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45 Abstract
46 Microbial colonization of bone is an important mechanism of post-mortem skeletal degradation. 
47 However, the types and distributions of bone and tooth colonizing microbes are not well characterized. It 
48 is unknown if microbial communities vary in abundance or composition between bone element types, 
49 which could help explain patterns of human DNA preservation. The goals of the present study were to (1) 
50 identify the types of microbes capable of colonizing different human bone types and (2) relate microbial 
51 abundances, diversity, and community composition to bone type and human DNA preservation. DNA 
52 extracts from 165 bone and tooth samples from three skeletonized individuals were assessed for bacterial 
53 loading and microbial community composition and structure. Random forest models were applied to 
54 predict operational taxonomic units (OTUs) associated with human DNA concentration. Dominant 
55 bacterial bone colonizers were from the phyla Proteobacteria (36%), Actinobacteria (23%), Firmicutes 
56 (13%), Bacteroidetes (12%), and Planctomycetes (4.4%). Eukaryotic bone colonizers were from 
57 Ascomycota (40%), Apicomplexa (21%), Annelida (19%), Basidiomycota (17%), and Ciliophora (14%). 
58 Bacterial loading was not a significant predictor of human DNA concentration in two out of three 
59 individuals. Random forest models were minimally successful in identifying microbes related to patterns 
60 of DNA preservation, complicated by high variability in community structure between individuals and 
61 body regions. This work expands on our understanding of the types of microbes capable of colonizing 
62 human bone and contributing to human skeletal DNA degradation. 
63
64 Keywords: human decomposition, DNA degradation, microbial ecology, necrobiome, bone
65

66 Introduction
67 Skeletonization is the final stage of human decomposition, exposing bone to the surrounding 
68 environment [1]. Once the body has progressed to a skeletonized state, teeth and bone become the only 
69 materials that can be used for DNA identification. However, while bone is more recalcitrant than soft 
70 tissue, it is not stable; it continues to decay over time. With death, bone undergoes decomposition and 
71 diagenesis, the postmortem alteration of bone by chemical, physical, and biological factors that result in 
72 modification of the original bone material [2]. Time alone is not a good indicator of skeletal DNA 
73 preservation [3]. Instead, bone diagenesis and DNA survival is highly dependent on the depositional 
74 environment, including microbial activity [4,5], just as the decomposition of all organic resources are 
75 influenced by the decomposer community and physicochemical environment [6].     
76 Bone decay mechanistically proceeds via chemical and/or microbial degradation of the organic 
77 and inorganic components of bone [7]. Microbes are capable of colonizing and degrading human bone, 
78 and microbial DNA is often co-extracted with human DNA, which interferes with downstream processes 
79 [8–10]. The organic component of bone consists of 90-95% type I collagen (primarily made up of glycine, 
80 proline, and hydroxyproline), with minor contributions from other non-collagenous proteins (e.g., 
81 osteocalcin, osteoponin, and osteonectin) as well as lipids, mucopolysaccharides, and carbohydrates [11]. 
82 The inorganic or mineral component is most similar to hydroxyapatite and consists of calcium, phosphate, 
83 carbonate, and to varying degrees sodium [2,12,13]. Bone apatite, or bioapatite, can be described as 
84 ‘nature’s trashcan,’ as infiltration and substitutions for environmental elements are common [2]. One of 
85 the main requirements for lasting preservation via fossilization is a complete shift from  bioapatite 
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86 composition to a more stable mineral phase, such as fluorinated apatite or fluorine- and carbonate-
87 enriched apatite [2,14]. 
88  When not in equilibrium with the surrounding environment, dissolution and recrystallization of 
89 bioapatite occurs, allowing microorganisms and enzymes access to the organic phase, resulting in 
90 degradation. Similarly, if the organic component degrades by either chemical or biological means, 
91 bioapatite becomes more vulnerable to environmental fluctuations and dissolution of the lattice structure 
92 is more probable due to new voids in the crystal lattice [2,7,12,15–17]. For example, wet environments 
93 exhibit increased rates of DNA degradation because water allows for mineral dissolution and increased 
94 hydrolytic damage [18]. The interdependence between the mineral and organic phases of bone supports 
95 the idea that greater porosity increases the susceptibility of bone to environmental influences [19,20], both 
96 chemical and biological. 
97 Though the reservoir for long-term DNA preservation in bone remains unclear, binding of DNA 
98 to bioapatite crystallites seems to be crucial for long-term DNA survival [15]; persistence within 
99 osteocytes or other remnant tissues (e.g., from the red bone marrow) may also be possible [21,22]. Gross 

100 bone preservation and weathering has been shown to be unrelated to DNA preservation or degradation in 
101 some cases [19], while in others, indices of gross preservation are better correlated [23,24]. Differences in 
102 DNA preservation and degradation by bone type have been observed, though patterns are not consistent 
103 between studies (e.g., [9,10,25–28]). Whether this has to do with differences in cortical and cancellous 
104 bone composition is debated. More porous elements are thought to have increased bacterial presence [15], 
105 but increased presence does not necessarily mean increased degradation, as certain microbial taxa may be 
106 better adapted to exploiting skeletal material than others. 
107 In archaeology, microbial degradation of bone has been studied primarily through histological 
108 research, focusing on regions of microscopic focal destruction [24,29–32]. However, culture-based 
109 research has shown that collagenase-producing bacteria can use mammalian bone as a substrate (e.g., 
110 Alcaligenes pichaudii, Bacillus subtilis, Pseudomonas fluorescens, Clostridium histolyticum) [33]. Others 
111 have shown greater DNA preservation from archaeological sites with bones lacking culturable 
112 collagenase producing bacteria [34]. These observations suggest that DNA preservation within a bone 
113 may be partially dependent on the amount and/or type of microbes colonizing bones. Genera including 
114 Pseudomonas, Xanthomonas, Fusarium, and Trichonella have been cultured from bones from diverse 
115 archaeological sites [34]. Experimental research has also shown macroscopic destruction phenomena 
116 consistent with fungal degraders, specifically the genus Mucor [35], while others have cultured genera 
117 from the phylum Ascomycota [34]. Research to date has primarily been limited to culture-based methods, 
118 and only a small subset of environmental microbes can be cultivated in the laboratory [36]. Only a few 
119 studies [37,38] have been conducted since the advent of high throughput sequencing technologies, which 
120 permit microbial characterization without cultivation. Thus, there is a gap in knowledge regarding the 
121 types of microbes capable of colonizing and degrading human bone. 
122 The purpose of the current study was two-fold: (1) to identify the types of microbes capable of 
123 colonizing different human bone types using next generation sequencing, and (2) to relate microbial 
124 abundances, diversity, and community composition to bone type and patterns of human DNA 
125 preservation. We expected total bacterial gene abundances, as a proxy for overall bacterial presence or 
126 loading, to increase with decreasing human DNA quantity and quality. We also expected to see shifts in 
127 microbial populations with changes in bone morphological and microstructural properties (i.e., specific 
128 element type and cortical content). 
129
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130 Materials and Methods
131 In 2009, three male individuals were placed outside on the ground surface to decompose naturally 
132 at the Anthropology Research Facility (ARF) at the University of Tennessee, Knoxville (UTK) (S1 
133 Table). The individuals were donated to the donated to the University of Tennessee Forensic 
134 Anthropology Center for the W. M. Bass Donated Skeletal Collection. Because no living human subjects 
135 were involved in this research and no personally identifiable information was collected, the project was 
136 exempt from review by the University of Tennessee Institutional Review Board. The skeletons were 
137 mapped and recovered following complete skeletonization (13 to 23 months), and gently washed with a 
138 new toothbrush and tap water at the Forensic Anthropology Center (UTK). The same 55 bones and teeth 
139 from each individual (total n = 165), which represented all skeletal element types, were selected for 
140 sampling (Table 1, S2 Fig). Prior to sampling, the external surface of each bone was cleaned by 
141 mechanically removing 1 to 2 mm of the outer surface, followed by chemical cleaning via bleach, 
142 ethanol, and sterile water. Bones were sampled using a drill and masonry bit at slow speeds; DNA was 
143 extracted from sampled bone powder using a complete demineralization protocol [39]. Bone sampling 
144 and DNA extraction and analysis were previously described in detail in Mundorff and Davoren [28]. 
145 Human DNA quality and quantity were examined to elucidate patterns of DNA preservation by bone type 
146 [28]. These remaining skeletal DNA extracts were used in the present study to assess microbial loading 
147 via qPCR and microbial community composition and structure using next generation sequencing of the 
148 16S rRNA and 18S rRNA genes. 
149
150 Table 1: Number of bones sampled by body region for each of the three individuals 
151

Body Region Sample Quantity per 
Individual

Skull 6
Teeth 7
Trunk 13
Leg 4
Arm 3
Hand 8
Foot 14
Total 55

152
153

154 Microbial and human DNA quantification
155 As a proxy for total bacterial abundance and colonization of bone, qPCR was used to quantify 
156 16S rRNA gene abundances [40] using the Femto™ Bacterial DNA Quantification Kit (Zymo Research). 
157 Assays were conducted following manufacturer instructions using a BioRad CFX Connect™ Real-Time 
158 PCR Detection System. Samples were quantified in triplicate, while standards were quantified in 
159 duplicate, and a minimum of three no template controls were included in each 96-well plate. Data are 
160 presented as gene copy number per gram of bone powder (gene copies gbp-1). Human DNA was 
161 quantified using the Quantifiler™ kit from Life Technologies (Qf); methods and data are reported in [28]. 
162
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163 Total DNA quantification
164 Total DNA was quantified using the Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen™) 
165 using a 200 µL total volume on a 96 well microplate reader. Samples and standards were run in duplicate, 
166 with standards ranging from 0 μg mL-1 to 1.0 μg mL-1. Total DNA concentrations are reported as 
167 nanograms per gram of bone powder (ng gbp-1).
168

169 Percentage cortical content
170 Clinical CT scans of each element were acquired using a Siemens Biograph mCT 64 slice 
171 scanner. Scans involved helical acquisition using a 0.6 mm slice thickness, 500 mAs, 120 kV, and bone 
172 window with kernel B70s. Data were stored on compact discs and transferred to workstations with image 
173 processing software (OsiriX 5.6, Geneva, Switzerland). The DNA sampling site on each element was 
174 digitally measured using ImageJ (National Institutes of Health). A macro was created to detect and 
175 measure the areas of cortical and cancellous bone (mm) on each CT slice where the sampling site 
176 appeared. Measurements of cortical width and height and cancellous width and height were taken 
177 separately for each cortical and cancellous bone region for all bones. Average cortical and cancellous 
178 bone width and height measurements were then computed. Due to issues with scan quality, ten of the 
179 original 129 samples were removed from the analysis. Percentages of cortical and cancellous bone were 
180 computed from each DNA sampling site for all elements. 
181 Mean percentages of cortical bone composition at each sampling site were divided into seven 
182 categories by skeletal element: (1) 80 to 100%, (2) 70 to 79%, (3) 60 to 69%, (4) 50 to 59%, (5) 40 to 
183 49%, (6) 30 to 39%, and (7) 20 to 29%. The first category consists of bones whose sampling sites did not 
184 contain any cancellous bone, including the humerus, radius, ulna, femur, and tibia. The second, third, and 
185 fourth categories contained only three elements with sampling sites that were composed of over 50% 
186 cortical bone. Percentage data were further averaged from each element type across all individuals. The 
187 majority of element types revealed consistent measurements between individuals, with standard 
188 deviations of 10% or less. Three element types (temporal, occipital, cervical vertebra) exhibited high 
189 variability between the three individuals in the relative amount of cortical and cancellous bone removed 
190 from the sampling sites.

191

192 Next generation sequencing analysis
193 Total DNA extracts from bone were sent to Hudson Alpha Institute of Biotechnology Genome 
194 Services Laboratory (Huntsville, AL) for sequencing of the V3-V4 region of the 16S rRNA gene and V4-
195 V5 of the 18S rRNA gene using 300 PE chemistry on an Illumina MiSeq instrument. Library preparation 
196 was performed by Hudson Alpha according to Illumina protocols. Primers included S-D-Bact-0564-a-S-
197 15 and S-D-Bact-0785-b-A-18 for the 16S rRNA gene [41] and 574f and 1132r for the 18S rRNA gene 
198 [42]. Raw sequence data is available at NCBI Sequence Reach Archive, Accessions PRJNA540930 and 
199 TBD. 
200 Adapters were removed by Hudson Alpha prior to data distribution. Read quality was assessed 
201 using fastqc (v. 0.11.7) and multiqc (v. 1.5). Primers were removed using cutadapt (v. 1.14) [43], and 
202 reads were quality trimmed using trimmomatic (parameters: LEADING:15 TRAILING:10 
203 SLIDINGWINDOW:4:20 MINLEN:15 ) (v. 0.36) [44]. Data were further trimmed, aligned, and 
204 classified using mothur (v. 1.39.5) according to the mothur SOP [45]. 16S rRNA and 18S rRNA 
205 sequences were aligned and classified into operational taxonomic units (OTUs) at 97% sequence identity, 
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206 using SILVA (v. 128). Statistical analyses and visualizations were conducted in R (v. 3.4.1) [46],  
207 primarily using phyloseq (v.1.20.0) [47] and dependencies. Mothur code, R code, and associated files, 
208 including metadata, can be found at https://github.com/ aemmons90/Surface-Bone-Microbe-Project.
209 Samples with less than 5,000 reads were removed from analyses, and remaining samples were 
210 rarefied to even depth by the smallest library (16S rRNA min. library = 48,288 reads; 18S rRNA min. 
211 library = 5,368 reads) prior to alpha and beta diversity measurements including ordination methods and 
212 visualizations based on ordination methods (S1 and S2 Figs). Bray-Curtis dissimilarities were computed 
213 for all ordinations. Alpha diversity metrics including Inverse Simpson and observed richness were 
214 computed using a subsampling approach, in which richness and diversity metrics were computed for a 
215 total of 100 iterations, each scaled to even depth.

216

217 Sequence quality analysis
218 Two samples failed to sequence using 16S rRNA primers, while twenty samples failed to 
219 sequence using 18S rRNA primers. Fastqc and multiqc demonstrated high quality reads in the forward 
220 direction, with a drop in mean quality Phred scores in the reverse direction at an approximate base pair 
221 position of 200 (Phred Score < 25). Following cutadapt and trimmomatic, total 16S rRNA contigs were 
222 reduced by 46%. This was further reduced by an additional 14% following further processing in mothur, 
223 resulting in a total read loss of 60% (from 37,185,525 to 14,958,201 sequences). This left a total of 
224 14,958,201 sequences, of which 692,709 were unique. 
225 18S rRNA sequences presented an additional challenge; using 300 PE chemistry, forward and 
226 reverse reads overlapped by ~59 base pairs (bp) (See [48]). Fastqc and multiqc showed a significant 
227 reduction in mean base quality in both forward and reverse reads. Forward reads showed a drop in mean 
228 quality scores at an approximate position of 250 bp (Phred scores < 25), the same drop in quality was 
229 observed in reverse reads at ~200 bp. As a consequence, trimming to remove low quality base pairs 
230 resulted in a dramatic loss of reads. Following cutadapt and trimmomatic, total 18S rRNA contigs were 
231 reduced by 46%, and after further processing in mothur, sequences were further reduced by 49%, 
232 resulting in a total read loss of 95% (from 30,253,173 sequences to 1,518,971). This left a total of 
233 1,518,971 sequences, of which 181,486 were unique. Due to poor read quality, individual A was removed 
234 from additional data analysis in phyloseq, resulting in a remaining 7,901 OTUs across 91 samples. 
235 Following the removal of samples with less than 5,000 reads, a total of 71 samples remained.

236

237 Data analysis
238 All data analyses, excluding random forests tests, were conducted in R (v.3.4.1). Two-factor 
239 analysis of variance tests (ANOVAs) were used to examine differences in log transformed human DNA 
240 concentrations by individual and body region (i.e., head, upper torso, arm, hand, lower torso, leg, foot). 
241 Assumptions such as normality and homogeneity of variance were tested using D’Agostino’s normality 
242 test (package = fBasics v. 3042.89) [49] and Levene’s test (package = car v. 3.0.2) [50], respectively. 
243 Regression analysis was then used to assess the relationship between human DNA concentrations from 
244 bone samples and hypothesized predictor variables (i.e., bacterial DNA gene abundances, total DNA 
245 concentrations, and percentage cortical content). Human DNA concentrations, bacterial gene abundances, 
246 and total DNA concentrations were log-transformed prior to linear regression. Multiple regression 
247 analysis was also performed, treating log transformed human DNA as the dependent variable and log 
248 transformed bacterial gene abundances, log transformed total DNA, and percentage cortical content as 
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249 independent variables, including their various interactions. Assumptions including heteroskedasticity, 
250 normality, autocorrelation, and multicollinearity were tested using the R package sjstats (v. 0.17.0) [51].
251 Kruskal-Wallis tests were used to assess statistical significance in alpha diversity metrics, 
252 followed by multiple comparisons with false discovery rate (FDR) adjusted p-values. Permutational 
253 multivariate analysis of variance tests (PERMANOVAs), applying 999 permutations, were used to assess 
254 statistical significance in beta diversity between categorical variables of interest including body region, 
255 individual (A, B, and C), human DNA category, and cortical category. These same variables were tested 
256 for homogeneity of multivariate dispersion, using 999 permutations. Human DNA category was an 
257 arbitrary categorical variable created by dividing a continuous variable, human DNA concentration, by 
258 quartiles in each dataset, each quartile defining a category used for factor analysis. Cortical category was 
259 established by using the mean percentiles of cortical bone composition at each sampling site as described 
260 above [0 (teeth), 1 (80 to 100%), 2 (70 to 79%), 3 (50 to 59%), 4 (40 to 49%), 5 (30 to 39%), 6 (<39%)]. 
261 However, because no bones comprised the 60-69% category, this category was eliminated for the purpose 
262 of data analysis. In addition, the frontal bone was assigned to the third category rather than the fourth, due 
263 to the mean being affected by a single individual. SIMPER, similarity percentages, followed by non-
264 parametric Kruskal-Wallis tests with FDR corrected p-values, were used to determine OTUs significantly 
265 contributing to differences between individuals and human DNA category (seq-scripts release v. 1.0) [52]. 
266 Random forest models were generated using Python (v. 3.5.2) and scikit-learn (v. 0.19.2) [53] to identify 
267 OTUs contributing to human DNA preservation patterns. OTUs were merged at the genus level, and all 
268 samples were used to generate the model (bacteria, n = 162; microbial eukaryotes, n = 71; combined 
269 datasets, n = 71). Data were randomly split into training (3/4) and testing (1/4) sets.
270

271 Results
272 Bacterial and human quantification via qPCR
273 Though bacterial gene abundances, which were used as a proxy for bacterial loading, were often 
274 high when human DNA quantities were low, for example in the teeth, upper torso, lower torso, and in the 
275 hand, this relationship was not consistent across all body regions. Despite foot bones having some of the 
276 highest human DNA quantities, these also corresponded with high bacterial gene abundances (Fig 1). 
277 While bones with high cortical content generally demonstrated lower bacterial infiltration, bacterial gene 
278 abundance was not a significant predictor of percent cortical content (adjusted R2 = -0.03) (Fig 2A). Total 
279 DNA was, however, a significant predictor of percent cortical content (p < 0.001, F = 71.43, DF = 1, 33, 
280 adjusted R2 = 0.67); as the percentage of cortical bone decreased, total DNA increased (Fig 2A). 
281   
282 Fig 1. Mean total DNA (Total (ng gbp-1)) or the concentration of DNA extracted, mean human DNA 
283 concentration (Human (ng gbp-1), as quantified using qPCR, and bacterial gene copies (16S rRNA 
284 copies gbp-1), quantified using qPCR by bone type (n = 3 individuals). Concentrations are presented as 
285 nanograms (ng) per gram of bone powder (gbp-1). Bars represent standard deviations where n = 3.
286
287 Fig 2. (A) Percent cortical content compared with log-normalized bacterial gene abundances and 
288 log-normalized total DNA, averaged by bone type (n = 3). (B) Bacterial gene abundances, percent 
289 cortical content, and total DNA compared with human DNA concentrations by individual (A, B, C). 
290 Raw data is shown. The red line demonstrates the best fit linear regression.
291
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292 When excluding teeth, human DNA quantities were significantly different by individual (p < 
293 0.001, F = 12.06, DF = 2) and body region (DF = 6, p < 0.01, F = 4.52), with a significant interaction 
294 between body region and individual (p < 0.05, F = 1.87, DF = 12). On average, individual B had greater 
295 concentrations of human DNA than C or A, with individual A having the lowest concentrations. 
296 Therefore, to test the effects of various predictor variables on human DNA recovered from bone, 
297 individuals were assessed independently. Bacterial gene abundance did not significantly predict human 
298 DNA concentration in two out of three individuals (A, p = 0.12; B, p = 0.05), while bacterial gene 
299 abundance demonstrated a positive relationship with human DNA concentration in individual C (p = 0.01, 
300 F = 6.85, adjusted R2 = 0.113) (Fig 2B). A similar relationship was observed for total DNA, which 
301 showed a positive relationship with human DNA concentration for individual C (p = 0.001, F = 12.41, 
302 adjusted R2 = 0.199). In addition, percent cortical content was a significant predictor of human DNA 
303 concentration in two of three individuals (B, p = 0.003, F = 10.33, DF = 1, 41, adjusted R2 = 0.182; C, p = 
304 0.002, F = 11.75, DF = 1, 37, adjusted R2 = 0.221).
305  When including all predictors (i.e., bacterial gene abundance, total DNA concentration, and 
306 percent cortical content) in a single model, the assumption of multicollinearity was not met, indicating 
307 that predictor variables were highly correlated.
308

309 Bacterial community analysis
310 Bacterial communities showed contributions from 47 phyla; of these, only 12 demonstrated 
311 greater than 2% relative abundance when averaged by bone type: Proteobacteria (20 to 57%), 
312 Actinobacteria (4 to 37%), Firmicutes (2 to 35%), Bacteroidetes (2 to 21%), Planctomycetes (0.2 to 11%), 
313 Saccharibacteria (0.2 to 12%), Chloroflexi (2.8 to 7.8%), Verrucomicrobia (0.05 to 4.7%), Chlamydiae 
314 (0.02 to 3.9%), Acidobacteria (0.04 to 2.2%), BRC-1 (0.009 to 2.3%), and Deinococcus-Thermus (0 to 
315 7.0%) (Fig 3). 
316
317 Fig 3. Bacterial phylum-level community membership. Mean relative abundances greater than 2% for 
318 all individuals combined. Bone phyla membership was averaged by bone type (n = 3), except in the 
319 navicular, occipital, and sternum (n = 2).
320
321 Bacterial communities significantly differed by individual (p = 0.001, F = 11.08, DF = 2) (Fig 4), 
322 body region (p = 0.001, F = 3.99, DF = 7), human DNA concentration (p = 0.02, DF = 3, F = 1.48), and 
323 cortical bone content (p = 0.003, F = 1.28, DF = 5). There was a significant interaction between body 
324 region and individual (p = 0.001, F = 2.70, DF = 14) and body region and cortical content (p = 0.02, F = 
325 1.23, DF = 4) (Fig 5). Heterogeneous multivariate dispersion was observed by individual (p = 0.016), 
326 body region (p = 0.001), and cortical category (p =0.001), but not human DNA (p = 0.27); bacterial 
327 communities from individual A and C clustered more tightly compared with individual B (Fig 4).  When 
328 examining individuals independently, body region remained significant (A, p = 0.001; B, p = 0.001; C, p 
329 = 0.001), while cortical content remained significant in individuals B and C (B, p = 0.003; C, p = 0.03) 
330 but not A (p = 0.63). 
331
332 Fig 4. Non-metric multidimensional scaling (NMDS) ordination performed on Bray-Curtis 
333 dissimilarities of bone bacterial communities (n =162) and visualized by individual. Stress = 0.14 and 
334 k = 3; ellipses represent 95% confidence intervals.
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335 Fig 5. Non-metric multidimensional scaling (NMDS) ordinations on Bray-Curtis dissimilarities of 
336 bone bacterial communities. Ordinations were conducted independently by individual (A: n = 53, B: n = 
337 55, C: n = 54) and visualized by body region (A: stress = 0.14, k = 3; B: stress = 0.10, k = 2; C: stress = 
338 0.10, k = 3). The letters “A”, “B”, and “C” above figure panels refer to individuals.
339
340 Diversity was significantly different by individual (p < 0.01, DF = 2); individual A had the lowest 
341 diversity (mean = 30.0), while individual C had the greatest diversity (mean = 46.9) (S3 Fig). When each 
342 individual was considered independently, diversity also significantly differed by body region (A: p < 
343 0.01, Χ2 = 19.0, DF = 7; B: p < 0.0001, Χ2 = 34.6, DF = 7); C: p < 0.001, Χ2 = 24.9, DF = 7) (S3 Table; 
344 S4 Fig). Body regions from A followed a different trend in diversity than B or C. Richness did not show 
345 significant differences by individual (p > 0.05, Χ2 = 3.97, DF = 2), but did significantly differ by body 
346 region (p < 0.0001, Χ2 = 46.0, DF = 7). Observed richness was greatest in the upper and lower torsos (S5 
347 Fig).  
348 OTUs driving differences between individuals included predominantly soil taxa from the 
349 following families: Streptosporangiaceae, Nocardiaceae, Comamonadaceae, Pseudomonadaceae, 
350 Xanthomonadaceae, Clostridiaceae, Brevibacteriaceae, Streptomycetaceae, Intrasporangiaceae, 
351 unclassified Thermomicrobia, and Mycobacteriaceae. Notably, OTUs identified as Simplicispira and an 
352 unclassified member of Streptosporangiaceae were found at greater abundances in A, while 
353 Stenotrophomonas and Rhodococcus showed greater abundances in individual C. Brevibacterium, an 
354 unclassified member of Thermomicrobia, and Pseudomonas were greatest in B (S6 Fig). Although three 
355 OTUs significantly contributed to differences by human DNA category (two Streptomyces and one 
356 Mycobacterium), these OTUs did not remain significant after correcting p-values using FDR. 
357 Random forest models were used to identify bacterial OTUs associated with differences in human 
358 DNA concentrations. The initial model generated had a mean absolute error of 91.7 (p = 0.03, adjusted R2 

359 = 0.09), with 30 predictor OTUs identified (S7 Fig). Important predictor OTUs were represented by 
360 Actinobacteria (importance = 30%), Bacteroidetes (17%), Firmicutes (23%), and Proteobacteria (30%). 
361 Contributing OTUs greater than 1% included the genera Clostridium, unclassified Dermacoccaceae, 
362 Paracoccus, and Actinotalea (S7A Fig). The model only slightly improved when excluding teeth from the 
363 analysis (mean absolute error = 72.5, p = 0.02, adjusted R2 = 0.12). When teeth were excluded, the top 
364 five predictor OTUs became unclassified Dermacoccaceae (14%), unclassified Desulfuromonadales (9%), 
365 Clostridium (3%), unclassified Gaiellales (3%), and unclassified Mollicutes (3%). 
366

367 Microbial eukaryotic community analysis
368 Microbial eukaryotic communities showed large contributions from Ascomycota (mean relative 
369 abundance 40%), Apicomplexa (21%), Annelida (19%), Basidiomycota (17%), Ciliophora (14%), and 
370 enigmatic Eukaryota (including Incertae sedis) (14%), with additional contributions from Cercozoa (9%) 
371 Peronosporomycetes (8%), Nematoda (7%), and Cryptomycota (6%). Unclassified Eukaryota had a mean 
372 contribution of 8% (Fig 6). While Apicomplexa had a high mean relative abundance (21%), this was 
373 dominant in a single sample, a fibula from individual B. 
374
375 Fig 6. Relative abundance of eukaryotic phyla by bone type and individual. Relative abundance is 
376 shown for only those phyla with greater than 1% relative abundance, and for two of the three individuals 
377 (B and C). Data were not averaged by bone type. 
378
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379 Eukaryotic communities showed similar patterns in beta diversity compared to bacterial 
380 communities. When testing differences between body region, individuals, human DNA quartiles, and 
381 cortical content, microbial eukaryotic communities significantly differed by individual (p = 0.001, F = 
382 8.69, DF = 1), body region (p = 0.001, F = 2.83, DF = 7), human DNA (p = 0.02, F = 1.41, DF = 3), and 
383 cortical content (p = 0.001, F = 1.60, DF = 5), with a significant interaction between body region and 
384 individual (p = 0.001, F = 4.08, DF = 3), body region and human DNA (p = 0.02, F = 1.25, DF = 4), and 
385 individual and cortical content (p = 0.008, F = 1.72, DF = 1). Due to sequence loss, alpha diversity 
386 metrics were not computed.
387 A random forest model was also applied to the microbial eukaryotic dataset to identify OTUs 
388 contributing to patterns of human DNA preservation. The resulting model was not significant, with a 
389 mean absolute error of 171.96 (p = 0.14, adjusted R2 = 0.07). The most important predictor taxon 
390 identified (OTU0003), contributing to 33% of the model, was an unclassified Saccharomycetales. 
391 Eukaryotic and bacterial OTU data were combined and a random forest model was constructed for shared 
392 samples to predict human DNA concentrations. The resulting model was significant (mean absolute error 
393 = 175.71, p = 0.03, adjusted R2 = 0.21). Again, the top predictor taxon was OTU0003 with an importance 
394 value of 10% or 0.1; this Saccharomycetales OTU decreased in abundance in the skull of individual B as 
395 human DNA concentrations increased (S8 Fig). Other important contributors, with importance values 
396 greater than 1% or 0.01, included bacterial genera from the phyla Actinobacteria (Microbacterium, 6%, 
397 Gaiellales uncultured, 5%, Leifsonia, 2%, Williamsia, 2%), Proteobacteria (Stenotrophomonas, 2%), 
398 Firmicutes (Clostridiales Family XI uncultured, 2%), Gemmatimonadetes (unclassified 
399 Gemmatimonadaceae, 2%), and Planctomycetes (Zavarzinella, 2%).
400

401  Discussion 
402 Characterizing the postmortem bone microbiome
403 The post-mortem bone microbiome is diverse and variable in the human skeleton two years after 
404 death. Excluding Planctomycetes and Saccharibacteria, dominant taxa observed in this study were also 
405 shown to dominate human rib samples from twelve individuals that had decomposed at the ARF [37]. Rib 
406 samples from the current study most closely resembled dry remains from Damann et al. [37] in phyla-
407 level contributions, but also contained taxa proportions greater than 2% from Verrucomicrobia, 
408 Saccharibacteria, Planctomycetes, Chloroflexi, and Chlamydiae (S10 Fig). Discrepancies in observed taxa 
409 may be due to differences in sample size and sequencing analysis methodologies. Planctomycetes, a 
410 phylum commonly associated with aquatic environments, and Saccharibacteria, a phylum containing 
411 multiple environmental taxa have been observed in gravesoils [54,55].
412 Ascomycota, observed in 100% of samples (71 of 71) in the eukaryotic dataset, and 
413 Basidiomycota, observed in 55% of samples, were the dominant microbial eukaryotes. This was 
414 unsurprising, as these fungal phyla contain multiple saprophytic groups that have previously been 
415 observed in association with decomposing carrion [56]. In addtion to fungi, multiple phyla of protists 
416 were also detected, including Apicomplexa (5 of 71 samples), Ciliophora (49 of 71 samples), and 
417 Cercozoa (49 of 71 samples). Protists found in association with bones may be opportunistic, potentially 
418 transferred to remains via soil, scavengers, insects, precipitation, and run-off, and may be active fungal 
419 and bacterial consumers. For example, the genus Rhogostoma, which was prevalent in samples from 
420 individuals A and B, is known to consume both fungal and bacterial species [57]. Similarly, Nematoda 
421 were detected, with the majority of sequences belonging to the family Rhabditidae, which contains 
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422 bacterivorous members, previously observed in decomposition research [58–61]. Other bacterivores 
423 detected within human bones included Tubulinea, Cercozoa, and Apicomplexa, which have also been 
424 found in soils underlying human remains [61]. Cercozoa and other testate amoeba are extremely sensitive 
425 to environmental change, and generally decrease in  soil with cadaveric inputs [62]. While certain species 
426 have responded with positive growth during late stage decomposition (from 1 month to 1 year post-
427 mortem) [63], their presence in bones over a year after death likely reflects a shift back to more 
428 oligotrophic conditions.
429 Presence of Deinococcus-Thermus, a phylum well-represented by thermophiles [64], at greater 
430 than 1% relative abundance in 6% of samples, is suggestive of a harsh environment. Bones deposited on 
431 the soil surface are exposed to daily and annual temperature contrasts. East Tennessee experiences 
432 freezing winter temperatures and temperatures greater than 37°C in the summer, which can influence 
433 moisture availability. As indicated by Reeb et al. [38], bone may provide shelter from harsh environments 
434 (i.e., variable temperature, UV). Individual C had greater abundances of Deinococcus-Thermus than B 
435 and A (S11 Fig), likely due to the greater duration of exposure to environmental fluctuations, including 
436 temperature and precipitation (S9 Fig). The majority of samples with abundances greater than 1% were 
437 from the skull including cranial elements and teeth. The cranium is often one of the first anatomical 
438 regions to skeletonize during decomposition due to low tissue biomass and high larval presence [65] and 
439 likely experiences greater intervals of environmental exposure.
440

441 Community differences by individual and anatomical region
442 Beta diversity analyses showed differences in bone microbial communities, including both 
443 prokaryotes and eukaryotes, by individual and body region. This is unsurprising, as there is extensive 
444 research on the living human microbiome and the multitude of variables leading to differences in 
445 microbial community structure and composition between individuals including life history (e.g., health 
446 and diet) [66–68]. Two of the three individuals had a history of diabetes (individuals A and C), which 
447 may have contributed to differences in microbial community structure and composition [69]. Moreover, 
448 placement duration at the ARF and differences in temperature and precipitation likely contributed to 
449 differences observed between individuals. In particular, bacterial alpha diversity was lowest in individual 
450 A and greatest in C, reflecting differences in exposure duration (S3 and S9 Figs). The impact of soil 
451 microbiota is expected to increase overtime with prolonged soil contact [37]. Because of this, we 
452 hypothesize that differential rates in skeletonization likely influence bone microbial composition and 
453 structure at any given time point, which likely has implications for post-mortem interval estimation.   
454 Recently, Pechal et al. [70] showed microbial differentiation by anatomic region (i.e., external 
455 sites from the auditory canal, eyes, nose, mouth, umbilicus, and rectum) up to 48 hours after death. 
456 Though they speculated that this pattern would likely attenuate with longer post-mortem intervals, this 
457 has yet to be tested. Here, bone microbial communities retained differences by anatomic location in 
458 individuals with post-mortem intervals greater than 1 year. Micro-environmental differences in soil 
459 communities as well as differences in enteric microorganisms and their abilities to compete and persist 
460 with soil microorganisms colonizing the body likely contributed to spatial differences observed in 
461 anatomic regions and between different individuals. Research on the human microbiome has shown 
462 microbial community uniqeness by individual as well as body site and time [71,72], and has recently 
463 gained utility in forensics [73,74].   
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464 Nicholson et al. [75] demonstrated that bones in similar environments showed drastic differences 
465 in bone preservation, despite similarities in soil pH and drainage. This evokes the question: if not the 
466 environment, then what is the source of these differences? Enteric/putrefactive bacteria have been posited 
467 as the primary source of microbial bone degradation in pig remains; neonatal pig remains demonstrated 
468 no evidence of microbial degradation, which researchers hypothesized as being related to the relative 
469 sterilitiy of infant guts compared with adults [31]. While the source of bacteria in this study remains 
470 unknown, as we have no gut or soil samples prior to placement to track bacterial translocation, we suspect 
471 that both soil and gut microbes are able to colonize and aid in bone degradation (e.g.,[76]). We have 
472 previously demonstrated that human-associated Bacteroides, an obligate anaerobic member of the human 
473 gut microbiome, can persist for long time periods in soils impacted by decomposing human remains 
474 [54,59], providing evidence that these gut microbes are transferred to the environment and have the 
475 potential to colonize bone. The extent to which enteric microorganims are able to move throughout the 
476 body post-mortem is likely limited, and distance from the gut may be a crucial factor controlling 
477 differences in microbial communities by body region. However, Pechal et al. [70] recently observed an 
478 increase in gene abundance associated with bacterial motility during decomposition, so this area of 
479 postmortem microbiology merits further study. 
480 Bone microstructure (i.e., the percentage of cortical content) also influenced differences in 
481 microbial communities. Communities differed by cortical bone percentage likely due to the presence of 
482 greater void space in cancellous bone compared with cortical bone, facilitating ease of invasion, 
483 especially for incidental taxa or soil contaminants (e.g., potentially Verrucumicrobia). However, this may 
484 also be related to nutritive differences; cancellous elements may harbor more labile remnant material such 
485 as red marrow [22], while cortical bone may be considered more recalcitrant. This may account for 
486 patterns observed in total DNA concentrations and bacterial gene abundances. Bacterial gene abundance 
487 was not a significant predictor of human DNA concentration, and cases where bacterial gene abundance 
488 did significantly predict human DNA (i.e., individual C), the relationship was positive, indicating that the 
489 degree of microbial loading does not negatively impact the pattern of skeletal DNA preservation in 
490 remains with environmental exposure up to two years. Rather, the presence of specific taxa likely has a 
491 greater impact on skeletal integrity. 
492 Additionally, presence of both aerobic and anaerobic genera points to the existence of micro-
493 spatial differences within a single bone. This phenomenon is also observed in soils where anaerobic 
494 microsites can persist within a well-drained, well-aerated soil. Extracellular polymeric substances were 
495 observed surrounding living cells on bison bone at Yellowstone National Park [38]. This highlights the 
496 importance of biofilm production in microbial bone colonization. Though microscopy was not performed 
497 here to confirm biofilm presence, we hypothesize that biofilm production combined with increased 
498 microbial biomass during decomposition plays an important role in the development of micro-spatial 
499 differences in oxygen access and respiration strategies. 
500

501 Microbial taxa associated with skeletal DNA preservation   
502 Random forest models were minimally successful in identifying microbes related to DNA 
503 preservation patterns, however models were likely complicated by microbial community differences by 
504 individual and body region. While bacterial OTUs produced more accurate random forest models than 
505 eukaryotic OTUs, the best model resulted when combining both bacterial and eukaryotic data sets, with a 
506 Saccharomycetales OTU identified as the most important contributor to the model. Saccharomycetales, 
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507 commonly associated with the oral microbiome of healthy humans [77], decreased in abundance with 
508 increased human DNA concentrations in the cranium of individual B. Oral microbes may persist 
509 throughout decomposition and may be implicated in DNA survival. 
510 Similarly, bacterial random forest models were conflated by body region; genera Actinotalea and 
511 Paracoccus, showed increased abundances with human DNA concentrations in teeth, while 
512 Dermacoccaceae demonstrated increased abundances in feet. Importantly, increased abundances of 
513 Clostridium, a genus that contains known collagenase producers [12], were associated with decreased 
514 human skeletal DNA concentrations. The foot is the farthest anatomical region from the gut, and 
515 interestingly, bones of the feet had some of the highest human DNA concentrations. If the Clostridium 
516 present in bones is primarily derived from the gut, then distance from the gut may be an important factor 
517 related to human DNA degradation. Though predictor taxa could be identified using random forest 
518 models, their functional role in DNA degradation, if any, remains unclear. The variation seen by body 
519 region and individual may be minimized by increasing the research sample size to include more 
520 individuals. 
521

522 Conclusions
523 Most of what is known regarding the microbial degradation of bone is from histological research 
524 concerning archaeological bone (e.g., [32,34,78–80]). The current study used next generation sequencing 
525 technologies to provide a survey of bacteria, fungi, and protists potentially capable of bone colonization. 
526 Though specific taxa were correlated to patterns of human DNA preservation using random forest 
527 models, the functional role of identified bone microbes remains unknown. Because the target of this study 
528 was DNA, which provides information regarding presence rather than activity, it is difficult to discern 
529 incidental taxa, i.e. taxa that are present and inactive, from taxa that are actively degrading bone. This is a 
530 longstanding challenge in microbial ecology: linking structure and function. Remnant extracellular DNA 
531 of microbial origin is a problem [78], and microbial DNA can bind to hydroxyapatite similar to human 
532 DNA [79, 80], further complicating observed differences in community composition and structure. 
533 Nevertheless, the current study presents a first step in characterizing microbial community differences 
534 across bone types within and between individuals following skeletonization. Ultimately, this provides a 
535 foundation for understanding the postmortem colonization of bone by microbes and the subsequent 
536 effects on bone stability and human DNA preservation and may help guide targeted human DNA 
537 recovery.
538
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