GANs.
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