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Abstract 14 

Background 15 

The first step in understanding ecological community diversity and dynamics is quantifying 16 

community membership. An increasingly common method for doing so is through 17 

metagenomics. Because of the rapidly increasing popularity of this approach, a large 18 

number of computational tools and pipelines are available for analysing metagenomic data. 19 

However, the majority of these tools have been designed and benchmarked using highly 20 

accurate short read data (i.e. illumina), with few studies benchmarking classification 21 

accuracy for long error-prone reads (PacBio or Oxford Nanopore). In addition, few tools have 22 

been benchmarked for non-microbial communities.  23 

Results 24 

Here we use simulated error prone Oxford Nanopore and high accuracy Illumina read sets to 25 

systematically investigate the effects of sequence length and taxon type on classification 26 

accuracy for metagenomic data from both microbial and non-microbial communities. We 27 

show that very generally, classification accuracy is far lower for non-microbial communities, 28 

even at low taxonomic resolution (e.g. family rather than genus).  29 

Conclusions 30 

We then show that for two popular taxonomic classifiers, long error-prone reads can 31 

significantly increase classification accuracy, and this is most pronounced for non-microbial 32 

communities. This work provides insight on the expected accuracy for metagenomic 33 

analyses for different taxonomic groups, and establishes the point at which read length 34 

becomes more important than error rate for assigning the correct taxon. 35 

Introduction 36 
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Applying Metagenomic Methods to Quantify Community Composition 37 

To understand ecological community diversity, it is essential to quantify taxon frequency. 38 

The most common method of quantifying taxa frequencies is through metabarcoding (Ji et 39 

al. 2013).  In this method, conserved genomic regions (often 16S rRNA in the case of 40 

bacterial and archaeal species; 18S rRNA or Cytochrome c oxidase I for eukaryotic species) 41 

are amplified from the sample of interest, sequenced (most often using high-throughput 42 

methods such as Illumina), and then classified using one of several available pipelines (e.g. 43 

QIIME, MEGAN, Mothur) (Caporaso et al. 2010; Huson et al. 2016; Schloss et al. 2009). 44 

Many of these pipelines have been designed around the analysis of bacterial datasets. 45 

In contrast to metabarcoding, metagenomic approaches do not rely on the amplification of 46 

specific genomic sequences, which can introduce bias. Instead, they aim to quantify 47 

community composition based on the recovery and sequencing of all DNA from community 48 

samples. Not only do metagenomic methods profile taxon composition in a less biased way 49 

than metabarcoding, but they can also yield insight into the functional diversity present in 50 

ecosystems (Schloss and Handelsman 2005; Keeling et al. 2014). 51 

While metabarcoding approaches have been widely applied to both microbial and eukaryotic 52 

taxa, the vast majority of metagenomic studies have focused only on microbial communities. 53 

Unsurprisingly, the various advantages and disadvantages of using metagenomic analyses 54 

for microbial communities are well-documented (Roumpeka et al. 2017; Thomas, Gilbert, 55 

and Meyer 2012; Temperton and Giovannoni 2012). There are likely several factors driving 56 

this microbe-centric application of metagenomics, including (1) the greater level of diversity 57 

of microbial taxa; (2) the considerable number of microbial taxa that are “unculturable,” 58 

making it difficult to collect the requisite amount of DNA for genomic sequencing; (3) the 59 

availability of a multitude of non-molecular methods for quantifying multicellular taxa; and (4) 60 

the relative paucity of genomic sequence for multicellular organisms in databases (Escobar-61 

Zepeda, Vera-Ponce de León, and Sanchez-Flores 2015) (Supp. Fig.1). This latter factor is 62 

perhaps the single largest factor in driving the bias toward microbial metagenomics. 63 
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However, the amount and diversity of eukaryotic genomic sequence data is rapidly 64 

increasing. Although multicellular metabarcode databases are currently far more complete 65 

relative to genomic databases, this gap is closing quickly. For example, the Earth 66 

BioGenome project aims to sequence the genomes of upwards of one million eukaryotic 67 

species within the next decade (Lewin et al. 2018). Regardless of the success of this effort, 68 

there are a host of ongoing eukaryotic sequencing projects, including Bat 1K (Teeling et al. 69 

2018), Bird 10K (10,000 bird genomes (OBrien, Haussler, and Ryder 2014)), G10K (10,000 70 

vertebrate genomes (10K Community of Scientists 2009)), and i5K (5000 arthropod 71 

genomes (Robinson et al. 2011)), among others. This suggests that within the next five 72 

years, most multicellular organisms will have at least one member of their family present in 73 

genomic databases, with some groups of multicellular organisms being completely 74 

represented at the genus level. 75 

This would increase the utility of metagenomics for assessing membership in plant and 76 

animal communities, especially for cases in which organisms are difficult to observe or 77 

degraded. This is frequently the case for diet studies (Pearman et al. 2018), many 78 

invertebrate communities such as in treeholes (Gossner et al. 2016) or algal holdfasts 79 

(Ojeda and Santelices 1984). 80 

Analysis of Short-read Metagenomic Data 81 

Many metagenomic classification analyses rely on first pass classifiers to assign reads to 82 

one or more taxa, followed by second pass classifiers that can improve on the initial 83 

classification by taking into account the number and relationship of taxa identified in the first 84 

pass. This second step often relies on a lowest common ancestor algorithm (Wood and 85 

Salzberg 2014; Kim et al. 2016; Huson et al. 2016), or by refining taxonomic representation 86 

by examining the results from the first pass classifier (Lu et al. 2016). 87 

The most widely used first pass classifier is BLAST, and it is considered gold standard 88 

(McIntyre et al. 2017). However, BLAST is not computationally efficient enough to deal with 89 
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tens or hundreds of millions of reads. Thus, algorithms for fast metagenomic classification 90 

have been the subject of intense research over the last few years, and include k-mer based 91 

approaches such as CLARK (Ounit et al. 2015), Kraken and related tools (Kraken, Kraken2, 92 

and KrakenUniq) (Wood and Salzberg 2014), Centrifuge (Kim et al. 2016), EnSVMB (Jiang 93 

et al. 2017), and Kaiju (Menzel, Ng, and Krogh 2016), as well as reduced alphabet amino 94 

acid based approaches such as DIAMOND (Buchfink, Xie, and Huson 2015). In almost all 95 

cases these have been designed and benchmarked using short read data (McIntyre et al. 96 

2017). 97 

Analysis of Long-Read Data Metagenomic data 98 

The advent of “third generation” single molecule long read technologies (PacBio and Oxford 99 

Nanopore) has significant implications for metagenomic analyses, most notably for genome 100 

assembly (Frank et al. 2016; Nicholls et al. 2019). These technologies allow read lengths of 101 

10 kilobase pairs (Kbp) and beyond, in strong contrast with the approximately 300 base pairs 102 

(bp) limit of Illumina. However, both PacBio and Nanopore technologies have far higher error 103 

rates (88-94% accuracy for Nanopore (Wick, Judd, and Holt 2018) and 85-87% for PacBio 104 

(Ardui et al. 2018)). The lower accuracy of Nanopore and PacBio (non-circular consensus) 105 

sequence reads may affect the success of current classification methods, and there are few 106 

algorithms designed to exploit long-read data. 107 

As a first approach toward determining the use of long-read technologies for metagenomic 108 

applications, we would like to understand the relative advantages and disadvantages of 109 

using short accurate reads versus long error-prone reads. Recent work has shown that 110 

relatively high genus level classifications of approximately 93% have been achieved using 111 

Nanopore-based metagenomic analyses of a mock bacterial community (Brown et al. 2017). 112 

Here we expand this analysis to allow direct comparison between short and long read 113 

approaches. In addition, we compare metagenomic classification success in microbial 114 

communities as compared to communities of multicellular organisms. We find that longer 115 
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reads, despite their higher error rate, can considerably improve classification accuracy 116 

compared to shorter reads, and that this is especially true for specific taxa. 117 

Methods 118 

Genomic data 119 

For each of four major taxonomic divisions (bacteria, fungi,  animals, and plants), we 120 

downloaded 20 genomes from GenBank (Benson et al. 2013). Within each of these 121 

divisions, we included genomes from a total of 22 classes, 46 orders, and 58 families (Figure 122 

1). 123 

Read simulation 124 

We simulated Nanopore reads using NanoSim 2.0.0 (Yang et al. 2017) with the default error 125 

parameters for E. coli R9 1D data. This method uses a mixture model to produce simulated 126 

reads with indel and error rates similar to real datasets. The error model is applied equally to 127 

all parts of a read, and the read lengths are drawn from a distribution approximating real 128 

data. To create simulated read data of specific lengths, we truncated the simulated reads 129 

after the relevant number of basepairs using a custom perl script (i.e. to simulate 100bp 130 

Nanopore reads, we truncated all reads in a simulated dataset to 100bp). We did this for 131 

read lengths varying from 100 bp to 4,000 bp at 100 bp intervals, simulating 1,000 reads per 132 

interval for all taxa (a total of 40,000 reads for each taxon, and 3.2 million reads for all taxa 133 

and read lengths). 134 
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 135 

Figure 1. Cladogram of species included in the simulated mock community. 136 

 137 

We simulated Illumina data using dwgsim 0.1.12 (Homer 2017) with the following options: 138 

dwgsim -e 0.0001 -E 0.0001 -N 2000 -1 100 -2 100 -r 0.0001 -R 0.01 -y 0.000 -c 0 139 

This implements errors to mirror those in Illumina data, with constant error rates of 1e-4 and 140 

no indels (which are extremely rare in Illumina data). We generated 1,000 reads for each 141 
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genome, at three read lengths: 100 bp, 150 bp, and 300 bp (a total of 240,000 reads across 142 

all taxa and lengths), and used only single end reads for all analyses. 143 

Sequence Classification 144 

We used BLAST 2.7.1 (Madden 2013) and Kraken2 (Wood and Salzberg 2014) for 145 

sequence classification. We created a local custom database consisting of the NCBI nt 146 

database (downloaded on Feb 8 2019) and the genomes of the 80 taxa that we used to test 147 

classification success. We used the default alignment parameters for BLAST, except for 148 

implementing a maximum e-value of 0.1. We used the match with the highest bit score for all 149 

downstream analyses. For Kraken2 analyses we used the default parameters (in which the 150 

k-mer length is 35 bp and default minimiser length is 31 bp). For Kraken2 we used the taxon 151 

assigned by the lowest common ancestor (LCA) algorithm employed in Kraken2. 152 

Accuracy metrics 153 

To assess the effects of read length on classification accuracy we focus our analysis only on 154 

how often a read is assigned to the correct taxon. For our simulated reads there are three 155 

possible outcomes when querying a database (Table 1). 156 

We expect that taxa that are well represented in the database, and which have few closely 157 

related taxa, will have high rates of true matches. Taxa with many close relatives in the 158 

database will have many false matches. Taxa that are poorly represented in the database 159 

will have high rates of failed queries. Both of these latter results are in a class usually 160 

referred to as false negatives: we falsely infer taxon A is absent. However, they largely arise 161 

from different mechanisms. Importantly, as genomic databases become more complete, we 162 

expect the fraction of failed queries will decrease. At the same time we expect that the 163 

fraction of false matches may increase, as more and more closely related taxa become 164 

present in the database. The exact nature of this tradeoff is not well explored. Novel 165 

statistical approaches, such as Bayesian re-estimation of species frequencies, may mitigate 166 
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the problem (Lu et al. 2016); however, improved methods are required address this problem 167 

(Nasko et al. 2018). 168 

 169 

Table 1. Description of outcomes for database queries. 170 

Description of outcome Metric Notation  

A read query from taxon A returns 
a match from taxon A 

True match (we correctly infer 
taxon A is present) 

Mtrue 

A read query from taxon A returns 
a match from a taxon that is not A 

False match (we infer taxon A is 
absent due to a secondary match)  

Mfalse 

A read query from taxon A returns 
no hit at all 

Failed query (we infer taxon A is 
absent due to database paucity). 

Mfail 

 171 

There are other aspects of classification success that we do not focus on here. The first of 172 

these is the notion of a true negative: a sequence that is known to not arise from any taxa, 173 

should not return a match to any taxa. This is not a biologically realistic situation (all 174 

sequences arise from a taxon), although this aspect is useful when trying to assess the 175 

performance of different classifiers [ref Gardner] and presenting the full truth table. The 176 

second aspect we do not consider here are false positives: if a read query matches taxon A, 177 

but does not arise from taxon A. We would thus falsely interpret taxon A as being present in 178 

a community. This metric is intrinsic to the composition of the community rather than just 179 

each taxon and the database. For example, if taxon A dominates the community, then it 180 

cannot have high rates of false positives relative to true positives simply because the vast 181 

majority of read queries from the community will be from taxon A and thus true positives. 182 

Conversely if taxon B is extremely rare, there will be a large number of false positives 183 

relative to true positives, as very few read queries will be from taxon B, resulting in a very 184 

small number of true positives. 185 

Thus, we use a simplified set of metrics (see Table 1) that are not intrinsically related to 186 

community composition: true matches, false matches, and failed queries. We used our 187 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 9, 2019. ; https://doi.org/10.1101/650788doi: bioRxiv preprint 

https://paperpile.com/c/eChzWO/2FOR
https://paperpile.com/c/eChzWO/K1fW
https://doi.org/10.1101/650788
http://creativecommons.org/licenses/by/4.0/


 

10 

simulated genomic sequence reads from 80 taxa to quantify these three outcomes at both 188 

the genus and family level. To assign genus and family from species, we used the NCBI 189 

taxonomy database (Federhen 2012) (which is used by BLAST as the default taxon 190 

classifier). 191 

We calculate two ratios from the three metrics in Table 1. The first is the fraction of true 192 

positives classified correctly (i.e. recall): 193 

Recall = Mtrue/(Mtrue + Mfalse + Mfail) 194 

The second is the ratio of true matches to false matches. This simply excludes failed queries 195 

from the equation. We term this second metric classification success. 196 

Classification Success = Mtrue/(Mtrue + Mfalse) 197 

The critical difference between these metrics is that taxa which are poorly represented in the 198 

database may nevertheless have high rates of classification success, although recall will 199 

necessarily be low. However, as the fraction of failed queries approaches zero (which we 200 

expect as genomic databases grow), these two metrics become equivalent.  201 

Results 202 

We first looked only at short read lengths to quantify the effects of sequencing technology 203 

and classifier (BLAST or Kraken2) on recall at the level of genus. For both bacteria and 204 

fungi, we found that recall was at or above 99.9% for Illumina reads of any length (100bp, 205 

150bp, or 300bp), for both BLAST and Kraken2 (Fig. 2). In strong contrast, for Nanopore 206 

data, recall was far lower; approximately 25% for 100bp reads and increasing to 75% at 207 

300bp. In general, Kraken2 had slightly lower recall than BLAST. 208 
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 209 

Figure 2. Recall is consistently higher in bacteria and fungi than plants or animals for 210 
both short Illumina and Nanopore reads. Each panel shows recall for the different 211 
kingdoms. Recall for individual taxa is indicated in grey, with median recall shown by dashed 212 
(Nanopore) or solid (Illumina). Blue lines indicate recall rates for reads classified using 213 
Kraken2; red for reads classified using BLAST. Illumina reads exhibit consistently higher 214 
recall; bacteria and fungi exhibit higher recall than plants or animals. 215 

 216 

However, for plants and animals, average recall was low regardless of sequencing 217 

technology. Average recall for Illumina reads peaked at approximately 55% and 75% for 218 

animals and plants, respectively (Fig 2, light blue lines). Nanopore recall rates peaked at just 219 

over 20% and 35% for animals and plants, respectively. However, this was highly taxon-220 

dependent, with some taxa consistently having recall near 100%, while others remained 221 
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close to 0% regardless of sequencing technology or read length (Fig. 2, grey lines). Perhaps 222 

surprisingly, on average Kraken2 outperformed BLAST for Illumina reads for both plant and 223 

animal taxa.  224 

We next quantified differences in classification success (the proportion of all classified reads 225 

that were correctly classified), again considering only short read lengths. For bacteria and 226 

fungi, both Illumina and Nanopore reads exhibited high classification success, with the 227 

exception of Kraken2 classification of Nanopore reads (Fig. 3). For  each sequencing 228 

method and classifier, classification success for plants and animals was low relative to 229 

bacteria and fungi. For both Illumina and Nanopore, BLAST resulted in approximately 87% 230 

and 97% of reads being correctly classified, for animals and plants respectively. However, 231 

Kraken2 success was far lower, especially for Nanopore reads, peaking at 54% in animals 232 

(Fig. 3). Over this range of read lengths, we found only a weak relationship between read 233 

length and classification success, in contrast to the results for recall. 234 

It is perhaps expected that highly accurate Illumina reads would result in more accurate 235 

taxonomic classification than long error-prone Nanopore reads. However, it is possible to 236 

obtain Nanopore reads far in excess of 300bp (reads up to 2 megabase pairs have been 237 

sequenced), so we next quantified recall and classification success for reads with lengths up 238 

to 4,000 bp. Because such read lengths are not currently possible to obtain using Illumina 239 

technology, we did not measure recall and classification success for Illumina reads of similar 240 

lengths. 241 
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 242 

Figure 3. Classification success for short reads is weakly related to read length and 243 
strongly dependent on classification method. Each panel shows recall for the different 244 
kingdoms. Classification success for individual taxa is indicated in grey, with median 245 
classification success shown by solid lines (Illumina) or dashed lines (Nanopore). Blue lines 246 
indicate recall rates for reads classified using Kraken2; red for reads classified using BLAST. 247 
For bacteria and fungi, median classification rates of Illumina-BLAST, Illumina-Kraken2, and 248 
Nanopore-BLAST are almost exactly 100% for all read lengths. 249 

 250 

We observed similar relationship between read length and recall for both BLAST and 251 

Kraken2. For bacteria and fungi, recall increased from ~20% using 100 bp reads to almost 252 

100% when using 1500 bp reads. For animals and plants we observed similar trends, 253 

although at no point did recall approach 100%. However, long Nanopore reads surpassed 254 
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the recall of even the longest Illumina reads (300 bp) classified with Kraken, with crossover 255 

points at approximately 3000 bp for animals and 2500 bp for plants (Fig. 4, red and blue 256 

solid lines). 257 

 258 

Figure 4. Long Nanopore reads equal or surpass the recall of the longest Illumina 259 
reads for both BLAST and Kraken2. Each panel shows recall for the different kingdoms. 260 
Recall for Nanopore reads for individual taxa is indicated in grey, with median recall 261 
indicated by dashed lines, either blue (Kraken2) or red (BLAST). The recall rates for 300 bp 262 
Illumina reads are shown as thin solid lines, again either blue (Kraken2) or red (BLAST). 263 
Coloured points show the recall for all Illumina reads of all lengths (100 bp, 150 bp, and 300 264 
bp). 265 

 266 

We also considered this metric at the level of family. In this case found that for animals, 267 

Nanopore reads surpassed Illumina reads only at lengths close to 4000 bp, reaching 268 

approximately 70% recall at this point (Supp Fig. 2). However, for plants Nanopore recall 269 

surpassed Illumina recall at 2500 bp, with 4000 bp reads yielding a recall of approximately 270 
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90%. We found again that for both animals and plants, Kraken2 recall surpassed BLAST 271 

when relying on Illumina reads. 272 

 273 

Figure 5. Classification success for long reads is dependent on read length only for 274 
Kraken2 classification. Each panel shows classification success for the different kingdoms. 275 
Classification success for individual taxa is indicated in grey, with median classification 276 
success shown by solid lines (Illumina) or dashed lines (Nanopore). Blue indicates 277 
classification success rates for reads classified using Kraken2, while red indicates those 278 
classified using BLAST. For animal and plants, the classification success of Kraken2 279 
depends strongly on read length, and never surpasses BLAST or Illumina at any length. 280 

 281 

We next examined classification success at longer read lengths. For BLAST we observed no 282 

relationship between classification success and read length for any taxon (Fig 5.). Bacteria 283 

and fungi both had consistently high classification success (median 100%), while animals 284 

and plants had lower classification success (median 82% and 96%, respectively). However, 285 

for Kraken2 we observed a consistent increase in classification success as read length 286 
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increased. However, this never exceeded the classification success we observed for BLAST, 287 

nor did it succeed the classification success we observed for short accurate Illumina reads. 288 

Finally, we tested classification success at the level of Family. In this case, we observed that 289 

for BLAST, the classification success for plants was approximately 99% overall read lengths, 290 

while for Kraken2 only 4000 bp reads reached this level. For animals, BLAST  classification 291 

success was approximately 95% over all read lengths, but for Kraken2 reached a maximum 292 

of 85% at the longest read lengths (Supp. Fig. 3). 293 

Discussion 294 

Here we have compared the relative accuracy of taxon classification using simulated short 295 

accurate reads (Illumina) and long, error-prone reads (Nanopore) with known ground truth. 296 

We have used two simple metrics of success: recall (the ratio of correctly classified reads to 297 

all reads) and classification success (the ratio of correctly classified reads to all classified 298 

reads). We have tested taxon classification using  a broad range of taxa, including bacteria, 299 

fungi, animals, and plants. 300 

Recall for both BLAST and Kraken2 was improved by the use of long reads, especially in the 301 

case of animals and plants, for which recall improved almost three-fold as read length 302 

increased from 300 bp to 4,000 bp. Generally both Kraken2 and BLAST achieved similar 303 

levels of recall. The exception was for short reads for animals and plants, for which Kraken2 304 

was more accurate than BLAST. 305 

We found no relationship between classification success and read length for BLAST. This 306 

implies that the ratio of correctly classified reads to all classified reads remains relatively 307 

constant over different read lengths. However, the number of reads that are classified at all 308 

increases with read length (causing an increase in recall). These observations are in line 309 

with what has been observed by others (McHardy et al. 2007). The exception to this lack of 310 

relationship between classification success and read length was for Kraken2, for which the 311 
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proportion of correctly classified reads increases with read length by more than 50% for both 312 

plants and animals. 313 

Our results also indicate that recall for long Nanopore reads was equal to or higher than 314 

short Illumina reads. This was true regardless of kingdom, or classification method, with 315 

Nanopore surpassing 300 bp Illumina reads at approximately 1500 bp for plants and 316 

animals, and surpassing 150 bp Illumina reads at between 1500 bp and 3000 bp for bacteria 317 

and fungi, depending on the methodology (Fig. 4). Even the longest Illumina reads, at 300 318 

bp, were outclassed by Nanopore at between 3500 and 4000 bp, depending on 319 

methodology.   These results do suggest that one approach to improve Nanopore 320 

classification accuracy is to impose minimum read lengths. This can be achieved by 321 

performing size selection during library preparation or during computational analyses. 322 

At first glance, then, there appears to be a clear trade-off between short read Illumina and 323 

long read Nanopore sequencing for metagenomic analyses. While Nanopore allows higher 324 

recall at long read lengths, this advantage is offset by the fact that Illlumina generally 325 

provides more reads per run. At most, recall for Nanopore improves 50% beyond 300 bp 326 

Illumina reads, while classification success is similar (using BLAST). Thus, if the read 327 

capacity of Illumina runs is 50% or more than Nanopore, the number of classified reads will 328 

be maximised using Illumina technology - on a per sequencing run basis. However, for many 329 

researchers the more relevant metric is cost per read. In this case, MinION read yields are 330 

approximately equal to MiSeq, and only HiSeq or NovaSeq provides a clear cost advantage 331 

over Nanopore MinION. On the other hand, cost per read for PromethION are not far from 332 

NovaSeq. Thus, we find no clear advantage in using Illumina over Nanopore given the 333 

observed classification accuracy for long inaccurate Nanopore reads. 334 

Differences in accuracy between bacteria, fungi, animals, and plants 335 

We find very large differences in classification accuracy (mostly in terms of recall) for 336 

bacteria and fungi versus plants and animals. The discrepancy between taxonomic groups 337 
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likely arises from a variety of factors. Among these are the higher degree of divergence 338 

between bacterial species relative to animal and plant species, and the complexity of 339 

bacterial genomes compared to eukaryotic genomes. We discuss these factors below. 340 

Bacterial taxa are often considered separate species once they have diverged by 6% ANI 341 

(Average Nucleotide Identity) on a genomic level (Stackebrandt and Goebel 1994; 342 

Konstantinidis and Tiedje 2005). The degree of nucleotide divergence between eukaryotic 343 

species is not standardised (Cognato 2006), and species are generally designated as such 344 

based on the biological species concept put forward by Mayr (Mayr 1999). Although 345 

divergence levels differ substantially between loci (as for bacteria), for some loci general 346 

ranges for eukaryotic species have emerged. For example, for mitochondrial COI, between-347 

species divergence is usually greater than 3% (Song et al. 2008; Lefébure et al. 2006). 348 

These loci are among the fastest diverging loci in plant and animal genomes, and many 349 

other loci may differ by far less than 1% between species. Due to this low level of 350 

divergence, metagenomic classifiers may frequently classify animal and plant genera with 351 

lower accuracy than bacterial genera. 352 

A second explanation for the increased classification success in bacteria and fungi is that 353 

these genomes contain fewer repetitive elements than animals or plants (Treangen et al. 354 

2009). Although such repetitive regions are usually masked from classifiers (including 355 

BLAST and Kraken2), this masking may not be complete. 356 

A third reason is that the genomic databases for plants and animals are far less complete 357 

than for bacteria and fungi. There is a large difference in the number of genomes and 358 

sequences available for different Kingdoms, with bacteria having significantly more species 359 

present than the next closest kingdom (See Supp. Fig.1). However, we expect this factor will 360 

be mitigated in the future as genomic databases continue to expand and computational 361 

search methods continue to improve.  362 
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Differences in accuracy between Kraken2 and BLAST 363 

We observed similar levels of recall for BLAST and Kraken2 over most reads lengths. 364 

However, there were strong differences in classification success. For short reads, Kraken2 365 

classification success was far lower than BLAST. As read lengths increased, Kraken2 366 

classification success approached BLAST. Part of this is likely due to longer reads allowing 367 

multiple k-mer matches, decreasing the probability of a false positive classification. One 368 

perhaps underappreciated advantage of Kraken2 over BLAST is that Kraken2 has reduced 369 

sensitivity to structural variation within reads. As Kraken2 allows multiple k-mers to match 370 

within a read, structural changes (e.g. inversions) are less likely to influence the outcome of 371 

Kraken2 matching. Such structural changes may influence BLAST due to the matching and 372 

extend algorithm. Thus for long reads, classifiers that are insensitive to synteny may be 373 

more successful, especially for taxa in which structural rearrangements are common. 374 

Conclusions 375 

Here we have shown despite being error-prone, Nanopore reads are useful for metagenomic 376 

classification due to their increased length, and that for plant and animal communities, the 377 

classification accuracy of long Nanopore reads exceeds that of Illumina. We found that 378 

classification accuracy is more dependent on the set of taxa being considered than on the 379 

metagenomic classifier being used (Kraken2 or BLAST), and that this was true for both short 380 

accurate (Illumina) and long error-prone (Nanopore) sequence data. Together these data 381 

suggest that one consideration in selecting a metagenomic sequencing method (i.e. long or 382 

short read) is the taxonomic group of interest. 383 
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Supplementary Materials 523 

 524 

Supplementary Figure 1. The number of species present in the NCBI RefSeq database has 525 
grown roughly exponentially over time. Note that the y-axis is plotted on a log scale. Data were 526 
retrieved from the RefSeq database (O’Leary et al. 2016): 527 
https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/eukaryotes.txt and 528 
https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt 529 

 530 
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 531 

Supplementary Figure 2 Recall at the family level. Each panel shows recall for the 532 
different kingdoms. Recall for Nanopore reads for individual taxa is indicated in grey, with 533 
median recall indicated by dashed lines, either blue (Kraken2) or red (BLAST). The recall 534 
rates for 300 bp Illumina reads are shown as thin solid lines, again either blue (Kraken2) or 535 
red (BLAST). Coloured points show the recall for all Illumina reads of all lengths (100 bp, 536 
150 bp, and 300 bp). 537 
 538 
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 539 

Supplementary Figure 3 Classification success at the family level. Each panel shows 540 
classification success for the different kingdoms. Classification success for individual taxa is 541 
indicated in grey, with median classification success shown by solid lines (Illumina) or 542 
dashed lines (Nanopore). Blue indicates classification success rates for reads classified 543 
using Kraken2, while red indicates those classified using BLAST. For animal and plants, the 544 
classification success of Kraken2 depends strongly on read length, and never surpasses 545 
BLAST or Illumina at any length. 546 
 547 

Supplementary Table 1. List of species include in the in silico mock community, with 548 
associated Kingdom and NCBI 549 

Species Kingdom NCBI Accession 

Actinidia chinensis Plantae CM009654.1 

Ananas comosus Plantae CM003813.1 

Arabidopsis thaliana Plantae CP002684.1 

Brassica nigra Plantae CM004491.1 

Camelina sativa Plantae CM002729.1 
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Citrus sinensis Plantae CM001701.1 

Dioscorea rotundata Plantae BDMI01000001.1 

Eutrema salsugineum Plantae CM001778.1 

Gossypioides kirkii Plantae CM008980.1 

Leersia perrieri Plantae CM002476.1 

Malus domestica Plantae CM007867.1 

Micromonas sp. Plantae CP001574.1 

Panicum hallii Plantae CM008046.2 

Raphanus sativus Plantae CM007999.1 

Rosa chinensis Plantae CM009582.1 

Setaria italica Plantae CM004364.1 

Solanum lycopersicum Plantae CM001064.3 

Sorghum bicolor Plantae CM000760.3 

Theobroma cacao Plantae LT594788.1 

Trifolium pratense Plantae LT555306.1 

Amphiprion percula Animalia CM009708.1 

Bos indicus Animalia CM003021.1 

Capra hircus Animalia CM001710.2 

Chrysemys picta Animalia CM002655.1 

Columba livia Animalia CM007525.1 

Cyprinus carpio Animalia LN590701.1 

Drosophila busckii Animalia CP012523.1 

Equus caballus Animalia CM000377.2 

Falco peregrinus Animalia CM007505.1 

Homo sapiens Animalia CM004593.1 

Lycaon pictus Animalia CM007565.1 

Macaca mulatta Animalia CM000308.1 

Microcebus murinus Animalia CM007661.1 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 9, 2019. ; https://doi.org/10.1101/650788doi: bioRxiv preprint 

https://doi.org/10.1101/650788
http://creativecommons.org/licenses/by/4.0/


 

29 

Mus musculus Animalia CM004154.1 

Oncorhynchus tshawytscha Animalia CM009202.1 

Oryctolagus cuniculus Animalia CM000790.1 

Ovis aries Animalia CM008472.1 

Takifugu rubripes Animalia HE602535.1 

Timema cristinae Animalia CM007794.2 

Xiphophorus maculatus Animalia CM008938.1 

Agaricus bisporus Fungi CP015470.1 

Alternaria solani Fungi CP022024.1 

Colletotrichum higginsianum Fungi CM004455.1 

Cryptococcus gattii Fungi CP025759.1 

Debaryomyces hansenii Fungi CR382133.2 

Eremothecium sinecaudum Fungi CP014242.1 

Flammulina velutipes Fungi CM002695.1 

Fusarium verticillioides Fungi CM000578.1 

Kluyveromyces lactis Fungi CR382121.1 

Komagataella phaffii Fungi LT962476.1 

Lachancea nothofagi Fungi LT598449.1 

Malassezia sympodialis Fungi LT671813.1 

Millerozyma farinosa Fungi FO082059.1 

Ogataea parapolymorpha Fungi CM002300.1 

Saccharomyces cerevisiae Fungi BK006935.2 

Sporisorium scitamineum Fungi CP010913.1 

Trichoderma reesei Fungi CP016232.1 

Valsa mali Fungi CM003098.1 

Yarrowia lipolytica Fungi HG934059.1 

Zygosaccharomyces rouxii Fungi CU928173.1 

Acidithiobacillus ferrivorans Bacteria LT841305.1 
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Bacillus thuringiensis Bacteria CP015250.1 

Bacillus velezensis Bacteria CP025939.1 

Bifidobacterium longum Bacteria CP013673.1 

Bordetella bronchiseptica Bacteria CM002881.1 

Brucella melitensis Bacteria CP018494.1 

Campylobacter jejuni Bacteria CP012689.1 

Caulobacter crescentus Bacteria AE005673.1 

Cellvibrio japonicus Bacteria CP000934.1 

Escherichia albertii Bacteria AP014855.1 

Gordonibacter sp. Bacteria LT827128.1 

Klebsiella pneumoniae Bacteria CP025088.1 

Mycobacterium tuberculosis Bacteria CP023640.1 

Ornithobacterium rhinotracheale Bacteria CP006828.1 

Pseudomonas arsenicoxydans Bacteria LT629705.1 

Salmonella enterica Bacteria CP007400.2 

Serratia symbiotica Bacteria LN890288.1 

Staphylococcus aureus Bacteria CP012974.1 

Treponema pallidum Bacteria CP020366.1 

Vibrio cholerae Bacteria LT907989.1 

 550 
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