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Introduction 
 
MetaPhat is an open source application to detect variants with multivariate associations by using 
summary statistics from univariate genome-wide association studies. The application also performs 
decomposition by finding statistically optimal subsets and driver traits for the multivariate 
associations. The results are visualized to gather novel insight and interpretation about multivariate 
associations. The code is written in Python 2.7+ (syntax consistent with Python 3) and R 3.4+ and is 
available at https://sourceforge.net/projects/meta-pheno-association-tracer/, and also includes 
installation instructions and test input data, described further below.  
 
A high-level flow chart is shown in Figure S1. The component boxes outline the user input, quality 
control (QC) and trait correlation estimation, genome-wide testing, variant decomposition through 
iterative exclusion of traits and finally plotting. MetaPhat parameters and their descriptions are 
listed further below in the Program arguments section. Genome-wide significant variants are 
detected via integration of metaCCA implementation (Cichonska et al. 2016; 
https://github.com/aalto-ics-kepaco/metaCCA), that does multivariate testing based on canonical 
correlation analysis (Hotelling 1936). Our manuscript presents results for 21 heritable lipid species 
containing polyunsaturated fatty acids (Table S1) using their univariate GWAS summary statistics 
from Tabassum et al. 2018. The details of the decomposition procedure used for finding the optimal 
subset and driver traits for the identified variants including the APOE variant (rs7412), a known 
lipid-associated variant (Willer et al. 2013), are presented in Data example.  
  
Work flow 
 

 
Figure S1: Workflow. 1. MetaPhat requires an input of a summary file defining multiple univariate GWAS summaries. 
2. Quality control and trait correlation estimates are done. 3. Genome-wide association tests are performed on the full 
model with all traits included using metaCCA. The variants are divided into chunks and the association tests are 
performed in parallel using multiple processors, as defined in the inputs. 4. Significant variants are detected and 
clumped based on p-value and the given base-pair window size. 5. Decomposition is performed by finding statistically 
optimal traits and driver traits by tracing the highest and lowest p-values on trait subsets. MetaPhat has been tested on 
multiple platforms and suitable for cloud computing, more details are listed in the Architectures and Performance 
section.   

User inputs
Univariate K traits GWAS summaries and other parameters

QC, intersect beta and SE for SNPs 
Correlate traits 

Multivariate Genome-Wide Association
Multi-processed SNP chunks with metaCCA

Clumping
Grouped significant SNPs via p-value and base-window

Decomposition
Test and trace clumped SNPs with trait subsets and iterations

1. 

2. 

3. 

5. 

4. 



Data example 
 
1. Heritable lipid species 
We processed univariate GWAS summaries of 21 correlated lipid species with polyunsaturated 
fatty acids that were reported to exhibit high heritability (Tabassum et al. 2018). These summaries 
were generated using lipidomics data from 2,045 Finnish subjects with imputed genotypes available 
at ~8.5 million SNPs. The full lipid names and fatty acid chemical properties are listed in Table S1.   
 
Table S1: Human lipid measures used in MetaPhat analysis. Polyunsaturated lipids species with acyl chains- C20:4 
(14 lipids), C20:5 (3 lipids) and 22:6 (4 lipids) are reported to exhibit high heritability (Tabassum et al. 2018). As these 
lipids also demonstrate considerable correlations among themselves (shown in Figure S2), they are suitable for 
MetaPhat multivariate analysis and decomposition.   
   

Identifiers Lipid classes Lipid species  
CE14 Cholesteryl ester CE(20:4;0) 
CE15 Cholesteryl ester CE(20:5;0) 
CE17 Cholesteryl ester CE(22:6;0) 
LPC8 Lysophospatidylcholines  LPC(20:4;0) 
LPC9 Lysophospatidylcholines  LPC(22:6;0) 
LPE5 Lysophosphatidylethanolamine LPE(20:4;0) 
LPE6 Lysophosphatidylethanolamine LPE(22:6;0) 
PC17 Phosphatidylcholine PC(16:0;0-20:4;0) 
PC18 Phosphatidylcholine PC(16:0;0-20:5;0) 
PC29 Phosphatidylcholine PC(17:0;0-20:4;0) 
PC36 Phosphatidylcholine PC(18:0;0-20:4;0) 
PC37 Phosphatidylcholine PC(18:0;0-20:5;0) 
PC46 Phosphatidylcholine PC(18:1;0-20:4;0) 
PC21 Phosphatidylcholine PC(16:0;0-22:6;0) 
PCO7 Phosphatidylcholine-ether PC-O(16:0;0-20:4;0) 
PCO23 Phosphatidylcholine-ether PC-O(18:0;0-20:4;0) 
PCO29 Phosphatidylcholine-ether PC-O(18:1;0-20:4;0) 
PE7 Phosphatidylethanolamine  PE(18:0;0-20:4;0) 
PEO3 Phosphatidylethanolamine-ether PE-O(16:1;0-20:4;0) 
PEO11 Phosphatidylethanolamine-ether PE-O(18:2;0-20:4;0) 
PI9 Phosphatidylinositol PI(18:0;0-20:4;0) 

  
Correlations among the traits (Figure S2) are estimated via metaCCA (estimateSyy function) using 
the univariate beta coefficients across the traits as input. MetaPhat performs quality control to filter 
out variants that are not available for all traits and also automatically aligns the effects to a same 
allele.  
 
 



 
Figure S2: Correlation map of 21 heritable lipid traits computed from univariate beta coefficients using metaCCA. 
 
MetaPhat detected significant associations at 433 SNPs (p < 5x10-8) of which 7 independent 
variants, listed in Table S2, remained after clumping by a window of one million-base pairs. 
Clumping means that the set of independent variants was generated iteratively as follows: the 
variant with the smallest p-value < 5x10-8 was added among the independent variants and all other 
variants within 1 Mb of the newly chosen variant were filtered out. This procedure was repeated 
until no genome-wide significant (p < 5x10-8) variant remained. 
 
Decomposition 
 
Table S2 below lists the significant SNP associations and their decomposition results by MetaPhat 
using univariate GWAS summaries for the 21 lipid species (Table S1). Gene information is 
captured for these SNPs programmatically using an Ensemble (Hunt et al. 2018; GRCH37 and 
GRCH38 builds supported) resource lookup. Variants within 3,000 bases to a gene start codon site 
are labeled with the gene name and the exact base pair distance from the start codon (here 
12:21414585:ATTTC:A_2949_SLCO1A2). Outside this 3,000 base-window and within 25K base-
window, variants are labeled by the gene name and distance in kilo-bases(KB) (here 
13:90477047:G:T_13KB_ENSG00000200733).     
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Table S2: List of 7 independent variants with their optimal and driver traits that are identified by MetaPhat in the 
multivariate analyses of 21 polyunsaturated lipid species.  
 
 

Variant  
Gene GRCH37 
(RSID) 

Sample 
missing 

All traits 
Neg. 
log10(P 
value) 

Optimal traits Optimal 
Neg. 
log10(P 
value) 

Drivers 

11:61593005:G:A 
FADS2 (rs174567) 

1.3% 144.62 LPC8_PE7_PI9_CE17_PC17_ 
PC36_PC37_CE15_CE14_PEO3_ 
PC21_PC46_PEO11_LPE5 

148.70 PC36_CE14_PC17_LPC8_PEO11_ 
PEO3_LPE5_PC21_PC46_PC29_ 
CE15_PC37_PC18_PCO7_PCO29_ 
PCO23_PI9_PE7_CE17_LPC9_LPE6 

11:116623213:TA:T 
BUD13 (rs66505542) 

0.1% 7.81  LPC9_PI9_PC36  11.44 PI9 

12:21414585:ATTTC
:A_2949_SLCO1A2 
(rs146327691) 

1.2% 7.37 LPC9_PE7_LPE6_LPE5  10.26 LPE5 

13:90477047:G:T             
13KB_ENSG0000020
0733 (rs188167837) 

1.0% 7.53 CE17_PC17_CE14_PC21 8.32 PC17 

15:58678720:C:T 
ALDH1A2 
(rs261290) 

0.6% 40.60 PE7_PI9_PCO29_PC17_CE15_LPE6  46.87 PE7 

19:45412079:C:T 
APOE (rs7412) 

0 12.38 PC18_PCO23_PC36_CE14 17.82 CE14_PCO23 

19:54677189:C:T 
MBOAT7 (rs8736) 

23.6% 49.04 PE7_PI9_PC36_PCO7_PC46_LPE6  57.73 PI9 

 
 
Figure S3 repeats Figure 1A from the main text and shows the result of a variant in the APOE gene 
(rs7412) with the highest (green) and lowest (orange) p-value traces, from the full set of 21 traits 
through the iterated subsets that exclude one trait at a time until only a single trait remains. The 
highest trace optimizes for the highest association statistic (smallest p-value) whereas the lowest 
trace optimizes for the lowest association statistic (largest p-value). By following these traces, we 
can decompose the set of traits into smaller subsets of traits that contribute the most to the 
association statistic. To assist the interpretation, we define two concepts: optimal traits and driver 
traits.  
 
We define the optimal traits (here PC18, PC36, CE14 and PCO23) as those that remain on the 
highest trace when the association statistic is increasing the last time. For this variant, it can be seen 
that after dropping LPC8 we have remaining Traits=4 and a negative log10 p-value of 17.82, that is 
larger than at Traits=5 and also larger than at any value Traits<4. Thus those 4 traits form the set of 
optimal traits. Table S3 below lists the negative log10 p-values from Traits 4 down to univariate 
statistics. We note that the lowest univariate p-value for this APOE variant for all 21 lipids is about 
0.0001 and hence this variant was detected at significance level 5x10-8 only by applying a 
multivariate model. 
 
We define the driver traits (here CE14 and PCO23) as those that have been removed on the lowest 
trace when the p-value first becomes non-significant (> 5x10-8). Starting from the full model, (21 
Traits), the negative log10 p-value drops to 8.58 after dropping CE14 (20 Traits), and then to 5.74 
after dropping PCO23 (19 Traits) which is below the genome-wide significance threshold (7.3 =-
log10(5x10-8)). As it requires the removal of both CE14 and PCO23 to get below this threshold, 
these two traits thus formed the driver traits. For clarity, Table S4 below lists all the models and 
their p-values that MetaPhat considered when Traits=21, 20 or 19.  
 



 
Figure S3: Trace plot of APOE variant rs7412 showing CE14 and PCO23 as the driver traits and LPC8, PC18, PC36, 
CE14 and PCO23 as the optimal traits. 
 
Table S3: Defining optimal traits. Using the highest trace for APOE variant in Figure S3, MetaPhat detects PC18, 
PC36, CE14 and PCO23 as the optimal traits. The highest trace peaks after dropping LPC8 when 4 traits remain and 
begins a continuous descent, crossing the standard GWAS p-value 5x10-8 after PC36 is dropped and 2 traits PCO23 and 
CE14 remain. These two traits are also the driver traits defined by the lower trace (see Table S3). Table shows the 
association statistic (-log10 p-value) for all combinations that MetaPhat considers after there are 5 traits left. The traits 
on the highest trace are shown in bold at each remaining iteration. 
  

Trait dropped Neg. log10(p value) Traits left 
None 12.75 Full model, 21 polyunsaturated lipids 
LPE5 17.21 5  
LPC8 17.82 4 (PC18_PCO23_PC36_CE14_LPE5) 
PC18 16.60 4 
PC36 13.24 4 
PCO23 10.59 4 
CE14 3.23 4 
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PC18 17.19 3 
PC36 13.60 3 
PCO23 10.38 3 
CE14 3.70 3 
PC36 11.23 2 
PCO23 11.04 2 
CE14 3.81 2 
PCO23  3.96  

(p-value 0.0001 in univariate 
GWAS) 

1 

CE14 3.36  
(p-value 0.0004 in univariate 
GWAS) 

1 

 
Table S4: Defining driver traits. Using the lowest trace for APOE variant in Figure S3, MetaPhat detects CE14 and 
PCO23 as the driver traits. Dropping PCO23 provides the lowest -log10 p-value out of all sets with 20 Traits followed 
by dropping CE14 to get to 19 traits. After these 2 traits were dropped, the p-value was no longer genome-wide 
significant and hence these two traits form the driver traits. 
 

Trait dropped Neg. log10(p value) Traits 
None 12.37 Full model, 21 polyunsaturated lipids 
CE14 8.58 20 
PCO23 8.82 20 
PC36 11.01 20 
LPE5 11.88 20 
LPC8 12.21 20 
PE7 12.45 20 
PI9 12.53 20 
PC18 12.62 20 
LPE6 12.63 20 
PCO7 12.65 20 
PEO11 12.65 20 
PCO29 12.66 20 
CE15 12.66 20 
PC29 12.70 20 
PC46 12.71 20 
CE17 12.71 20 
PC17 12.74 20 
LPC9 12.75 20 
PEO3 12.75 20 
PC37 12.76 20 
PC21 12.76 20 
PCO23 5.74 19 
CE15 6.12 19 
PC18 6.87 19 
LPE5 7.97 19 
CE17 8.05 19 
PE7 8.08 19 
PC17 8.31 19 
PC36 8.43 19 
PI9 8.52 19 
LPC8 8.60 19 
LPE6 8.71 19 
PC46 8.73 19 
PC21 8.76 19 
PEO11 8.81 19 
PCO29 8.84 19 
PC29 8.87 19 



PC37 8.89 19 
LPC9 8.90 19 
PEO3 8.90 19 
PCO7 8.90 19 

 
This example showed that (1) we needed a multivariate test to detect association of APOE variant 
with lipid species and (2) only 2-4 of the 21 traits contribute to most of the multivariate association 
statistic. With MetaPhat we could seamlessly carry out both of these tasks from existing univariate 
GWAS summary statistics.    
 
In addition to APOE variant, we found 6 other significant variants after clumping (Table S2). For 5 
out of the 7 reported SNPs, the driver set has only one trait. Shown in the left panel of Figure S4, 
BUD13 is clearly driven by trait PI9 while FADS2 (Figure S4 right panel) variant decomposition 
resulted in 18 driver traits, including 8 traits that were also forming the optimal traits (LPC8, PE7, 
PEO3, PC17, PC36, PC37, CE15, CE14, PI9, PC21, PC46, PEO11, LPE5). Notably, FADS2 is an 
essential gene for fatty acid metabolism (Lattka et al. 2010). Trait importance map of each of these 
7 SNPs are shown in Figure S5 and the SNP similarity clusters are shown in Figure S6.  
The detailed trace plots, cluster maps and tabular outputs are available at:  
https://sourceforge.net/projects/meta-pheno-association-tracer/files/test_outputs/21_polyunsaturated_lipids.tar.gz 
 
MetaPhat output formats and intermediate results are further described at: 
https://sourceforge.net/p/meta-pheno-association-tracer/wiki/output 
 
 
 

  
 
Figure S4: Decomposition of BUD13 and FADS2 variants. Like most of the decomposed variants (5 out of 7), BUD13 
variant association (left panel) is also driven by single trait-PI9. FADS2 association (right panel) has the most complex 
signal, as there are 14 optimal traits and 18 driver traits. Notably, polyunsaturated lipids LPC8, PE7, PEO3, PC17, 
PC36, PC37, CE15, CE14, PI9, PC21, PC46, PEO11, LPE5 were found in both sets. 
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Figure S5: Trait importance map, color coded from more important (blue) to less important (red), for the 7 independent 
variants based on the rank of the traits on the lowest trace.  
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Figure S6: SNP similarities are based on clustering of trait importance in Figure S5. It can be seen that variants 
annotated to ALDH1A2 (15:58678720) and MBOAT7 (19:54677189) are positively correlated and hence could be linked 
through shared biological mechanisms.  
 
Computational performance  
 
The present analysis of 21 polyunsaturated lipids with 8,576,290 SNPs took 157 minutes on a 
Google cloud Linux instance with 16 cores. The program parameters and performances are listed in 
Table S5. For comparison and running on the same cloud instance, a job using 4 essential lipids 
(HDL, LDL, TC and TG) and 2,161,631 variants from Global Lipids Genetics Consortium (GLGC) 
(Willer et al. 2013) took 45 minutes. Willer and colleagues reported 155 significant variants, 
including APOE rs7412 reported here. We detected 2,364 variants at a p-value cutoff of 10-10 and 
these were clumped into 56 independent variants. The initial MetaPhat GLGC results, with 
decomposed trace plots, are available here:   
https://sourceforge.net/projects/meta-pheno-association-tracer/files/test_outputs/glgc_results.tar.gz/download  
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Table S5: Example data sets of GWAS summaries and their processing times with MetaPhat.  
Data Phenotypes Subjects Intersected  

SNPs 
Time 
(Minutes) 

Significant 
loci 

Clumped 
Significant loci 

Heritable 
polyunsaturated 
lipids1 

21 2,045 8,576,290 157 433 7 

Global Lipid 
Consortium2 

4  
(HDL, LDL, 
TG, TC) 

93,126 2,161,631 45 2,364 56 

1. --parallel 15, --chunks 10000, --waittime 40, –clump 1000000, --cutoff 7, -log10(0.0000001), maf:range 0.01:0.5 
2. --parallel 15, --chunks 10000, --waittime 40, –clump 1000000, --cutoff 10, -log10(0.00000001), maf:range 0.01:0.5 
 
 
Program arguments  
 
Table S6: The input switches of MetaPhat are shown with the --help option. Table below outlines the switches and their 
default values.  

Switches Description and default parameter value 
--help Shows all arguments and lists relevant default values 
--phenotypes Required, parameter is a file that defines GWAS summary files for testing 

(key:full_path)  
 
One summary file per line, in this format  
pheno1:/path/summary1.gz 
pheno2:/path/summmary2.gz 
… 
See example: 
https://sourceforge.net/projects/meta-pheno-association-
tracer/files/test_inputs/global_lipid_summaries2   

--outlabel Required, defines a label for output files and plotting, must be alphanumeric 
and without spaces.  

--nsamples Required, the number of subjects the GWAS summaries were based on.  
--nsamples_dev Optional, defines the allowed deviating percentage of missing samples for 

variants to be included in analysis. It only applies if N is defined in GWAS 
summaries. Defaults to .25 (25%, for example, if nsamples=1000, variants 
with N<750 or N>1250 will be excluded) 

--chunksize Required, sets the number of SNPs processed by metaCCA on each batch. 
Defaults to 100000 

--parallel Required, defines the number of threads, or batch jobs, executed at the same 
time. The entry depends on your processor and whether it is shared. Defaults 
to 5.  

--waittime Required, defines the number of seconds each batch submission 
approximately runs. Waittime depends on the chunksize and parallel 
threads. In our tests we have found that this should be around 120-180 
seconds for chunks of 100000 and 6-8 threads on 16Gb 16Core nonshared 
environment. On shared server, we recommend using higher waittime. 
Defaults to 180. 

--r1         Optional, defines the output column from metaCCA by which to sort the 
variants during clumping. metaCCA outputs both r1 and pvalue. As pvalue 
can be set to INF for multiple variants within the same test trait set. We 
recommend using r1, the leading canonical correlation value. Defaults to 1. 

--outdir Required, defines the complete path to store outputs.  
--gwascutoff Required, defines the pvalue cutoff, -1(math.log(pv, 10)). Defaults to 7.3, 

~5e-8 which is the standard GWAS threshold 
--grch Optional, defines the human ENSEMBL (Hunt et al. 2018) build version, 

possible values are 37 and 38. Defaults to 37. 



--exclude Optional, defines a file whose variants are excluded even if the variant is 
significant. One variant per line. See example: 
https://sourceforge.net/projects/meta-pheno-association-
tracer/files/test_inputs/exclude.dat 

--interested Optional, defines a file whose variants are included in the output results 
even if variant’s pvalue does not pass the cutoff. One variant per line. See 
example: 
https://sourceforge.net/projects/meta-pheno-association-
tracer/files/test_inputs/interested.list 

--maf_range Optional, defines the variant frequency range min:max to include. Example 
values .01:.5, mean that variants with maf values >.5 and <.01 will be 
excluded. Only applies if all input GWAS summaries include this field, and 
the field column header needs to be effect_allele_frequency or maf.  
For possible guidelines, see UK Biobank (item 2): 
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-
biobank-gwas  

--clump Required, defines the base-pair window to clump variants based on  their 
pvalues/r1 canonical correlation values. Defaults to 500000.  

--neglogval Optional, defines the maximal negative log pvalue for INF values. Defaults 
to 400. 

--Rscript Required, defines the full path to Rscript executable. Defaults to 
/usr/bin/Rscript  

 
 
GWAS summary format and headers 
 
Univariate GWAS summary files need to follow existing EBI format standards: 
https://www.ebi.ac.uk/gwas/docs/methods/summary-statistics 
Additional information is provided here: 
https://sourceforge.net/p/meta-pheno-association-tracer/wiki/GWAS_summary_input/ 
In addition, the summary files need to be in gzip format for efficiency reasons. 
 
Prerequisites 
 
MetaPhat requires Python 2.7 and R 3.4+. The detailed installation instructions and package 
dependencies are listed here:  
https://sourceforge.net/p/meta-pheno-association-tracer/wiki/Install_dependencies/ 
 
Architecture and Performance 
 
MetaPhat has been tested on shared Linux servers, MacBook laptops and Google cloud instances. 
The results reported have been processed from Google cloud instance with machine type n1-
highmen-16. The specs are listed below: 
 
Architecture:          x86_64 
CPU op-mode(s):        32-bit, 64-bit 
Byte Order:            Little Endian 
CPU(s):                16 
On-line CPU(s) list:   0-15 
Thread(s) per core:    2 
Core(s) per socket:    8 
Socket(s):             1 
NUMA node(s):          1 
Vendor ID:             GenuineIntel 



CPU family:            6 
Model:                 85 
Model name:            Intel(R) Xeon(R) CPU @ 2.00GHz 
Stepping:              3 
CPU MHz:               2000.182 
     
More details: https://cloud.google.com/compute/docs/machine-types 
For smaller data sets, the standard memory instances are suitable.  We recommend machines with 
higher number of CPUs for optimal multiprocessing performances.  
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