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Despite the central role of sleep in our lives and the high preva-
lence of sleep disorders, sleep is still poorly understood. The
development of ambulatory technologies capable of monitoring
brain activity during sleep longitudinally is critical to advanc-
ing sleep science and facilitating the diagnosis of sleep disor-
ders. We introduced the Dreem headband (DH) as an afford-
able, comfortable, and user-friendly alternative to polysomnog-
raphy (PSG). The purpose of this study was to assess the signal
acquisition of the DH and the performance of its embedded au-
tomatic sleep staging algorithms compared to the gold-standard
clinical PSG scored by 5 sleep experts. Thirty-one subjects com-
pleted an over-night sleep study at a sleep center while wear-
ing both a PSG and the DH simultaneously. We assessed 1)
the EEG signal quality between the DH and the PSG, 2) the
heart rate, breathing frequency, and respiration rate variabil-
ity (RRV) agreement between the DH and the PSG, and 3) the
performance of the DH’s automatic sleep staging according to
AASM guidelines vs. PSG sleep experts manual scoring. Re-
sults demonstrate a strong correlation between the EEG signals
acquired by the DH and those from the PSG, and the signals ac-
quired by the DH enable monitoring of alpha (r= 0.71 ± 0.13),
beta (r= 0.71 ± 0.18), delta (r = 0.76 ± 0.14), and theta (r = 0.61
± 0.12) frequencies during sleep. The mean absolute error for
heart rate, breathing frequency and RRV was 1.2 ± 0.5 bpm, 0.3
± 0.2 cpm and 3.2 ± 0.6 %, respectively. Automatic Sleep Stag-
ing reached an overall accuracy of 83.5 ± 6.4% (F1 score : 83.8 ±
6.3) for the DH to be compared with an average of 86.4 ± 8.0%
(F1 score: 86.3 ± 7.4) for the five sleep experts. These results
demonstrate the capacity of the DH to both precisely monitor
sleep-related physiological signals and process them accurately
into sleep stages. This device paves the way for high-quality,
large-scale, longitudinal sleep studies.

Sleep | EEG | Machine learning | Sleep stages | Device
Correspondence: research@dreem.com

Introduction
Sleep disorders and insufficient sleep negatively impact hun-
dreds of millions of people across the world and constitute
a growing public health epidemic with grave consequences,
including increased risk of cardiovascular and neurodegener-
ative diseases and psychiatric disorders (1). The most preva-
lent sleep disorders include insomnia, which affects ~20%
of the general population, and obstructive sleep apnea, which
affects ~10% of the general population (2). Despite their high

prevalence, sleep disorders remain largely unidentified and/or
untreated with less than 20% of patients estimated to be ac-
curately diagnosed and treated (3).
Today, the gold standard to study or diagnose sleep dis-
orders is nocturnal polysomnography (PSG). A PSG sleep
study is typically a single overnight assessment, usually
taking place in a sleep center, during which physiologi-
cal signals including electroencephalographic (EEG), elec-
tromyographic (EMG), and electrooculographic (EOG) ac-
tivity, breathing effort, airflow, pulse, and blood oxygen satu-
ration are recorded. Analysis of these signals relies on trained
sleep experts to visually inspect and manually annotate and
recognize specific EEG, EOG, EMG patterns on 30-second
segments (epochs) of the full PSG recording to score sleep
stages (Wake, sleep stages 1 (N1), 2 (N2) and 3 (N3), and
REM sleep), according to the American Academy of Sleep
Medicine’s [AASM] guidelines (4)).
However, the gold-standard PSG suffers from several limi-
tations. From a practical standpoint, a PSG is complicated
and time-consuming to set-up, requiring up to one hour to in-
stall by a trained sleep technician; it is also quite expensive
(typically $1,500-$2,000 per night in the US). Furthermore,
a clinical PSG may not reliably capture a patient’s typical
sleep because it is cumbersome and the clinical setting often
generates stress for the patient. Moreover, because a PSG is
generally performed over only one night, it does not capture
intra-individual variability across nights and the final diag-
nosis is often rendered on an unrepresentative night of sleep
(5, 6). From a clinical standpoint, the way PSG records are
analyzed by sleep experts is unsatisfactory: it requires ex-
tensive training, it is time-consuming, inconsistent, and suf-
fers from poor inter-rater reliability. For instance, one study
conducted on the AASM ISR data set found that sleep stage
agreement across experts averaged 82.6% using data from
more than 2,500 scorers, most with 3 or more years of ex-
perience, who scored 9 record fragments, representing 1,800
epochs (i.e. more than 3,200,000 scoring decisions). The
agreement was highest for the REM sleep stage (90.5%) and
slightly lower for N2 and Wake (85.2% and 84.1%, respec-
tively), while the agreement was far lower for stages N3 and
N1 (67.4% and 63.0%, respectively), placing constraints on
the reliability of manual scoring (7). Critically, studies also
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indicate that agreement varies substantially across different
sleep pathologies and sleep centers (7, 8).

Automatic PSG analysis in sleep medicine has been explored
and debated for some time, but has yet to be widely adopted
in clinical practice. In recent years, dozens of algorithms
have been published that achieve expert-level performance
for automated analysis of PSG data (9–12). Indeed, scientists
and engineers have used artificial intelligence (AI) methods
to develop automated sleep stage classifiers and EEG pat-
tern detectors, thanks to open access sleep data sets such as
the National Sleep Research Resource (https://sleepdata.org).
Regarding sleep staging, Biswal et al. proposed the SLEEP-
NET algorithm (13), a deep recurrent neural network trained
on 10,000 PSG recordings from the Massachusetts Gen-
eral Hospital Sleep Laboratory. The algorithm achieved an
overall accuracy comparable to human-level performance of
85.76% (N1 : 56%, N2 : 88%, N3 : 85%, REM : 92%, Wake
: 85%). Another important collaborative study recently pub-
lished an algorithm validated on ~3,000 normal and abnormal
sleep recordings. They showed that their best model using
a deep neural network performed better than any individual
scorer (overall accuracy: 87% compared to the consensus of
6 scorers). The problem of low inter-scorer reliability of sleep
stages is addressed by using a consensus of multiple trained
sleep scorers instead of relying on a single expert’s interpre-
tation (8, 12, 14). Regarding the topic of sleep EEG event
detection, deep learning methods have shown state-of-the-art
performance for automatic detection of sleep events such as
spindles and k-complexes in PSG records (15).

With the rise of wearable technology over the last decade,
consumer sleep trackers have seen exponential growth (16).
For many years, these devices used only movement analy-
sis, called actigraphy, before incorporating measures of pulse
oximetry. Actigraphy has been extensively used in sleep re-
search for sleep-wake cycle assessment at home. However,
this measure has very low specificity for differentiating sleep
from motionless wakefulness, resulting in an overestimation
of total sleep time (TST) and underestimation of wake after
sleep onset (WASO) time (17, 18). Thus, actigraphy is still
quite far from being a reliable alternative to PSG. And though
the addition of pulse oximetry improves analysis over actig-
raphy alone, it still only enables rough estimations of sleep
efficiency and stages. This is because the essential compo-
nent of monitoring brain electrical activity with EEG sensors
was still lacking.

More recently, a new group of devices has emerged for
home sleep monitoring that uses EEG electrodes to measure
brain activity. These include headbands (19–22) and devices
placed around the ear (23, 24). Unlike traditional PSG, these
more compact devices are usually cheaper, less burdensome,
designed to be worn for multiple nights at home to enable
longitudinal data collection, and require minimal or no ex-
pert supervision. Only a few of these device makers have
published their performance compared to PSG; and those that
have often only report aggregated metrics rather than raw
data, and do not permit open access to the data set so that
results can be independently verified. Perhaps most notably,

however, this new generation of home sleep trackers gener-
ally suffers from only mediocre accuracy and reliability com-
pared to the gold standard PSG.
In this study, we introduce the Dreem headband (DH) which
is intended as an affordable, comfortable, and user-friendly
alternative to PSG with a high level of accuracy regard-
ing both physiological signal acquisition and automatic sleep
stage analysis using a deep learning algorithm along with 5
dry EEG electrodes (O1, O2, FpZ, F7, F8), a 3-D accelerom-
eter, and a pulse oximeter embedded in the device. To this
end, we recorded data from 25 subjects over a single night
using the DH and a clinical PSG simultaneously. We as-
sessed: 1) the EEG signal quality and the ability of the DH
to monitor brain sleep frequencies during the night; 2) the
accuracy of heart rate, breathing frequency, and respiration
rate variability (RRV) during sleep and 3) the performance of
the automatic sleep stage classification algorithm of the DH
compared to a consensus of 5 sleep experts’ manual scoring
of the PSG. The data set of the current study is available from
the corresponding author on reasonable request.

Methods
Subjects. Thirty-one volunteers were recruited without re-
gard to gender or ethnicity from the local community by
study advertisement flyers. Volunteers were eligible if
they were between the ages of 18 and 65 years and capa-
ble of providing informed consent. Exclusion criteria in-
cluded current pregnancy or nursing; severe cardiac, neu-
rological, or psychiatric comorbidity in the last 12 months;
morbid obesity (BMI >= 40); or use of benzodiazepines,
non-benzodiazepines (Z-drugs), or gammahydroxybutyrate
(GHB) on the day of the study.
Each participant provided one night of data; with the excep-
tion of 2 participants who completed a second night each due
to data loss related to PSG battery issues on their first nights
of study. In total, 8 nights of data were excluded from the fi-
nal analysis data set: 3 due to poor signal or system malfunc-
tion including battery issues on PSG, 2 due to the discovery
of asymptomatic Apnea–Hypopnea Index (AHI) > 5 during
the course of the study, and 1 due to an unusually short total
sleep time (4.5 hours).
The final analysis data set consisted of one night record from
each of 25 participants; demographics are summarized in Ta-
ble 1. The sample included individuals with self-reported
sleep quality ranging from no complaints to sub-threshold
insomnia symptoms and moderate to severe daytime sleepi-
ness. Only one met the Insomnia Symptom Questionnaire di-
agnostic threshold of insomnia. All had at worst mild symp-
toms of anxiety or depression, and most reported moderate
consumption of alcohol and caffeine, moderate frequency of
exercise, and only occasional naps. Six were current nicotine
users, 14 reported using nicotine less than 100 times total,
and 1 was a former nicotine user.

Protocol. Potential participants first completed a brief phone
screen with study staff followed by an in-person interview
at the French Armed Forces Biomedical Research Insti-
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Mean ± SD Min - Max
female/male 6/19

Age 35.32 ± 7.51 23 - 50
BMI (kg.m-2) 23.81 ± 3.43 17.44 - 31.6
ISI 5.00 ± 3.67 0 - 14
ESS 7.76 ± 3.77 1 - 19
PHQ-9 1.84 ± 1.95 0 - 6
GAD-7 2.00 ± 2.57 0 - 10
N Naps/wk 0.79 ± 1.13 0 - 4
N Exercise/wk 1.77 ± 1.72 0 - 6

Table 1. Demographics of the sample. BMI: Body Mass Index; GAD : Gen-
eral Anxiety Disorder; ESS: Epworth Sleepiness Scale; PHQ-9 : Patient Health
Questionnaire-9; ISI: Insomnia Sevrity Questionnaire

tute’s (IRBA) Fatigue and Vigilance Unit (Bretigny-Sur-
Orge, France) during which they provided informed consent
and subsequently completed a detailed demographic, medi-
cal, health, sleep, and lifestyle survey with a study physician
to confirm eligibility. Once consented and eligibility was
confirmed, participants were equipped by a sleep technolo-
gist to undergo an overnight sleep study at the center with
simultaneous PSG and the DH recordings. The beginning
and the end of the PSG and DH data collection periods were
set based on participants’ self-selected lights-off and lights-
on times. PSG and DH data recordings were synchronized a
posteriori by resampling the DH data on the same timestamps
as the PSG data so that records were perfectly aligned. Fol-
lowing the sleep study, technologists removed both devices,
participants were debriefed and interviewed to identify any
adverse events, and any technical problems were noted. All
participants received financial compensation commensurate
with the burden of study involvement. The study was ap-
proved by the Committees of Protection of Persons (CPP),
declared to the French National Agency for Medicines and
Health Products Safety, and carried out in compliance with
the French Data Protection Act and International Conference
on Harmonization (ICH) standards and the principles of the
Declaration of Helsinki of 1964 as revised in 2013.

Polysomnographic Assessment. The PSG assessment
was performed using a Siesta 802 (Compumedics Lim-
ited, Victoria, Australia) with the following EEG deriva-
tions: F3/M2, F4/M1, C3/M2, C4/M1, O1/M2, O2/M1;
256 Hz sampling rate with a 0.03–35 Hz bandpass fil-
ter); bilateral electrooculographic (EOG), electrocardio-
graphic (EKG), submental and bilateral leg electromyo-
graphic (EMG) recordings were also performed. Airflow,
thoracic movements, snoring, and oxygen saturation were
also monitored. EEG cup-electrodes of silver-silver chloride
(Ag-AgCl) were attached to participants’ scalps with EC2
electrode cream (Grass Technologies, Astro-Med, Inc., West
Warwick, RI, USA), according to the international 10-20 sys-
tem for electrode placement. Auto-adhesive electrodes (Neu-
roline 720, Ambu A/S, Ballerup, Denmark) were used for
EOG and EKG recordings.

Study Device. The Dreem headband (DH) device is a wire-
less headband worn during sleep which records, stores, and
automatically analyzes physiological data in real time with-
out any connection (e.g., Bluetooth, Wi-Fi, etc.). Following
the recording, the DH connects to a mobile device (e.g., smart
phone, tablet) via Bluetooth to transfer aggregated metrics to
a dedicated mobile application and via Wi-Fi to transfer raw
data to the sponsor’s servers. Five types of physiological sig-
nals are recorded via 3 types of sensors embedded in the de-
vice: 1) brain cortical activity via 5 EEG dry electrodes yield-
ing 7 derivations (FpZ-O1, FpZ-O2, FpZ-F7, F8-F7, F7-01,
F8-O2, FpZ-F8; 250Hz with a 0.4-18 Hz bandpass filter); 2,
3, & 4) movements, position, and breathing frequency via a
3-D accelerometer located over the head; and 5) heart rate via
a red-infrared pulse oximeter located in the frontal band (1).
The EEG electrodes are made of high consistency silicone
with soft, flexible protrusions on electrodes at the back of the
head enabling them to acquire signal from the scalp through
hair. An audio system delivering sounds via bone conduc-
tion transducers is integrated in the frontal band but was not
assessed in this study. The DH is composed of foam and fab-
ric with an elastic band behind the head making it adjustable
such that it is tight enough to be secure, but loose enough to
minimize discomfort. Additional details have been published
previously in (19).

Fig. 1. Illustration of the Dreem headband (DH) presenting the location of the vari-
ous sensors. The top arch contains the accelerometer, the battery, and the electron-
ics. The front band contains all of the other sensors and the audio bone conduction
except for the two electrodes positioned at the back of the head.

Data Analysis
We divided data analysis into three parts: 1) EEG signal qual-
ity; 2) heart rate, breathing frequency, and RRV agreement;
and 3) Automatic Sleep Stage classification of the DH com-
pared to scorers’ consensus on the PSG.

Assessing EEG Signal Quality. To assess the EEG signal
quality of the DH, we computed the correlation of the rela-
tive spectral power in the delta (0.5−4Hz), theta (4−8Hz),
alpha (8−14Hz), and beta (15−30Hz) bands during sleep
throughout the night between the DH and the corresponding
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PSG records. Relative spectral power was computed on 90-
second windows using a Fast Fourier Transform. Exponen-
tial smoothing with alpha= 0.7 was applied to the resulting
signals to avoid abrupt transitions. The correlation was com-
puted on the resulting smoothed signals. To maximize the
time of the night with good signal quality on the DH, we de-
veloped a procedure to select a virtual channel which corre-
sponds to the EEG frontal-occipital channel (FpZ-O1, FpZ-
O2, F7-01, or F8-O2) with the best quality signal at any given
epoch throughout the night; previously described in (19). We
assessed spectral power on the virtual channel for the DH
and compared it to a similar derivation on the PSG: F3-O1.
As a baseline, we also compared the relative spectral power
of the PSG F3-O1 PSG derivation to that of the F4-O1 PSG
derivation for each frequency band using the same process.
We excluded periods in which the virtual channel could not
be computed on the DH signal because of bad signal quality
on all channels (2.1% of the windows on average across all
the recordings).

Assessing Heart Rate, Breathing Frequency and Res-
piration Rate Variability agreement. The agreement of
DH measurements of heart rate frequency (beats per minute)
and breathing frequency (in cycle per minute) with PSG mea-
surements of the same variables was also assessed. To do
so, values were computed every 15 seconds (on 30-second
sliding windows) on DH data and compared to the respec-
tive PSG values using an average of the Mean Absolute Error
(MAE) computed for each record. An analogous method was
employed to assess the capacity of the DH to retrieve respi-
ration rate variability (RRV, in percentage), as described in
(25).

Heart rate. Heart rate is recorded directly during a PSG. The
DH, on the other hand, uses the pulse oximeter infrared signal
to measure heart rate using a 3-step process:

1. Infrared signal is filtered between 0.4 and 2 Hz and
zero crossing is applied to compute the mean heart rate
frequency fs.

2. Infrared signal is filtered between fs/1.25 and fs ∗
1.25 and zero crossing is applied to compute the mini-
mum and maximum heart rate frequencies fsmin and
fsmax.

3. Infrared signal is filtered between fsmin and fsmax,
zero crossing is applied and heart rate is computed on
15-second windows. The heart rate measured by the
DH was compared to each respective 15-second win-
dow obtained from the PSG. Exponential smoothing
with alpha= 0.3 was applied on both the DH and PSG
heart rates to avoid brutal transitions.

This standard method provides a robust measure of heart rate
frequency during sleep. However, it would probably be ill-
suited for waking measurement where artefacts and noise are
more likely to occur. One record was excluded from heart

rate analyses because the PSG heart rate measurement re-
mained at the same value for the entire duration of the record,
and was therefore assumed to be inaccurate.

Breathing Frequency. Breathing frequency was measured by
the z-axis of the accelerometer on the DH and by the external
pressure signal of the PSG. To compute breathing frequency
from the DH signals when the participant was asleep, an anal-
ogous 3-step process to that for the heart rate computation
was followed, using a filter between 0.16 and 0.3 Hz in the
first step.

Respiration Rate Variability. The RRV is computed with the
exact same methodology than the one described in (25), ex-
cept that the method employed here computed RRV through-
out the entire night instead of on steady sleep windows. For
the PSG, the method was applied to the external pressure
channel. For the DH, the RRV was computed on the 3 axes of
the accelerometer and the minimum value between the three
was kept for each computed value to reduce noise.

Assessing Sleep Stages Classification Performance.
Due to known inter-rater variance among even expert sleep
scorers (26), using a single rater as the reference point ren-
ders comparison vulnerable to unintended bias. Thus, each
PSG records was independently scored by 5 trained and expe-
rienced registered sleep technologists from 3 different sleep
centers following the guidelines of the AASM (4). The DH
data was scored by the embedded automatic algorithm of the
DH.

Scoring performance metrics. To measure agreement be-
tween two hypnograms on a record, Accuracy (ratio of cor-
rect answers) and Cohen’s Kappa, κ= pj−pe

1−pe
where pj is the

scorer accuracy and pe is the baseline accuracy, are provided.
We also computed the F1-score because it takes into account
both Precision and Recall, as well as class imbalance, making
it a rigorous metric for evaluating performance (27).
It is computed as: F1 -score = 2∗ Pr∗RePr+Re with Precision=
TP

TP+FP and Recall = TP
TP+FN , where TP, FP, and FN are

the number of true positives, false positives, and false nega-
tives, respectively. This score is computed per-class and av-
eraged taking the weight of each class into account.
For ’overall’ analyses, the average of the respective values
from each individual record is calculated.

Scoring performance metrics evaluation. To evaluate scoring
performance metrics and benefit from the multiple sleep ex-
perts scorings, a similar methodology to (12) was used. In-
deed, to evaluate the performance metrics for each scorer,
the scoring from each individual scorer was compared to the
consensus scoring of the four other scorers. To evaluate the
performance metrics of the DH automatic approach, the au-
tomatic scoring from the DH was compared to the consensus
scoring of the four top-ranked scorers. This method ensures
that both the individual scorers and the automatic algorithm
running on the DH data were evaluated against a consensus
of exactly four scorers.

4 | bioRχiv Arnal et al. | Dreem vs PSG

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/662734doi: bioRxiv preprint 

https://doi.org/10.1101/662734
http://creativecommons.org/licenses/by-nc-nd/4.0/


Building a consensus scoring from multiple scorings. Thus,
we developed a way to build a unique consensus scoring from
multiple scorings on a record. For each epoch, the majority
opinion across scorers is chosen. In case of a tie, the sleep
stage scored by the top ranked scorer is used (scorer rank-
ing procedure described below, as Soft-Agreement); ties oc-
curred on 7.3 ± 2.4% of the epochs on average across all the
records.

Scorer ranking. The previous section highlights the need to
rank scorers in order to build a valid consensus scoring. The
ranking of a scorer is based on his level of agreement with
all the other scorers. To measure this, we introduce below
an agreement metric between one scoring against multiple
other scorings. We call this metric ’Soft-Agreement’ as it
takes all the scorings into account and does not require any
thresholding.
Notations : Let yj ∈ J4KT be the sleep staging associated to
scorer j taking values in {0,1,2,3,4} standing respectively
for Wake, N1, N2, N3 and REM with size T epochs. Let N
be the number of scorers. Let ŷj ∈ {0,1}5×T be the one hot
encoding of yj . For each epoch t ∈ JT K its value is 1 for the
scored stage and 0 for the other stages.
First, we define a probabilistic consensus ẑj as:

ẑj [t] =

N∑
i=1
i 6=j

ŷi[t]

max
N∑
i=1
i 6=j

ŷi[t]
∀t

ẑj takes values in [0,1]5×T . For each epoch t ∈ JT K, the
value for each sleep stage is proportional to the number of
scorers who scored that sleep stage. A value of ’1’ is assigned
if the chosen stage matches the majority sleep stage or any of
the sleep stages involved in a majority tie. We then define the
Soft-Agreement for scorer j as:

Soft-Agreementj = 1
T

T∑
t=0

ẑj [yj ]

A Soft-Agreement of 1 means that for all epochs, scorer j
scored the same sleep stage as the majority and, in case of
tie, he scored one of the sleep stage involved in the tie. A
Soft-Agreement of 0 would happen if scorer j systematically
scores a different stage than all of the other scorers.
To rank the five scorers in this study, the Soft-Agreement
was computed for each scorer against the four others on each
record and then averaged across all the records. Based on
these values, we are able to build unique consensus scorings
for comparison with each scorer. To build the consensus scor-
ings for comparison with the DH automatic algorithm, scor-
ings from the top-four scorers were used.

Performance assessment of sleep variables. The following
standard sleep variables were calculated: time in bed (TIB),
as the number of minutes from lights-out to lights-on; total
sleep time (TST, min); sleep efficiency (SE, %), as TST / TIB

* 100; sleep onset latency (SOL), as the number of minutes
from lights-out to the first three consecutive epochs of any
sleep stage; wake after sleep onset (WASO), as the number
of minutes awake following the first three consecutive epochs
of any sleep stage; and the time (min) and percentage of TST
spent in each sleep stage (N1, N2, N3, and REM).

Dreem Headband Algorithm. The DH embedded automatic
algorithm works in 2 stages: 1) feature extraction and 2)
classification. It is able to provide real-time sleep staging
predictions. 1) Feature extraction is performed for each new
epoch of 30 seconds. Features extracted from the various sen-
sors are concatenated to go through the classification layer.
EEG features include power frequency in the delta, alpha,
theta, and beta bands and ratio of relative powers as de-
scribed in (23). Sleep patterns (e.g. slow oscillations, alpha
rhythm, spindles, K-complexes) are detected using an expert
approach. The accelerometer provides breathing, movement,
and position features. The pulse oximeter provides cardiac
features. A total of 79 features are extracted from each raw
DH record. 2) The classification module is built from two
layers of Long-Short Term Memory (28) and a Softmax func-
tion outputting the final probability prediction that the epoch
belongs to each sleep stage. It relies on the features extracted
from the last 30 epochs to predict the current one. Hence, it
takes into account the past temporal context to make a pre-
diction, as a sleep expert would do. This classification mod-
ule is trained using backpropagation. The training has been
done on a dataset composed of previously recorded internal
Dreem records. A total of 423 records were used for training
and presented several times to the network. 213 validation
records from other subjects were used to stop the training
when the performance metrics computed on this validation
set were not improving anymore. None of the records of the
current study were used to train or validate the network. We
used the framework provided by Pytorch (29) and trained on
a single Nvidia Titan X GPU (~1 hour of training, ~1 seconds
for inference).

Results
The data collection was well tolerated with no adverse effects
reported for the DH. The set up time was ~5 min for the DH
and ~45 min for the PSG.

EEG Signal Quality. The quality of the EEG signal assessed
through the correlation of the relative spectral power between
DH and PSG for alpha, beta, delta, and theta frequencies is
presented in the Table 2. Results indicate a substantial agree-
ment between the DH and PSG derivations for all of the fre-
quency bands (> 0.6, p-values were < 1e-10). As expected,
the correlations between the DH and the PSG are lower than
the baseline correlations between the 2 derivations from the
same PSG record (F3-O1 and F4-O2). The Figure 2 shows
a sample of raw signals recorded by the DH and a PSG on
the same record during each sleep stage (N1, N2, N3, REM,
Wake). Figure 3 shows the relative spectral power between
DH and PSG for each EEG frequency examined throughout
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a representative record.

DH / PSG F3-O1 PSG F3-O1 / PSG F4-O2

alpha 0.71 ± 0.13 0.85 ± 0.12
beta 0.71 ± 0.18 0.91 ± 0.08
delta 0.76 ± 0.14 0.90 ± 0.06
theta 0.61 ± 0.12 0.82 ± 0.07

Table 2. Pearson correlation for alpha, beta, delta and theta EEG frequency for the
Dreem headband (DH) vs PSG1 (F3-O1) and PSG1 (F3-O1) vs PSG2 (F4-O2).

Wake

N1

N2

N3

0 5 10 15 20

REM

Fig. 2. 20-second samples of raw signals recorded by Dreem headband (DH, pink)
and polysomnography (PSG, black) on the same record during each sleep stages
(N1, N2, N3, REM, Wake). The derivations are F7-O1 for the DH and F3-O1 for the
PSG. The signals are presented between -150 and 150 uV.

Heart Rate and Breathing Agreement. The agreements of
heart rate, breathing frequency, and respiratory rate variabil-
ity measured by the DH and those measured by the PSG are
presented in Table 3. The results show an excellent agree-
ment of the DH compared to the PSG with minimum abso-
lute errors of 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm, and 3.2 ± 0.6%
for the heart rate, breathing frequency, and RRV during sleep,
respectively. Figure 3 shows an example of heart rate, breath-
ing frequency, and RRV measured on the PSG throughout the
night.

Sleep Stage Classification. The five scorers had Soft-
Agreement scores of 88.6%, 90.7%, 91.7%, 84.2% and
91.6% for scorers 1, 2, 3, 4 and 5, respectively, resulting in
an overall Soft-Agreement score of 89.4 ± 2.79%.

PSG DH MAE

Heart rate (bpm) 61.3 ± 6.8 60.6 ± 6.5 1.2 ± 0.5
Breathing (cpm) 14.9 ± 1.9 14.8 ± 1.8 0.3 ± 0.2
RRV (%) 53.5 ± 2.2 52.2 ± 2.8 3.2 ± 0.6

Table 3. The Dreem headband (DH) and Polysomnography (PSG) columns
presents mean values ± SD computed across all records for heart rate, breath-
ing frequency and respiratory rate variability (RRV) for both devices. Average mean
absolute error (MAE) by record is given in the last column.
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Fig. 3. Relative spectral power (alpha, beta, delta, and theta frequencies, A.U.),
heart rate (beats per minute, BPM), breathing frequency (cycles per minute, CPM),
and respiratory rate variability (RRV, %) for a representative record (i.e., with a
correlation value similar to the mean of the group). These signals are presented
for a whole record for both the Dreem headband (DH, pink) and polysomnography
(PSG, black).

With these Soft-Agreement values, we were able to develop
consensuses with which to compare each scorer and the pre-
dictions of the DH automatic algorithm for the purpose of
evaluating the metrics presented in Table 4. The overall accu-
racy of the five scorers was 86.4 ± 7.4%, with scorer 1 = 86.3
± 10.5%, scorer 2 = 88.2 ± 4.2%, scorer 3 = 88.9 ± 5.1%,
scorer 4 = 82.0 ± 8.1%, scorer 5 = 88.9 ± 4.6%. Notably,
these accuracies are above the average performance of other
certified scorers reported in the literature (8), indicating the
scorers in this study were well-trained. Across the manual
scorers, accuracy was highest for REM sleep (87.8 ± 13.6%)
and followed closely by N2 (85.9 ± 10.7%) and N3 sleep
stages (84.2 ± 20.6%). The accuracy for wake was slightly
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lower (82.5 ± 17.5%) and lowest for N1 (54.2 ± 16.8%). Vari-
ability among the scorers was largest for the N3 sleep stage
with a standard deviation of 20.6%.
The overall accuracies of the DH automated algorithm using
the DH data for sleep staging compared to the scorer con-
sensuses are presented in Table 4 (overall accuracy = 83.8 ±
6.8%). The classification accuracy per stage of the DH paral-
lels the order of the manual scorers using PSG data: highest
accuracy for REM sleep (84.5 ± 13.3%) followed by N2 (82.9
± 8.1%) and N3 sleep stages (82.6 ± 20.6%). The accuracy
for wake was lower (74.0 ± 18.1%) with the lowest accuracy
similarly obtained for the N1 sleep stage (47.7 ± 15.6%).
The confusion matrices (Figure 4) shows the classifications
per stage of both the DH and scorer averages versus the re-
spective consensuses. According to the matrices, both in the
case of the DH and the PSG scoring, Wake was most often
misclassified as N1 (12.4% and 10.5% of epochs, respec-
tively), and N3 was most often misclassified as N2 (16.4%
and 20.5% of epochs for DH and PSG, respectively). Figure
6 shows five representative hypnograms computed from the
DH classifications and the corresponding scorer consensus
hypnograms.
Table 5 reports analyses of sleep variables traditionally used
in sleep medicine computed for the DH and scorers’ averages
versus scorers’ consensuses, as well as differential results for
the DH and overall differentials for the scorers. Results in-
dicate high similarity between the DH measurements and the
consensuses and a similar level of variability for the DH and
the average scorers’ values. Table 6 shows a high level of
correlation of each sleep variable with the scorers’ consen-
sus values. Bland Altman plots are presented in Figure 5
and show high agreement between the DH and the consen-
sus scores, low bias, low fluctuation around the mean, and no
clear outliers, for all of the sleep variables analyzed.

Discussion
This study compared the EEG signal quality; heart rate,
breathing frequency, and respiratory rate variability (RRV)
measurements; and automatic sleep staging of the Dreem
headband (DH) to manually generated consensus scores of
simultaneous in-lab PSG recordings. The data demonstrate
that the DH: 1) acquires EEG during sleep with signal qual-
ity sufficient to enable reliable EEG-based sleep studies; 2)
reliably measures breathing frequency and heart rate con-
tinuously during sleep; and 3) can perform automatic sleep
staging classification according to AASM criteria with per-
formance similar to that of a consensus of 5 scorers using
medical-grade PSG data.
First, we showed that EEG frequencies traditionally used in
sleep medicine can be measured using dry electrodes with a
substantial agreement with a PSG (30) despite the fact that
the signal compared was not on the exact same derivation.
The similar results in other domains comparing wet and dry
electrodes have shown that these technologies are compara-
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0.1% (5) 0.1% (2) 16.4% (377) 82.6% (2660) 0.8% (27)

3.1% (150) 3.0% (144) 9.4% (363) 0.0% (0) 84.5% (4021)

Wake N1 N2 N3 REM

Scorers

Wake

N1

N2

N3

REM

Co
ns
en
su
s

81.7% (13300) 10.5% (1379) 5.2% (673) 1.0% (107) 1.7% (224)

15.7% (1255) 52.9% (4004) 24.0% (1774) 0.9% (54) 6.6% (439)

1.9% (1271) 4.4% (2762) 85.8% (51304) 6.2% (3848) 1.7% (1028)

0.6% (72) 0.1% (15) 20.5% (2360) 78.9% (13796) 0.0% (0)
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Fig. 4. Confusion matrix for the Dreem headband (DH) versus PSG scoring con-
sensuses (top) and the overall confusion matrix for scorers versus the other scorers’
consensuses (bottom). Values are normalized by row with the number of epochs in
parentheses.

ble for monitoring EEG signals paving the way to meaningful
physiological monitoring at home under various conditions
(31, 32). The levels of correlation between the DH and the
PSG scores allows a trained human to identify typical sleep
EEG patterns such as alpha rhythm, spindles, delta waves,
sawtooth waves, or k-complexes. Recording raw physiolog-
ical signals is critical for sleep research because sleep stages
provide only limited insight into sleep quality. Furthermore,
these specific patterns can now be automatically detected us-
ing deep neural networks (15, 33); though, analyses of the
latter patterns are not reported here.
Second, the data show that our method for detecting breath-
ing frequency and RRV using an accelerometer has excellent
agreement with the gold standard. The position of the 3-D
accelerometer, located over the head, appears to be a sensi-
tive location for detecting small movements. These breathing
measures are of interest during sleep because they indicate
sympathovagal tone and potential sleep apnea syndrome. The
excellent agreement for heart rate is similar to other studies
showing that an infrared pulse oximeter positioned against
the forehead can be used to reliably monitor heart rate. How-
ever, we were unable to provide a heart rate variability on
most of the records due to insufficient resolution, similar to
other studies (34). Further investigation of the DH in clin-
ical populations with a suspicion of sleep apnea should be
conducted.
Third, we showed that the DH is able to perform real-time
sleep staging using data collected by the DH with an accuracy
in the range of individual scorers using PSG data and com-
parable to the accuracy between PSG scorers in other studies
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DH Overall Scorers Scorer 1 Scorer 2 Scorer 3 Scorer 4 Scorer 5

All
F1 (%) 83.8 ± 6.3 86.8 ± 7.4 86.3 ± 10.5 88.2 ± 4.2 88.9 ± 5.1 82.0 ± 8.1 88.9 ± 4.6
Accuracy (%) 83.5 ± 6.4 86.4 ± 8.0 85.7 ± 12.1 87.5 ± 4.5 88.9 ± 4.6 81.2 ± 8.8 88.9 ± 4.2
Cohen Kappa (%) 74.8 ± 10.4 79.8 ± 11.4 78.9 ± 15.7 81.2 ± 7.0 83.2 ± 7.2 72.5 ± 13.2 83.0 ± 7.2

wake
F1 (%) 76.7 ± 14.3 84.1 ± 13.6 85.9 ± 10.1 86.5 ± 12.3 87.6 ± 9.9 74.9 ± 18.0 85.6 ± 11.9
Accuracy (%) 74.0 ± 18.1 82.5 ± 17.5 80.2 ± 14.0 78.1 ± 19.3 90.2 ± 12.9 82.4 ± 21.0 81.6 ± 16.5
Cohen Kappa (%) 74.1 ± 15.2 82.2 ± 15.0 84.4 ± 10.7 85.2 ± 12.6 86.3 ± 10.4 71.1 ± 20.5 84.1 ± 12.8

N1
F1 (%) 46.5 ± 12.4 49.7 ± 14.5 49.3 ± 13.8 51.2 ± 11.4 53.7 ± 13.7 39.7 ± 16.3 54.5 ± 11.6
Accuracy (%) 47.7 ± 15.6 54.2 ± 16.8 58.2 ± 14.7 60.3 ± 12.6 59.1 ± 14.4 38.3 ± 15.5 54.9 ± 16.3
Cohen Kappa (%) 43.5 ± 12.6 47.0 ± 15.1 46.6 ± 14.0 48.5 ± 11.8 51.4 ± 13.9 36.4 ± 17.3 52.3 ± 12.1

N2
F1 (%) 87.5 ± 5.5 89.0 ± 7.3 88.2 ± 11.8 90.3 ± 4.6 90.7 ± 4.1 84.3 ± 6.9 91.3 ± 3.5
Accuracy (%) 82.9 ± 8.1 85.9 ± 10.7 87.8 ± 13.6 87.6 ± 8.7 89.3 ± 6.0 75.8 ± 10.9 89.0 ± 5.7
Cohen Kappa (%) 75.4 ± 10.8 78.8 ± 13.2 77.5 ± 20.5 81.1 ± 8.6 81.5 ± 8.5 71.1 ± 12.9 82.9 ± 7.1

N3
F1 (%) 76.4 ± 22.9 78.3 ± 23.8 81.0 ± 24.1 79.6 ± 22.8 76.8 ± 25.0 75.2 ± 22.1 78.9 ± 24.7
Accuracy (%) 82.6 ± 20.6 84.2 ± 20.6 89.1 ± 14.0 89.1 ± 11.1 66.9 ± 27.6 92.7 ± 12.0 84.1 ± 21.3
Cohen Kappa (%) 74.0 ± 22.6 76.6 ± 23.1 79.2 ± 24.1 77.2 ± 22.8 74.8 ± 25.0 74.9 ± 17.9 76.8 ± 24.3

REM
F1 (%) 82.9 ± 12.3 90.9 ± 10.2 85.0 ± 17.0 91.4 ± 4.2 94.4 ± 4.6 91.5 ± 8.8 92.1 ± 8.1
Accuracy (%) 84.5 ± 13.3 87.8 ± 13.6 76.3 ± 19.4 85.8 ± 6.5 92.1 ± 9.5 89.5 ± 13.6 95.3 ± 3.1
Cohen Kappa (%) 79.0 ± 13.7 89.0 ± 11.1 82.5 ± 17.6 89.4 ± 5.3 93.1 ± 5.1 89.7 ± 10.5 90.5 ± 8.9

Table 4. Performance metrics for each scorer and the automatic approach of the Dreem headband (DH) computed by comparison against their consensus. Overall column
presents Mean ± SD observed for the five scorers. Results are given for each sleep stages.

Consensus DH Differential DH Overall Differential Scorers

TST (min) 430.4 ± 66.8 [402.2, 458.5] 431.8 ± 68.4 [402.9, 460.6] 1.4 ± 19.0 [-6.6, 9.4] -2.0 ± 28.5 [-7.1, 3.0]
Sleep efficiency (%) 87.0 ± 8.1 [83.5, 90.4] 87.3 ± 8.4 [83.8, 90.8] 0.3 ± 4.0 [-1.4, 2.0] -0.4 ± 5.6 [-1.4, 0.6]
SOL (min) 18.9 ± 18.7 [11.0, 26.8] 20.0 ± 18.2 [12.4, 27.7] 1.2 ± 3.6 [-0.4, 2.7] -1.7 ± 15.6 [-4.5, 1.1]
WASO (min) 44.1 ± 27.8 [32.4, 55.8] 41.5 ± 31.7 [28.1, 54.9] -2.6 ± 19.5 [-10.8, 5.7] 3.7 ± 28.4 [-1.3, 8.8]
Stage Wake duration (min) 61.8 ± 38.8 [45.5, 78.1] 60.2 ± 40.7 [43.0, 77.3] -1.7 ± 19.1 [-9.7, 6.4] 2.0 ± 28.5 [-3.1, 7.0]
Stage Wake (%) 12.8 ± 8.1 [9.4, 16.2] 12.4 ± 8.3 [8.9, 15.9] -0.4 ± 4.0 [-2.1, 1.3] 0.4 ± 5.6 [-0.6, 1.4]
Stage N1 duration (min) 31.0 ± 14.4 [25.0, 37.1] 31.9 ± 17.9 [24.4, 39.4] 0.8 ± 12.9 [-4.6, 6.3] 6.0 ± 25.2 [1.5, 10.5]
Stage N1 (%) 6.3 ± 2.9 [5.1, 7.5] 6.5 ± 3.7 [5.0, 8.1] 0.2 ± 2.6 [-0.9, 1.3] 1.2 ± 4.4 [0.4, 1.9]
Stage N2 duration (min) 244.3 ± 59.2 [219.4, 269.2] 227.9 ± 57.0 [203.9, 251.9] -16.4 ± 21.8 [-25.5, -7.2] -9.7 ± 38.7 [-16.6, -2.8]
Stage N2 (%) 49.2 ± 9.3 [45.3, 53.1] 46.1 ± 9.9 [41.9, 50.2] -3.1 ± 4.3 [-5.0, -1.3] -1.8 ± 7.5 [-3.2, -0.5]
Stage N3 duration (min) 61.4 ± 30.4 [48.6, 74.2] 70.5 ± 37.1 [54.8, 86.1] 9.1 ± 19.5 [0.8, 17.3] 6.3 ± 32.8 [0.5, 12.1]
Stage N3 (%) 12.5 ± 6.1 [9.9, 15.0] 14.2 ± 6.9 [11.3, 17.1] 1.7 ± 3.8 [0.1, 3.3] 1.3 ± 6.1 [0.2, 2.3]
REM sleep duration (min) 93.6 ± 32.3 [80.0, 107.2] 101.5 ± 41.7 [83.9, 119.1] 7.9 ± 24.9 [-2.5, 18.4] -4.7 ± 16.7 [-7.7, -1.7]
REM sleep (%) 19.0 ± 6.2 [16.4, 21.6] 20.5 ± 7.9 [17.1, 23.8] 1.5 ± 5.0 [-0.6, 3.6] -1.0 ± 3.3 [-1.5, -0.4]

Table 5. The consensus column presents sleep variables computed with the scorers consensus of the top-four ranked scorers. The Dreem headband (DH) column present
the sleep variables computed on the DH. Differential DH column presents the average per-record difference observed between the DH and the scorer consensus. Overall
Differential Scorers presents the average per-record difference observed between each scorer and the scorer consensus formed by the four other scorers. Results are
presented as Mean ± SD [0.95CI].

(8, 26). To our knowledge, this performance on a dry EEG
wearable has never been achieved with another device. All
of the sleep variables computed by the DH are highly cor-
related with the expert consensuses with the highest corre-
lation coefficient for TST (r = 0.96) and the lowest for the
N1 sleep stage (r = 0.7). Sleep variables are macro-metrics
computed on the hypnogram and are less impacted than sleep
staging metrics by local differences. For instance, wake is
slightly underestimated but that does not significantly impact
sleep variables related to wake (WASO, sleep latency, sleep
efficiency). Even though the inter-scorer reliability achieved
with PSG by our 5 scorers was high, it highlights the need
for such validation studies to rely on a consensus of multiple
sleep experts when analyzing sleep staging performance (26).
Mixing sleep experts from different sleep centers provides a
more realistic analysis than is typically obtained in a standard

clinical sleep study where records are scored by only a single
individual, which strengthens our results. To evaluate these
individual scorers, we introduced an objective methodology
to build a consensus from the other scorers. This enables a
fair evaluation of both individual scorers and the automated
algorithmic approach of the DH. Interestingly, lower inter-
scorer performance correlates with lower performance on the
DH (data not shown), further reinforcing the similarities be-
tween the DH and manually scored PSG.

The main limitation of this study is that the sample was some-
what small and homogeneous in age and sleeper profile; even
though this is consistent with the majority of similar valida-
tion studies (20, 22, 23). A larger sample of more diverse
sleepers would have provided more reliability and generaliz-
ability to the general population. Notably, we excluded 2.1%
of the windows on average across all the recordings in which
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Fig. 5. Bland Altman plots for each sleep variable measures by the Dreem head-
band (DH) versus the consensus sleep metrics computed for each record.

the virtual channel could not be computed on the DH signal
because of bad signal quality on every channel. Importantly
too, the study includes only one night of data per subject.
This remains a potential limitation due to lack of habituation
to sleeping with a full PSG in a clinical sleep lab, which often
leads to sleep being shorter and more fragmented; although
our sample did achieve 87% sleep efficiency on average, sug-
gesting that sleep was not substantially disrupted on a wide
scale in this study. Thus, a single night of PSG data from a
sleep lab may not be a reliable representation of typical sleep
in the natural home environment.

Conclusion
Taken together, the results of our analyses strongly sup-
port the utility of the Dreem headband for reliably record-
ing high-quality sleep EEG, heart rate, and breathing with

Correlation Coef. p-Value

TST (min) 0.96 2.8e-14
Sleep efficiency (%) 0.89 4.2e-09
SOL (min) 0.98 7.3e-18
WASO (min) 0.79 2.2e-06
Stage Wake duration (min) 0.89 4.0e-09
Stage Wake (%) 0.88 5.7e-09
Stage N1 duration (min) 0.7 9.7e-05
Stage N1 (%) 0.71 8.1e-05
Stage N2 duration (min) 0.93 1.6e-11
Stage N2 (%) 0.9 9.6e-10
Stage N3 duration (min) 0.85 6.8e-08
Stage N3 (%) 0.84 1.9e-07
REM sleep duration (min) 0.8 1.4e-06
REM sleep (%) 0.78 4.2e-06

Table 6. Pearson correlation of the sleep parameters computed on every recordings
with the corresponding p-value.
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Fig. 6. Hypnograms for the five first participants showing both the consensuses of
the four top-ranked scorers (gray) and the DH automated sleep stage classifications.
Accuracies are presented as average obtained by the five scorers on the consensus
hypnogram, and scores obtained for the DH versus the consensuses.

clinical-level performance of real-time automatic sleep anal-
ysis. While considerable value could be derived from lon-
gitudinal sleep EEG monitoring, until recently, (wet) EEG
electrodes were too impractical to be easily used on a reg-
ular basis and without assistance. Our dry electrodes are
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considerably more comfortable and easier to apply without
substantially sacrificing signal acquisition quality. Indeed,
EEG pattern detection (alpha, spindles, K-complexes) could
be performed by an automatic approach running on dry elec-
trodes such as an unlock large scale analyses and studies of
those pattern characteristics (15). Moreover, the Dreem head-
band is able to measure breathing, and such pattern detection
methods could be adapted to detect breathing events linked to
apnea. The analysis described in this study has been devel-
oped to be used in a real-time setup to allow the Dreem head-
band to support biofeedback and neurofeedback-based appli-
cations (19). These results, together with the price, ease of
use, precision and reliability, and the collection of raw EEG
and other relevant physiological data, make the Dreem head-
band an ideal candidate for high-quality large-scale longitu-
dinal sleep studies in the home or laboratory environment. As
such, this technology can enable groundbreaking advance-
ments in sleep research and medicine. For instance, the re-
sulting database can ultimately be integrated with other types
of data collection devices and used to identify unknown pa-
tient subgroups, detect early disease biomarkers, personalize
therapies, and monitor neurological health and treatment re-
sponse. The Dreem headband has the potential to scale the
usage of a reduced montage PSG to the population at reason-
able cost.
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