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1 Abbreviations

NPC NP-complete
MIN Molecular interaction network

mLmH majority-Leaves minority-Hubs network topology
OA Oracle Advice

RVnRS Random variation non-random selection
NEP Network Evolution Problem
KOP Knapsack Optimization Problem
PPI Protein-protein interaction
NL No-Leaf network
NH No-Hub network
amb ambiguous
EIS Effective instance size

EGB Effective gained benefits
PSICQUIC Proteomics Standard Initiative Common QUery InterfaCe

MIQL Molecular Interaction Query Language
n2e node:edge ratio of a network
e2n edge:node ratio of a network
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2 MINs with experimental evidence and their synthetic

analogs:

2.1 protein-protein interaction networks

Table 1 shows the details and references of protein-protein interaction (PPI) networks
(raw data and source code available in [1]). PPI networks represent a “universe of possibil-
ities”, where combinatorial experiments test the affinity of each protein against all others in
(typically, in large-scale experiments) exogenous settings. Widely used experimental meth-
ods include yeast two-hybrid (Y2H) and affinity purification followed by Mass spectrometry
(AP-MS). Examining the literature references in Table 1 in chronological order of publication
dates (ranging from 2008-2016), one observes a rapid increase in the scale and resolution of
high-throughput methods with works by Rolland et al. [2] and Yang et al. [3] representing
the cutting edge in terms of coverage and resolution respectively. In [3], it was shown that
different isoforms of the same protein can exhibit quite different interaction profiles. Therefore
the degree of a gene (particularly hub genes) may in fact be inflated in networks where isoforms
are not distinguished: that gene should ideally be broken down to separate nodes correspond-
ing to each isoform. Typically, further validation of the resulting networks is conducted on a
subset of interactions by testing their affinity in endogenous setting (which in turn is used to
calculate some measure of true/false positives/negatives or some combination of such ratios)
or comparing the resulting interactions to (small) gold standard data sets. It is important to
note that PPI networks are generally undirected, since the experimental methods only estab-
lish the existence of an interaction but reveal nothing about the type (whether promotional
or inhibitory) or directionality (which of the two proteins affects the other) of an interaction.
The Fly network is the one exception, as both the direction and type of its interactions have
been assessed using a simple prediction algorithm which achieved “90% precision and 41% re-
call (2.8% false positive rate and 59% false negative rate)” [4]. Figure SI 1 shows the degree
distribution of PPI networks and their corresponding synthetic analogs which were generated
using the same method discussed in Section “Simulation of evolutionary pressure” in the main
text.
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PPI Network no. nodes no. edges e2n ratio directed? signed?

Plant [5] 2661 5664 2.13 no no

Bacteria [6] 1267 2233 1.76 no no

Yeast [7] 2018 2930 1.45 no no

Worm [8] 2528 3864 1.53 no no

Fly [4] 3352 6094 1.82 yes yes

Human [2] 4303 13944 3.24 no no

HumanIso [3] 629 996 1.58 no no

Table 1: Summary of protein-protein interaction (PPI) networks. The direction and sign of
an interaction were assigned at random (coin flip) in undirected and/or unsigned networks.
References, data and source code publicly available in [1].

Figure 1: Degree distribution of PPI networks and their corresponding synthetic analogs:
no-hubs (NH), no-leaves (NL) and random (RN).
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2.2 Regulatory networks

Regulatory networks (details and references in Table 2, raw data and source code available
in [1]) are all directed, with some being partially signed (RegulonDB and TRRUST). The nodes
in regulatory networks can be transcription factors, genes (which can refer to the protein or
mRNA), or small RNAs. All networks originally contain exclusively experimentally-validated
interactions, with the exception of Liu and RegulonDB which contain computationally (in-
silico) inferred interactions which were excluded. In the case of RegulonDB, only interactions
with ‘strong’ or ‘confirmed’ experimental evidence are included, and since none of the interac-
tions involving small RNAs had such evidence, they were eliminated. The remaining interac-
tions were therefore exclusively between transcription factors. In miRTarBase networks, only
interactions with strong experimental evidence (elucidated through reporter assays or west-
ern blot experiments) are included. Furthermore, interactions where the species of source and
target genes are different were excluded (presumably, these original from transgenic studies).

The ENCODE proximal network is an overall consolidated network of transcriptional in-
teractions in humans, with some interactions being obtained by further consolidation with PPI
network (detailed in supplementary materials of [9]). The other two ENCODE networks on the
other hand are generated from specific human cell lines (GM and K562). The TRRUST network
is unique in that it was obtained by data mining ∼20 million literature abstracts from Medline
(2014), out of which ∼23K sentences were nominated to contain potential descriptions of reg-
ulatory interactions [10]. These sentences underwent successive rounds of manual inspections.
TRRUST network also includes information about the nature of interactions and the number of
studies supporting it. For interactions deemed promotional by some studies and inhibitory by
others, we picked the sign randomly by flipping a crooked coin proportional to the number of
studies that support one type or another (for example, if 3 studies report an interaction as ‘pro-
motional’ and 1 reports it as ‘inhibitory’, we would consider the interaction to be ‘promotional’
with 75% likelihood). TRRUST authors aimed to create a high-quality network that can serve
as a gold-standard to other large-scale studies aiming to map transcriptome interactions in hu-
mans. The same crooked coin strategy was used in RegulonDB network. Figure SI 2 shows the
degree distributions of regulatory networks and their corresponding synthetic analogs. Despite
the diverse methods that were behind the mapping of these networks (in contrast to PPIs,
where Y2H method is dominant), the mLmH property still holds with lower-degree nodes in
particularly being of almost the same frequency in the majority of networks.
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Regulatory Network no. nodes no. edges e2n ratio directed? signed?

Bacteria RegulonDB [11] 898 1481 1.649 yes no

ENCODE Proximal [9] 9057 26070 2.878 yes no

ENCODE K562 [9] 3947 9595 2.431 yes no

ENCODE GM [9] 3989 6971 1.748 yes no

Human Liu [12] 3502 9606 2.743 yes no

Human TRRUST [10] 2718 8015 2.949 yes yes

Human miRTarBase [13] 2583 5450 2.11 yes no

Mouse Liu [12] 1436 3673 2.558 yes no

Mouse miRTarBase [13] 741 1019 1.375 yes no

Table 2: Summary of regulatory networks. The direction and sign of an interaction were
assigned at random (coin flip) in undirected and/or unsigned networks. References, data and
source code publicly available in [1].

Figure 2: Degree distribution of regulatory networks and their corresponding synthetic analogs:
no-hubs (NH), no-leaves (NL) and random (RN).
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2.3 Database-sourced networks

Table 3 shows details and source references of networks obtained from the BioGrid database
or from multiple databases queried simultaneously through the PSICQUIC web service (raw
data and source code available in [1]). All obtained interactions are undirected and unsigned.
Interactions in BioGrid networks represent physical interactions which have been validated by
at least two studies, except for human and yeast networks in which interactions have been
validated by at least 4 and 3 studies, respectively (because of the large number of interactions
for these two species, it was still possible to obtain large networks even under this stringent se-
lection criteria). Multiple databases (excluding BioGrid) were searched programmatically with
a Molecular Interaction Query Language (MIQL) query through the PSICQUIC web service
interface (source code publicly available in [1]). The query specifies interactions where both
interactors (1) are from the same species, (2) they interact physically, and (3) the interaction
has been experimentally detected. It should be noted that some PSICQUIC interactions did
distinguish whether an interactor is an isoform of a well-known gene. Figure SI 3 shows the
degree distribution of the resulting networks and their corresponding synthetic analogs. The
Plant-PSICQUIC network is anomalous in its degree distribution, indicating sporadic coverage
of its reported interactions. Other networks of even smaller size still exhibit the mLmH prop-
erty, which can be a sign that the underlying studies behind them were less sporadic in their
coverage (i.e. focusing on specific functional units).
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DB-sourced Network no. nodes no. edges e2n ratio directed? signed?

Plant-BioGrid [14] 1565 2745 no no

Plant-PSICQUIC [15] 230 789 3.43 no no

Yeast-BioGrid [14] 2418 7668 3.171 no no

Yeast-PSICQUIC [15] 767 1386 1.807 no no

Worm-BioGrid [14] 55 64 1.164 no no

Fly-BioGrid [14] 188 279 1.484 no no

Mouse-BioGrid [14] 1031 1497 1.452 no no

Human-BioGrid [14] 3436 8254 2.402 no no

Human-PSICQUIC [15] 3470 6188 1.783 no no

Table 3: Summary of real database-sourced networks. The direction and sign of an interaction
were assigned at random (coin flip) in undirected and/or unsigned networks. References, data
and source code publicly available in [1].

Figure 3: Degree distribution of DB-sourced networks and their corresponding synthetic
analogs: no-hubs (NH), no-leaves (NL) and random (RN).
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3 Formal Definition of the Network Evolution Problem

(NEP)

Given:

G = (g1, g2, . . . , gn), A = (a1, a2, . . . , an), aj ∈ {+1, 0,−1}, t ∈ R, and

M =
[
mjk

]
where mjk ∈ R, ∀j, k, 1 ≤ j, k ≤ n

Let:

B = (b1, b2, . . . , bn), where bj =
n∑
k=1

mjk ⊕ ak +
n∑
k=1

mkj ⊕ aj and

mxy ⊕ ay =


|mxy| if mxy × ay > 0

0 otherwise

D = (d1, d2, . . . , dn), where dj =

n∑
k=1

mjk 	 ak +

n∑
k=1

mkj 	 aj and

mxy 	 ay =


|mxy| if mxy × ay < 0

0 otherwise

Define:

f : G→ {0, 1} maximizing
n∑
j=1

f(gj)× bj s.t.

(
n∑
j=1

f(gj)× dj

)
≤ t

Table 4 provides a summary of each element of NEP and its corresponding semantic
interpretation in biological context (see also the main text for more on the semantics of NEP
in biological context).
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G = (g1, g2, . . . , gn) A sequence of Genes: any transcribable element on the genome

A = (a1, a2, . . . , an)

A ternary string representing an Oracle Advice:

aj =


+1 =⇒ gj is advantageous

−1 =⇒ gj is disadvantageous

0 =⇒ no opinion on gj

M =
[
mjk

]
n× n Interaction M atrix: mjk =


p > 0 =⇒ gj promotes gk

q < 0 =⇒ gj represses gk

0 =⇒ gj and gk don’t interact

t ∈ R tolerance threshold on damages

B = (b1, b2, . . . , bn)

D = (d1, d2, . . . , dn)

Each gene gj has a corresponding benefit value bj and damage value dj
given an Oracle advice on gj and all or some of its interaction partners.

mxy ⊕ ay =
{
|mxy| if mxy × ay > 0

0 otherwise
If the effect of gx on gy is in agreement with what the Oracle says gy should
be (i.e. mxy and ay have the
same sign), then increment bx by |mxy|

mxy 	 ay =
{
|mxy| if mxy × ay < 0

0 otherwise
If the effect of gx on gy is in disagreement with what the Oracle says gy
should be (i.e. mxy and ay have different signs), then increment dx by |mxy|

f : G→ {0, 1}
maximizing:
n∑

j=1

f(gj)× bj

subject to:(
n∑

j=1

f(gj)× dj

)
≤ t

The idealistic pursuit of enforcing an Oracle advice (OA) is complicated by the
reality of network connectivity:
OA can be imposed by deleting every gene gi where ai = −1 and conserving
every gene gj where aj = +1. However: deleting gi can inadvertently
contribute to a violation of the OA if gi happens to be a promoter (repressor)
of some gk that should in fact be promoted (repressed); and conserving gj
can inadvertently contribute to a violation of the OA if gj happens to be a
promoter (repressor) of some gk that should in fact be repressed (promoted).
What subset of genes should be conserved/deleted (define f) such that the OA
is supported by as many interactions as possible (the maximize .. subject to..
clauses)?

Table 4: The syntax (left column) and semantics (right) of the network evolution problem
(NEP)
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4 NP-hardness of NEP

The NP-hard knapsack optimization problem (KOP) [16] is defined as: Given a sequence
of objects O = (o1, o2, . . . , or), values V = (v1, v2, . . . , vr), weights W = (w1, w2, . . . , wr), and
a knapsack capacity c where vi, wi, c ∈ N, define:

f : O → {0, 1} maximizing
r∑
j=1

f(oj)× vj s.t.

(
r∑
j=1

f(oj)× wj

)
≤ c.

Theorem: NEP is NP-hard by reduction from KOP.

4.1 Proof sketch

For a given KOP instance with r items, create a graph with r + 1 nodes: n1, n2 . . . , nr+1.
Assume an OA where ai = +1 ∀ai ∈ A except for ar+1 = 0. For each vi ∈ V , draw a vi-weighted
edge from ni to itself. Sort objects in O ascendingly by their respective weights in W , call this
sorted list O′. ∀wi ∈W , draw a −wi-weighted edge from ni to nj where oj is the successor of
oi in O′. Because nj is attracting damaging interactions due to incoming edges from ni, update
its weight to wj − wi. For the last node nr, draw −wr-weighted edge from node nr+1 to nr.
Because nr+1 has zero-value, it’s ruled out a priori from the solution vector.

4.2 Proof

I. Define γ : {1, .., r} → {1, .., r} s.t. ∀i, 1 ≤ i < r : wγ(i) ≤ wγ(i+1)

II. Let G = O + {or+1}, t = c, A = (a1, . . . , ar, ar+1), where ar+1 = 0 and ∀i ≤ r, ai = +1
III. Let M be a d× d zero-matrix, d = r + 1. Populate M as follows:

1. Repeat for i = 1 to i = r − 1:

j ← γ(i) and k ← γ(i+ 1)

mjj ← vj and mjk ← − wj
wk ← wk − wj

2. j ← γ(r), mjj ← vj , mdj ← −wj
IV. Calculate B, D and define f : G→ {0, 1} (Section 3).
V. Return (f(o1), . . . , f(or)) as KOP’s solution vector �

Proof notation follows that in KOP (above) and NEP (Section 3) definitions.

4.3 Reverse-Reducing NEP To KOP

While the KOP-to-NEP reduction proves the later to belong to the same complexity class as the
former, NEP-to-KOP reduction allows the use of an existing well-known pseudo-polynomial dynamic-
programming algorithm [17] to solve instances of the former. NEP can be reverse-reduced to KOP by
setting O = G,V = B,W = D, and c = t.
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5 Oracle advice on interactions

An Oracle advice (OA) over interactions (edges) rather than genes (nodes), can be represented
by a matrix A =

[
ajk
]

where ajk ∈ {+1,−1} if mjk 6= 0 and ajk = 0 otherwise (recall mjk is the
entry at row j and column k of the interaction matrix M , see NEP definition in Section SI 3). While
mjk 6= 0 describes what the effect of gj on gk actually is, ajk describes what that effect should ideally
be. A beneficial (damaging) interaction is one where mjk×ajk = 1 (mjk×ajk = −1). In other words,
an interaction is beneficial (damaging) if it is in agreement (disagreement) with what the Oracle says
that interaction should ideally be. For example, assume gj inhibits gk, i.e. mjk = −1, but the OA
is ajk = +1, then mjk × ajk = −1 implies the real effect disagrees with the ideal and the interaction
is deemed damaging. The benefit (damage) score of each gene gj , given a matrix OA, is the sum of
beneficial (damaging) interactions that gj is projecting onto (out-edges) or attracting from (in-edges)
other genes in a similar manner as those calculated under a string OA (Section SI 3).

NEP remains NP-hard under a matrix OA. To prove this, we modify the proof in Section 4 as
follows:

I. Define γ : {1, .., r} → {1, .., r} s.t. ∀i, 1 ≤ i < r : wγ(i) ≤ wγ(i+1)

II. Let G = O + {or+1}, t = c.
III. Let M be a d× d zero-matrix, d = r + 1. Populate M as follows:

1. Repeat for i = 1 to i = r − 1:

j ← γ(i) and k ← γ(i+ 1)

mjj ← vj and mjk ← − wj
wk ← wk − wj

2. j ← γ(r), mjj ← vj , mdj ← −wj
IV. Let A be a d× d matrix where:

ajk =


+1 if mjk 6= 0

0 otherwise
V. Calculate B, D as follows:

bj =
n∑
k=1

mjk ⊕ ajk +
n∑
k=1

mkj ⊕ akj where:

mxy ⊕ axy =


1 if mxy × axy > 0

0 otherwise
and similarly the damage score is:

dj =
n∑
k=1

mjk 	 ajk +
n∑
k=1

mkj 	 akj where:

mxy 	 axy =


1 if mxy × axy < 0

0 otherwise

VI. Define f : G→ {0, 1} (Section 3)
VII. Return (f(o1), . . . , f(or)) as KOP’s solution vector �
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6 Simulating Evolutionary Pressure

The simulation has the parameter tolerance t, expressed as percentages of total edges, indicating
the total number damaging interactions to be tolerated (equivalently, the knapsack capacity c in
the corresponding KOP instance). For each network, the simulation is carried out under maximum
pressure (non-zero OA on every gene) against each t ∈ 0.1, 1, 5%. Given a tolerance value t, a
knapsack instance is generated from a given NEP instance by reversing the reduction; that is: O =
G,V = B,W = D and c = t. The simulation records the total benefit and damage of objects (=genes,
recall O = G) added to the knapsack by the solver [17] for each round against a randomly generated
Oracle advice on each gene. The simulation is repeated for 1-5K iterations (sampling threshold, see
Section 7). Figure SI 4 summarizes the algorithmic workflow of the simulation.

right: Simulations are carried at a certain pressure. Maximum pressure
is when the Oracle has a non-zero advice on all nodes. Some simulations
were carried at lower pressure levels where the Oracle is indifferent to 25,
50, 0r 75% of genes. For each tolerance t value, 1-5K simulation rounds
are carried out. In each round, a random OA is generated on all genes
(nodes), followed by a calculation of benefit/damage value for each node
against the current OA. The resulting NEP instance is reverse-reduced to
a KOP instance (O = Gi, V = Bi,W = Di, c = ti) and fed to a knapsack
solver. In each round, the sequences Gi, Bi, Di, ti, and Si are written to
file, where Si is the solution vector (s1, . . . , sk), k = |Gi|, and si ∈ {0, 1}.
si = 1 (si = 0) implies “conserve” (“delete”) or, in the context of the
knapsack problem, “inside” (“outside”) the knapsack.
below: average algorithm running time in milliseconds for each network.
’S’ denotes an identical simulation on a second computer cluster different
from the first run. For t=0.1%, the execution times are too negligible as
a result of the dynamic programming algorithm [17] being upper-bounded
by an exponent = O(c) value. We therefore carried out the simulation at
higher tolerance values t ∈ {5, 25, 50}%. NL has significantly less nodes
compared to other networks, and therefore shows the smallest execution
times. PPI, RN and NH have ∼equal network sizes, but instances in PPI
are solved faster compared to to its smaller instance sizes (a majority of
genes being having either benefit (damage) as zero, and therefore such
genes are not part of the optimization search as they should be conserved
(deleted) regardless, see discussion on effective instance size (EIS) in the
main text for details).

Figure 4: The algorithmic workflow of computer simulation and the average run time of the
knapsack solver.
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7 Effect of Sampling Threshold

Increasing the sampling threshold in the simulation (i.e. how many NEP instances to simulate)
does not change the results, due to the effect of the Central Limit Theorem [18]. Figures SI 5 and
6 compare the results computed over 1,000 versus 5, 000 simulated instances (see the corresponding
Figures 4 and 5 in the main text for detailed description).

7.1 Benefit-Damage Correlation:

Figure 5: Increasing the sampling threshold from (A) 1,000 to (B) 5,000 NEP has virtually no
effect on the resulting benefit-damage correlations.

7.2 Effective Instance Size:

Figure 6: Increasing the sampling threshold from (A) 1,000 to (B) 5,000 NEP has minimal to
no effect on effective instance size (EIS). Legend: numbers between parenthesis are average +/-
standard deviation.
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8 Benefit-damage correlation

Figures SI 7 and 8 show the benefit-damage correlation results for the regulatory and DB-sourced
networks, respectively. For detailed description please see Figure 4 in the main text which shows the
results for PPI networks.

Figure 7: benefit-damage correlation in regulatory networks.
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Figure 8: benefit-damage correlation in database-sourced networks.
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9 Predicted vs. actual degree distributions

Figures SI 9, 10 and 11 show detailed plots of the actual versus predicted degree distribution of
PPI, regulatory and DB-sourced networks, respectively, along with detailed bar plots of each (α, β)
values used in the prediction formula and their respective proportionality to the node:edge (n2e) and
edge:node (e2n) ratios in each networks. The (α, β) values were numerically determined by considering
each α in the interval [0.01, 1] in increments of 0.01 against each β in [0.1, 10] interval in increments
of 0.1. Hub prediction may visually appear to be less precise but that is only due to the log scale in
the y-axis. High discrepancies between (α, β) and (n2e, e2n) values can be used to infer the quality of
coverage and resolution of a network, and the extend to which it represents a representative sample
the overall true and complete network. For example, e2n >> β for the Yeast BioGrid network (Figure
SI 11, right bar plot). Examining the degree distribution of this network (Figure SI 3), the frequency
of degree-1 nodes is significantly low (∼19%) compared to all other networks (DB-sourced, regulatory
or PPI networks, where degree-1 frequency is 44±10%). The Worm BioGrid network on the other
hand, has β >> e2n, which can be explained by the under representation of hub nodes in its network
(it has no genes of degree ≥ 9, while on average 8±5% of genes in other networks have degree ≥9).

Figure 9: Actual and predicted degree distribution of PPI networks. The bar plots (bottom)
show the α and β values in the predicted networks versus the node:edge (n2e) and edge:node
(e2n) ratios of the real networks.

16



Figure 10: Actual and predicted degree distribution of regulatory networks. The bar plots
(bottom) show the α and β values in the predicted networks versus the node:edge (n2e) and
edge:node (e2n) ratios of the real networks.
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Figure 11: Actual and predicted degree distribution of database-sourced networks. The bar
plots (bottom) show the α and β values in the predicted networks versus the node:edge (n2e)
and edge:node (e2n) ratios of the real networks.
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10 Simulated evolution

Figure SI 12 shows the algorithmic workflow of the simulated evolution. In the fitness calculation
step (denoted by a star in Figure SI 12), the fitness of a network vis-a-vis the current NEP instance
is calculated based on 1) effective instance size (EIS) and 2) effective gained benefits (EGB) [19]. EIS
is defined as the % of unambiguous nodes in the instance:

EIS =
|{ni : bi = 0|di = 0}|

N
(1)

where N is the total number of nodes and bi and di and the benefit and damage score of some node
ni. Let (s1, s2, .., sk) be the solution vector to an NEP instance where si ∈ {0, 1} and si = 1 (si = 0)
implies “conserve” (“delete”). The multiset B = {bi : si = 1} contains a list of all the benefits of
nodes that are to be optimally conserved, and the effective gained benefits EGB=sum(set(B)). EGB
is hence B normalized by the number of nodes it takes to add a certain benefit value). For example,
with B1 = {1, 1, 1, 5} and B2 = {2, 6}, sum(B1) = sum(B2) = 8. But EGB1 = sum(set(B1)) =
sum(1, 5) = 6 while EGB2 = sum(set(B2)) = sum(2, 6) = 8. Let Btot be the total benefit in a given
NEP instance (the sum of gained benefits of conserved genes and lost benefits of deleted genes), the
fitness of a given NEP instance S is measured as:

F (S) = EISα × EGB

Btot
(2)

where α ∈≈ R+. We applied α = 2 in all simulation. With α, the weight given to EIS vs EGB
can be calibrated. This reflects the inherent opposition of EIS vs EGB, as EIS is best minimized
with a large number of leaves while EGB is maximized with a large number of hubs. While EGB
indicates how well a network accumulates as many beneficial interactions as possible with the smallest
possible number of genes to conserve, normalizing it by the total benefits Btot penalizes networks that
hemorrhage beneficial interactions that are lost to deleted genes in the optimal solution. The threshold
t of tolerated damaging interactions in the solution is imposed at 5% of the sum of all damages in all
simulations.

Figures SI 13, 14 and 15 show extended results of the degree distribution of synthetically evolved
networks grouped by network families (PPIs, regulatory and DB-sourced networks respectively). In
each simulation, the network growth (add-edge and add-node mutations) are halted when the size of
the synthetic network has become equal to the corresponding real network. Once network growth is
disabled, the evolutionary algorithm is further run for a constant 2000 generations with re-assign edge
mutation only.
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Figure 12: The algorithmic workflow of the evolutionary algorithm. Simulations begin with
empty networks or seed networks that have randomly distributed edges. Each network is
randomly mutated by reassigning one edge at each generation and, if growth is allowed, one
node is also added along with as many randomly assigned edges as needed to maintain the
desired edge:node ratio. An instance of the network evolution problem (NEP) is obtained by
generating a random Oracle advice (OA) on all edges in the network. A network’s fitness at
each instance S is calculated following the F (S) formula (see text). The 10% of networks with
the highest average fitness over all instances are selected to breed a population of networks for
the subsequent generation. Adapted with modification with permission from [19].
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Figure 13: Evolving synthetic networks to the same size (number of nodes and edges) as
protein-protein interaction networks.
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Figure 14: Evolving synthetic networks to the same size (number of nodes and edges) as
regulatory networks.
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Figure 15: Evolving synthetic networks to the same size (number of nodes and edges) as
database-sourced networks.
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11 Simulated adaptation

In these experiments, the simulated network evolution algorithm (see Figure SI 12) starts with
networks that have a number of nodes/edges equal that of a corresponding real MIN. The edges of
the seed networks are initially randomly assigned. In each generation, only reassign-edge mutation is
carried out (no add-node or add-edge mutations) as opposed to the simulated evolution experiments
(Section SI 10). Figures SI 16 and 17 show the degree distribution of the fittest synthetic network
(labelled ‘Simulation’) against that of the corresponding equal-size MIN after 4X and 8X generations
of mutate-and-select, respectively, where X equals the number of the nodes in the network. The
degree distribution of the initial seed network is labeled ’Seed’ in Figures SI 16 and 17. The threshold
t of tolerated damaging interactions in the solution is kept at 5% of the sum of all damages in all
simulations, as was the case in the simulated evolution experiments of Section 10.

Figure 16: Adapting synthetic networks for 4X generations of mutate-and-select where X is
the total number of nodes in the networks. Simulation starts with the a network that has
the same number of nodes and edges as the corresponding real MIN, but with edges randomly
assigned to nodes. The degree distribution of the synthetic (Simulation) shown here is that
of the fittest network after 4X generation of mutate-only simulated adaptation. Increasing the
number of generations does not significantly change the degree distribution (see Figure SI 17).
The degree distribution of the initial seed network is labeled ’Seed’.

Figure 17: The same simulation as that in Figure SI 16 except that here the simulation is fur-
ther continued for 4X more generations (hence the total number of generations is 8X the number
of nodes in the network). Such increase in number of generations does not significantly change
the degree distribution as opposed to simulations terminated after 4X generations (Figure SI
16). The degree distribution of the initial seed network is labeled ’Seed’.
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Sotelo JS, et al. RegulonDB version 9.0: high-level integration of gene regulation, co-
expression, motif clustering and beyond. Nucleic Acids Research. 2016 Jan;44(D1):D133–
D143. Available from: https://academic.oup.com/nar/article/44/D1/D133/2502650/

RegulonDB-version-9-0-high-level-integration-of.

[12] Liu ZP, Wu C, Miao H, Wu H. RegNetwork: an integrated database of transcriptional and
post-transcriptional regulatory networks in human and mouse. Database. 2015 Jan;2015. Avail-
able from: https://academic.oup.com/database/article/doi/10.1093/database/bav095/

2433227.

25

http://cs.mcgill.ca/~malsha17/permlink/NETWORKS/
http://www.sciencedirect.com/science/article/pii/S0092867414014226
http://www.sciencedirect.com/science/article/pii/S0092867414014226
http://www.sciencedirect.com/science/article/pii/S0092867416300435
http://www.sciencedirect.com/science/article/pii/S0092867416300435
http://www.nature.com/nmeth/journal/v11/n1/abs/nmeth.2733.html
http://www.nature.com/nmeth/journal/v11/n1/abs/nmeth.2733.html
http://science.sciencemag.org/content/333/6042/601
http://science.sciencemag.org/content/333/6042/601
http://www.nature.com/nbt/journal/v32/n3/abs/nbt.2831.html
http://science.sciencemag.org/content/322/5898/104
https://www.nature.com/articles/nmeth.1279
https://www.nature.com/articles/nmeth.1279
https://www.nature.com/nature/journal/v489/n7414/full/nature11245.html
https://www.nature.com/nature/journal/v489/n7414/full/nature11245.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464350/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464350/
https://academic.oup.com/nar/article/44/D1/D133/2502650/RegulonDB-version-9-0-high-level-integration-of
https://academic.oup.com/nar/article/44/D1/D133/2502650/RegulonDB-version-9-0-high-level-integration-of
https://academic.oup.com/database/article/doi/10.1093/database/bav095/2433227
https://academic.oup.com/database/article/doi/10.1093/database/bav095/2433227


[13] Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, et al. miRTarBase 2016: updates
to the experimentally validated miRNA-target interactions database. Nucleic Acids Research.
2016 Jan;44(D1):D239–D247. Available from: https://academic.oup.com/nar/article/44/

D1/D239/2503072/miRTarBase-2016-updates-to-the-experimentally.

[14] Chatr-aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, et al. The BioGRID
interaction database: 2017 update. Nucleic Acids Research. 2017 Jan;45(Database issue):D369–
D379. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210573/.

[15] Aranda B, Blankenburg H, Kerrien S, Brinkman FSL, Ceol A, Chautard E, et al. PSICQUIC and
PSISCORE: accessing and scoring molecular interactions. Nature Methods. 2011 Jul;8(7):528–
529. Available from: http://www.nature.com/nmeth/journal/v8/n7/full/nmeth.1637.html.

[16] Karp RM. Reducibility Among Combinatorial Problems. 50 Years of Integer Program-
ming 1958-2008. 2010;p. 219–241. Available from: http://www.springerlink.com/index/

L45H7011865P0257.pdf.

[17] Pisinger D. Where are the hard knapsack problems? Computers & Operations Research.
2005;32(9):2271–2284. Available from: http://www.sciencedirect.com/science/article/

pii/S030505480400036X.

[18] Kallenberg O. Foundations of modern probability. Springer Science & Business Media; 2006.
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