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Abstract

Relative Metabolic Differences version 2 (RMetD2) is a tool for integration of differentially
expressed (DE) genes into genome-scale metabolic models (GEMs) for revealing the altered
metabolism between two biological conditions. This method provides a robust evaluation
of the metabolism by using flux ranges instead of a single set of flux distributions. RMetD2
classifies reactions into three different groups, namely up-regulated, down-regulated and
unchanged, which enables systematic interpretation of the metabolic differences between
two different conditions. We employed this method in three different case studies using
mice and human datasets, and compared it with state-of-the-art methods used for studying
condition-specific metabolic differences using GEMs. We observed that RMetD?2 is capable
of capturing experimentally-observed features that are missed by other methods,
highlighting its potential use in biotechnology and systems medicine applications. RMetD2
is implemented in Matlab and it is available without any limitation at

https://sourceforge.net/projects/rmetd.
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1 Introduction

Genome-scale metabolic models (GEMs) are the comprehensive collections of known
biochemical reactions and associated protein coding genes that are present in specific cells,
tissues and organisms. They have been applied in metabolic engineering, antibiotic design,
and increasingly used in revealing the underlying disease mechanism, discovery of
biomarkers and identification of drug targets [1-7].

Many GEM based methods have been developed to help researchers understand
biological data by integrating transcriptomic data obtained from different conditions [8].
Compared to simple enrichment analysis, GEM based methods could interpret the datain a
connected manner based on network topology, and infer changes in remote pathways. For
instances, Jerby et al. developed iMAT to construct context specific GEM for liver and
predicted their hepatic flux changes which were later validated with experimental
measurements [9]. In addition, Agren et al. developed a method called INIT which uses
transcriptomic data and network topology of GEM to build cell type specific GEMs that
exhibited different metabolic capabilities [10]. In another study, mCADRE was developed
and used for reconstruction of GEMs for 126 human tissues and tumors, and proposed
potential drug targets that specifically affect tumors based on their different topology [11].

Even though detailed insights can be gained based on network topology, predicting
actual fluxes based on absolute transcriptomic data is a challenging task [12]. In this context,
MADE [13], tFBA [14] and several other methods [15, 16] have been developed and applied
to investigate the altered metabolism using GEMs and relative changes of gene expression.
However, since there is a large solution space even when the objective function is optimized
[17], it is difficult to identify consistently changed metabolic reactions using the above
mentioned methods. On the other hand, there are also methods, such as reporter

subnetworks [18], that identifies key metabolic subnetworks using relative transcriptomic
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data and the topological structure of GEMs. But these methods neglect stoichiometric
information in the model and could likely miss some key reactions [19].

Here, we present the systematic formulation of a method called Relative Metabolic
Differences version 2 (RMetD2). RMetD2 integrates relative gene expressions together with
the stoichiometric structure of GEMs to identify key up-/down-regulated metabolic
reactions that are most relevant to the changes in the transcriptome. The concept of RMetD
has been successfully used in number of recent studies [4, 20, 21]. Unlike previous methods,
RMetD2 stretches the potential biological effects into many steps by setting gradient
constraints to the differentially expressed reactions. In this way, RMetD2 could be used to
identify significantly up-/down-regulated reactions by correlation of flux ranges of all
reactions, which allows users to prioritize and refine the key metabolic reactions and

pathways, and enables detailed systematic interpretation of the biological data.

2 Materials and methods

2.1 GEM and simulation

Three GEMs have been employed for case studies. The first one is iHepatocyte2322, which
is a GEM for human liver generated based on both transcriptomics and proteomics data in
a previous study [22] and the irreversible format is used, which included 10565 reactions,
5195 metabolites and 2328 genes. The constraints for the model were taken from another
study where the fluxes in liver tissue were measured and derived based on the body
composition [4]. Mouse intestine GEMs, iMouse-Smallintestine, has been reconstructed in a
previous study based on proteomics data, and the constraints for both conventional raised
and germ-free mice are calculated based on the dietary consumption of the mice
considering the effect of gut microbiota [4]. The irreversible version of this GEM has 8055
reactions, 4408 metabolites and 2337 genes. The secretion of chylomicron and HDL

secretion were ensured by setting them as mandatory functions for the model according to
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the original study. The differentially expressed (DE) genes between the intestine of germ-
free and conventionally raised mice were obtained from the same study [4]. The GEM for
human cancer cell line HepG2 is generated in another recent study [21] based on
transcriptomic data and exchange constraints calculated from the formulation of the
cultivating medium. The irreversible form of the model which has 5403 reactions, 2784

metabolites and 1957 genes was used by RMetD?2 in this study.

2.2 RMetD2

To clearly demonstrate the rationality of this method, we provide a toy network with 10
reactions and 3 genes as shown in Figure 1A. In this simplest case, if G1 which is associated
with R3 is up-regulated, and G2 and G3 which are respectively associated with R5 and R8
are down-regulated, we could easily tell that the flux through R3 and R4 should be increased
and fluxes via R10 should be decreased based on the topology. However, if G2 and G3 are
changes in opposite direction, it will be tricky to predict the changes of flux via R10, since it
will be dependent on the original flux scale and stoichiometric coefficients of both R6 and
R9. And this scenario is very common in real cases studying biological changes in a genome-
scale.

The principal idea of RMetD2 is: to push the constraints of the flux for up- and down-
regulated reactions respectively up and down using DE genes as indicator of directions (as
shown in Figure 1B). The key concept of RMetD2 is to divide this process into several steps
so that the consistency of the changes could be evaluated. The input for RMetD2 includes a
GEM in either COBRA [23] or RAVEN [24] format (where objective function is optional), the
DE genes and their fold changes (perturbed vs. reference). Additional constraints for the
perturbed state model may optionally be added in case there are known metabolic
differences between the two biological states (e.g. change of medium or gene knock-out).

Otherwise, the original constraints of the input model are used. Using these inputs, RMetD2
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classifies reactions into 3 different groups, namely up-regulated, down-regulated, and
unchanged, based on the changes in flux ranges, and provide correlations and significance
of relevance of each reaction to the biological change (as shown in Figure 1C). For instance,
if G1 and G2 are up-regulated, and G3 is down-regulated, R4, R9 and R10 will probably be
respectively classified as up-regulated, down-regulated and unchanged. It should be noted
that, we used ‘constraints’ for the upper and lower bounds allowed for the reactions, and
‘flux ranges’ for the actual achievable maximum and minimal fluxes (with objective function
maximized if there is any).

The implementation of RMetD2 includes several steps: (1) The given GEM is
converted to an irreversible form so that all reactions will not carry any negative fluxes. (2)
We identified up-/down-regulated reactions by associating DE genes using gene-protein-
reaction relationships in GEMs. In brief, reactions associated with only up- (or down-)
regulated genes are defined as up- (or down-) regulated genes. When a reaction is catalyzed
by a protein complex that consists of several subunits and they show different expression
change directionality, this reaction is defined as down-regulated since the down-regulation
of one subunit will result in the decrease of the whole protein complex. In case of reactions
catalyzed by multiple isozymes showing different expression directionalities, we define
them as not significantly changed and leave it as it is in order to avoid false positives. (3)
We calculated the upper and lower bounds for all up-/down-regulated reactions by flux
variabilities analysis (FVA) based on the provided constraints (and if applicable, objective
function), for both reference and perturbed model. (4) Then, we created n (default is 5)
models in addition to the reference model and calculated flux ranges for all of the reactions
by pushing the constraints to the same direction as the changes of related gene expression.
The mathematical expression is defined as below:

max/minv;; (G =1,2,..,n)

Sitoxij* A< vij <xj*B;j (I €Rgy)
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x;j €{0,1} (i € Rgy)
Xi,j + Xi rev,j = 1 (i € Rforw)
Ajj= min{ai,ref' ai,pert} (i & Ryp U Rc)

Bi,j = max{ﬁi,ref'ﬂi,pert} (I € Rgown UR,)

J .
Ai,j = jref + Xmax * E (:Bi,pert - ai,ref)(l € Rup)
_ J .
Bi,j - ﬁi,ref - Xmax * E (ﬁi,ref - ai,pert)(l € Rdown)

J J .
Ai,j = jref + E (ai,pert - ai,ref) and Bi,j = ﬂi,ref + E(.Bi,pert - ﬂi,ref)(l € Rc)

where v;; is the flux for ith reaction in jth model, @i and f;.s are upper and lower
constraints for ith reaction in the reference model, whereas @;per: and fper: are upper and
lower constraints for ith reaction in the perturbed model. Rai, Rup, Raown and R. represents
all, up-regulated, down-regulated and constrained reaction sets, respectively. Rprw
represents forward reactions of all reversible reactions in the original model. x;; is the
binary variable defining whether ith reaction in jth model could carry flux, and x; rev; is the
binary variable of the reverse reaction of ith reaction. They are added to make sure that only
one of the divided reversible reactions in irreversible model should carry flux and be
constrained. Xmqx iS a constant parameter calculated by bisectional searching, and
introduced to push the fluxes as much into the same direction as the gene expression
changes as possible but still in feasible ranges. (5) Finally, we defined every reaction as up-
/down-regulated or unchanged based on the Spearman correlation between two vectors, V;

and X, that calculated as below:

— mean mean mean mean LA
Vi={virer vit oVip e Uiy 30 =1.2,..,m)

pmean — (vmax + virnin)/z

i,Jj i,j )

X = {XOIXIJXZJ ...,Xn}


https://doi.org/10.1101/663096
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/663096; this version posted June 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

where V; is the average flux vector of ith reaction in the model, and X is what we call step

vector. Note that v;;5%" is the average of maximum and minimum flux range for ith reaction

in reference model. If V; is significantly positively/negatively correlated with X (P
adjusted<0.05), the ith reaction is defined as up-/down-regulated, respectively; otherwise,

it is defined as unchanged.

2.3 MADE

We compared the predictions of RMetD2 with those of MADE, a tool frequently used to
compare two conditions using GEMs. MADE is implemented through the TIGER toolbox
[25], and the time limit is set to 36000s. The flux ranges for all reactions were also calculated
by the built-in function ‘fva’ in TIGER toolbox designed specifically for TIGER MADE GEMs.
2.4 Metabolic subsystem enrichment test

Each reaction in GEMs is annotated with a specific metabolic subsystem. Therefore, the
significance of overlapping between reactions of different RMetD2 classes and metabolic
subsystems of GEMs may be assessed using hypergeometric test. In this study, a RMetD2
class is enriched in a metabolic subsystem if the adjusted hypergeometric test P value of the
overlap is less than 0.05 after Benjamini and Hockberg correction for multiple hypothesis
testing.

For simple enrichment analysis, we used again GEMs for fair comparison. All genes
associated with a specific metabolic subsystem in GEM is retrieved based on its gene-
protein-reaction annotation, and up-/down-regulated genes are enriched in a metabolic
system if the overlap is statistically significant using the same cutoff as metabolic subsystem
enrichment test.

2.5 Availability and requirement
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RMetD?2 is a method build in Matlab (version R2017a) environment, and the source code is

available at https://sourceforge.net/projects/rmetd/. In order to have fair comparison

wherever relevant, the IBM ILOG CPLEX Optimization Studio v12.8 was employed for
solving all linear programming and mixed integer linear programming in this study.

3 Results

3.1 Case 1: Liver before and after low-carbon diet

For benchmarking, a show case is provided where RMetD2 was used to reveal the metabolic
differences in liver before and after carbon-restricted diet based on transcriptomics data
generated in a previous study [4]. Tissue biopsy samples were taken from patients with
fatty liver diseases before and one week after dietary change. In addition, the liver fat
content is measured for both time points and found to be significantly decreased in subjects.
The data used as an experimental benchmarking point for the in silico methods. We found
that 952 and 3263 genes respectively significantly up- and down-regulated (FDR<0.05)
between two different conditions. With implementation of RMetD2 with no predefined
objective function, we identified 808 and 4987 significantly up- and down-regulated
reactions (FDR<0.05), respectively. As expected, the reaction ‘HMR_9883’, which refers to
triacylglycerol pool generation and thus indicates the accumulation of liver fat in the GEM
is among the ones that are significantly down-regulated. For comparison, we also generated
condition specific GEMs using MADE which is one of the most frequently used methods for
comparing two conditions, and does not require predefined objective function. We
compared the mean flux range before and after dietary change obtained by MADE. We
identified 4267 and 811 reactions that respectively up- and down-regulated. Interestingly,
as shown in Figure 2 we found that MADE predicted an increased flux through liver fat
accumulation, which is the opposite to what we observed experimentally and
computationally using RMetD2. Our analysis strongly demonstrated the advantage of using

RMetD2 in biological applications.

10


https://sourceforge.net/projects/rmetd/
https://doi.org/10.1101/663096
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/663096; this version posted June 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3.2 Case 2: Liver cancer cell line before and after gene inhibition

We also applied RMetD2 to investigate the metabolic difference between wild-type and
PKLR inhibited liver cancer cell line, HepG2, using constraints and DE genes from our recent
study [21]. The reference GEM of HepG2 was reconstructed in the same study based on
transcriptomic data as well as composition of culture medium using tINIT [26]. The DE
genes strongly related to silencing of PKLR (adjusted P <0.0001, n = 1242) were used as
input for RMetD2. As a result, RMetD2 suggested 274 and 2078 reactions to be up- and
down-regulated, respectively. = Among the down-regulated reactions, we found
‘HCC_biomass’ and ‘TAG_accumulation’, and these suggest decreased growth and
triacylglycerol accumulation in PKLR inhibited HepG2 cell line which was also validated
experimentally in the same study. In addition, we also found ‘HMR_4381’, which is the
conversion reaction from glucose-6-phosphate to fructose-6-phosphate and a key step in
glycolysis, is classified as down-regulated. This suggested a decreased glucose consumption
through glycolytic pathway, and as expected, we also found a deceased glucose
consumption in PKLR inhibited cells in our experimental validation. These results further
demonstrated the power of RMetD2.

3.3 Case 3: Intestine of conventional raised mice vs. germ-free mice

To further demonstrate the use of RMetD2 in integration of additional constraints, another
show case is provided. RMetD2 was used to reveal the metabolic differences between germ-
free and conventional raised mice based on the dietary inputs and DE genes obtained from
the previous study [21]. Since most of the frequently used methods could not be used for
integrating additional constraints together with transcriptomic changes, we only compared
the RMetD2 result with experimental observations. In summary, we found that 323 and 616
genes significantly up- and down-regulated, respectively (FDR<0.05), and found that 130
and 2446 reactions are up- and down-regulated, respectively between between germ-free

and conventional raised mice. In addition, we found that the maximal production of
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chylomicron in the last step model is decreased in conventional raised mice which is
consistent with the conclusion of the original study [23]. Moreover, the HDL production
reaction is among the down-regulated reactions, which is also in agreement with the
previous study [23]. Additionally, the flux ranges for these two reactions are calculated with
only constraint changes while neglecting the gene expression changes. The flux range of
chylomicron secretion is decreased which is the same as we found using RMetD2, but the
HDL production capability is increased. This implies that the key to infer the decrease of
chylomicron is the constraint changes, while the decrease of HDL secretion seems like a
result of transcriptomic changes.

In addition, we performed metabolic subsystems enrichment analysis for up- and down-
regulated reactions obtained from RMetD2. As shown in Figure 3, the enriched up-regulated
metabolic pathways in conventionally raised mice include histidine metabolism,
phenylalanine, tyrosine and tryptophan metabolism, branch amino acids metabolism and
oxidative phosphorylation. These might reflect the difference in diet, since we observed that
conventional mice ate around 20% more in general. On the other hand, the down regulated
reactions are enriched in many different pathways, including almost all fatty acids
metabolic process such as beta oxidation of fatty acids, fatty acids biosynthesis, carnitine
shuttle and glutathione metabolism. The down-regulation of these pathways suggests that
there might be less free fatty acids in blood of conventional raised might to deal with.

We also compared the enriched subsystems with the ones suggested by simple DE gene
enrichment analysis, and we found many differences as shown in Figure 3. Most of the
significantly enriched metabolic pathways disappeared in simple gene enrichment analysis,
which is expected since it will miss metabolic pathways that have no association with DE
genes but directly or indirectly linked with those significant changed pathways through the
topology. One good example is glutathione metabolism, which is indirectly linked to many

different metabolic pathways and account for the cofactor balancing in the whole system.

12


https://doi.org/10.1101/663096
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/663096; this version posted June 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Glutathione level is shown to be decreased in conventional raised mice according to
RMetD2, and this is in very good agreement with the original study in which the key finding
is that gut microbiota modulates host glutathione metabolism. However, simple enrichment

analysis completely missed it, which highlighted the advantage of RMetD2.

4 Discussion

In this study, we proposed a novel method called RMetD2 which can be used to integrate
relative transcriptomic changes into GEMs and identify consistently up-/down-regulated
reactions. We used RMetD for interpretation of the metabolic shift between two conditions
at systems level. Unlike other methods, RMetD2 focuses on identifying relative change of
reactions instead of having quantitative predictions since we are very well aware of the
limitation of currently available data. To quantitatively predict the flux distribution using
transcriptomics data, theoretically we need to know the translational efficiency of each
gene, and kinetic values for all enzymes. Unfortunately, very few of them are currently
available at genome-scale for any organism to the best of our knowledge. Therefore, we
defined the main purpose of RMetD2 to identify key metabolic reactions or pathways in
GEMs that are most relevant to the biological changes between conditions by integrating
transcriptomic changes as well as any additional fluxomics data whenever it is available. In
addition, RMetD2 could be implemented without predefined objective function, which is a
great advantage for tissue modelling where there is no clear objective. We have shown in
our case study that RMetD2 exhibited better predictions over MADE which is frequently
used and thought to be among the best state-of-the-art methods.

It should be noted that in this method, gene-expression data are integrated as hard
constraints which is the same as many other methods, such as GX-FBA [27]. Therefore,
falsely annotated genes might have a significant impact on the results. So, the use of high

quality GEM is very important and will likely improve the performance of RMetD2.
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Figure legends

Figure 1. B (A) Toy model with solid red arrows, yellow circles, dashed arrows and yellow
arrows representing metabolic reactions, metabolites, reaction-gene associations and
metabolic genes, respectively. (B) Concept of constraining up- and down-regulated
reactions in RMetD2. The constraints of lower bounds for reactions that are associated with
up- regulated genes are pushed up step by step until they reach the maximal feasible limits,
and vice versa. (C) Line plot examples showing the respective changes in flux ranges of up-
, down-regulated and unchanged reactions. The x-axis indicates the average of the maximal

and minimal flux range, and the y-axis indicates which step model it is.

Figure 2. Barplot showing the relative liver TAG content at day 0 and day 7 for experimental
measurement and in silico predictions generated by MADE and RMetD2. All values are

normalized by the DO.

Figure 3. Heatmap showing the metabolic pathways enriched with up- and down-regulated
reactions in intestinal of conventional raised mice compared to those of germ-free mice. The
red and blue color in the heatmap represent significantly enriched with up-regulated and
down-regulated reactions, respectively. The white color in the heatmap indicates there is

no significant enrichment.

18






700%

600%

500%

400%

300%

200%

100%

0%

Experimental

Relative TAG production

MADE
m DO mD7

RMetD


https://doi.org/10.1101/663096
http://creativecommons.org/licenses/by/4.0/

sappritspmsenbessssesaduadialebaggeacicfocle

Up_Enrich

Up_RMetD
Down_Enrich

Down BEMetD

LUS|| 00E)E W SUIUE[Y-E184
LUS||3 El=lU 9F LB M

LISICEIRL SLIDNSOS! PUB ‘a8UIONS] "SUllEA
LS| 0gBEIE W INYNS

wsljogeaw mdiobuiyds

LUS|| 0 E1SL S1BANIAL

LISI0OEIRLW S UIpIWLAL

LUS|| o ElEW aulng

LOIED PO U1a10l 4

ws|ogeew uiydiog

SuUDDER) |00d

gisayuisog ueydoydiu] pue suisold] ‘suueElAUSY
Aemyied s1eydsoyd asouag

uanefloydsoyd saemxn

LS| oqelsw poe Alel g-ebawn

LUS|| 00 B} SPILLIEUICIIU PUB S]EUNOIIN

05td aWoiya01Aa A SONGIqouss 10 WSIog BRI
palE|os]

wsnoqelew s1eydsoyd ousou)

LUS|ardEleLU 2 UIRISIH

salles onbueb-siseyuisog pdobuydsoodg
sizauafosucan|o [ SIsA00AD

LSI[OEISLL SUILCGEIL] PUE SULSS BUIDAID
wsioqejaw pdoydsoydoisado

ws|oqeaw pdioeadn

LUSI[0EIELW SUDIIEINID

Slalsa |[cualse|oyD 10 SISApAY PUB UCIBLLIOS
SUDI)0ER) JBJSUE]] pIoe Ape

uonebuoie poe Aneq

UIEINIESS P IOE AJEL

SISBYIUASDIG PIOE AES

USEAIIDE PIDE AES

suooeal abueloxg

£ sisayluAsalg |aualsaloy D

| sisayjufsoig [cualsaloy D

SIUNYS SUILED

LSO Blall uayg

SPIDE AJJE] PEIEIMBSUN JO UDIIERIXG Bl2H

SPIoE AJJEJ UIBYD-PRO JO UDIERIXC B18G

SPIOE ANE] UIEYD-USAS 10 UDIEPIXO Blag

SpIOE ANE] PRIEIMEBSUN-IR 1O UDIERIXG Bl2E
Ws|oqeew aujoid pue suu By

LUS||0E18W PIDE DIUORUDI BN

SISELILASTT YN - AIBOUILLY

wsiogqeew Jebng apposionu pue Jebns ouwy
wsioqeew sewenb pue sjepedse ‘sulue)y
LUSHoqeIaW sapuasd Biioy

sishjeipAy woo-lioy


https://doi.org/10.1101/663096
http://creativecommons.org/licenses/by/4.0/

