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Efficacy of control measures driven by environmental heterogeneity 

 
Figure 4. Impact of increasing adult mortality on tsetse fly population size. A: relative increase in mortality 
needed to achieve a reduction of the female population size to 2% (circle) or 5% (triangle) of its initial size 
after one year of control, when a fraction of cells was targeted. B: contribution of cells to the total population 
size (1: no control, 2: homogeneous control, 3: heterogeneous control targeting 46% of the cells). C: local 
control efficacy (2-3: same as in B), the darkest being the most effective (in cyan, cells without control). 

Increasing adult mortality to levels comparable to those obtained during control programs (Hargrove 
2003) induced a sharp decline in the tsetse population after one year of control (Fig. 4). To obtain a reduction 
in population size in the simulated area down to 2% of its size without control while applying a homogeneous 
increase in mortality over space (orange point labelled “2” in Fig. 4A), female life expectancy had to be 
reduced from 60 (no control) to 35 days. The same cells contributed the most to the total population size 
irrespective whether control was implemented (Fig. 4B2) or not (Fig. 4B1), and this was closely correlated to 
local carrying capacity. Upon reaching a low average population density over the area (58 female flies per 
km²), new patterns emerged related to cell-specific properties. Surprisingly, a homogeneous increase in adult 
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mortality had a heterogeneous impact at the cell level: the decrease in local relative population density (i.e. 
the local control efficacy, Fig. 4C2) was not correlated with the carrying capacity (Fig. S9A), but was correlated 
with local temperature, i.e. the coldest cells that experienced the smallest variations in temperature showed 
the lowest impact (Fig. S9B-D). This pattern was obvious despite the small variations in mean temperature 
(23.7°C to 24.3°C) and standard deviation (1.98°C to 2.37°C). These two temperature statistics were not 
correlated (Fig. S9C-D). 

In contrast, targeting cells contributing the most to population management, i.e. those with the greatest 
carrying capacity and which were most impacted by an increase in mortality, resulted in a similar decrease 
in population size as a homogeneous control, while requiring a reasonable increase in mortality. However, it 
resulted in a much more fragmented population and control efficacy was no longer related with temperature. 
Controlling 70% of the area was as efficient as controlling the whole area (Fig. 4A). Reducing further the 
proportion of controlled cells required a sharp increase in mortality to obtain a similar efficacy. To obtain a 
reduction in population size in the simulated area to 2% of its original size without control while applying a 
heterogeneous increase in mortality (pink point labelled “3” in Fig. 4A), female life expectancy had to be 
reduced from 60 (no control) to 25 days in 46% of the simulated area (i.e. the average life expectancy over 
the area was 44 days, slightly higher than in the homogeneous case). If less than 46% of the surface was 
controlled, the population could not be decreased below 2% of its initial size. Cells contributing the most to 
the total population size were scattered in the area (Fig. 4B3). The local relative population decrease 
(Fig. 4C3) here was slightly associated with carrying capacity (Fig. S10A) and the control was more effective 
in cells with intermediate carrying capacity than in cells with lower ones. However, no effect of temperature 
was observed (Fig. S10B-C). Similar patterns were observed if the population was to be reduced to 5% of its 
initial size (not shown). 

Population resurgence after control 

Population resurgence one year after the control period was slow irrespective of whether the control was 
homogeneous or heterogeneous, but resurgence could be high locally in refuges.  

After a homogeneous control, a yearly rate of population growth of 23% was observed at the grid scale 
(from 3,262 to 4,011 individuals). The speed of the resurgence was spatially heterogeneous (Fig. 5A) and 
growth rates were highest and positive in refuge cells (i.e. coldest cells with lowest temperature variations, 
Fig. 5C-D), where the impact of control effort was previously the lowest (brown symbols). One year after 
control, local growth rates were still negative in cells where the control had been the most effective (green 
and blue symbols). Carrying capacity did not impact resurgence (Fig. 5B). 

After a heterogeneous control, the yearly population growth rate was lower as compared with a 
homogeneous control effort, with only a 1% population increase at the grid scale (from 3,490 to 3,528 
individuals). Unexpectedly, such a control resulted in contrasting situations with very high local growth rates 
in a few cells (Fig. 6A), without any correlation with local characteristics or with the scores used to target 
controlled cells (Fig. 6B-D). Refuges were located at the interface between controlled and uncontrolled zones 
(Fig. 6A), and monitoring efforts after the control period should particularly focus on cells of intermediate 
carrying capacity (Fig. 6B). 
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Figure 5. Local population resurgence one year after the end of a one-year homogeneous control.  A: local 
growth rate in the study area. B-D: variations of the local growth rate with carrying capacity, the mean annual 
temperature, and the annual standard deviation of temperature. Colours in B-D represent control efficacy 
with blue being the most effective. 

Discussion 

Environmental heterogeneity with respect to carrying capacity and temperature not only drove the 
temporal population dynamics of G. p. gambiensis at large scale, but also the spatial distribution of 
individuals, as well as control efficacy. It unexpectedly rendered heterogeneous the impact of a 
homogeneous increase in adult mortality on population dynamics. The coldest cells with the smallest 
variations in temperature acted as refuges when adult mortality was homogeneously increased, and in these 
refuges, the control effort was less effective and population resurgence faster after control had stopped. 
Such a heterogeneous impact can be partially compensated during eradication campaigns by releasing sterile 
males by air that will aggregate in the same sites as wild males, as observed in the eradication campaign 
against Glossina austeni on Unguja Island of Zanzibar (Vreysen et al. 2011). To increase the chances of 
success, control strategies should account for environmental heterogeneity and emphasise (1) local areas of 
high suitability characterized by a high carrying capacity, (2) local refuges characterized by lower local 
temperatures within the relevant range for tsetse (23.7-24.0°C here), and (3) local areas with low variability 
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of temperature over the year (irrespective of carrying capacity). In contrast, targeting patches where 
population control is the most efficient enabled to decrease population size with a similar efficacy, but this 
approach resulted in much more dispersed individuals, and in addition, efficacy of the control effort was no 
longer related to temperature. In this case, population resurgence after control, while being very slow in 
general, was locally very high in refuges, which differed from previous refuges in that they were located on 
the interface between controlled and uncontrolled zones. Refuges, highlighted in our study area despite a 
small surface suitable for tsetse, could jeopardize control efforts by providing areas from which 
recolonization may occur after control has stopped, a result that was at the origin of the principle of area-
wide pest management by Knipling (Vreysen et al. 2011).  

 
Figure 6. Local population resurgence one year after the end of a one-year heterogeneous control (46% of 
controlled cells).  A: local growth rate in the study area. B-D: variations of the local growth rate with carrying 
capacity, the mean annual temperature, and the annual standard deviation of temperature. Colour in B-D 
represents control score, the highest being still targeted when the proportion of controlled cells is reduced. 
In cyan: uncontrolled cells (have lower scores). 

In addition, the temperature effect on tsetse population dynamics both at a large and small local scales 
emphasises the need for further investigating the impact of climate change on tsetse populations (Terblanche 
et al. 2008; Moore et al. 2012). It is unlikely that tsetse flies will cross the Sahara, but they could migrate to 
higher altitudes and invade trypanosoma-free zones, particularly in Eastern and Southern Africa where tsetse 
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distribution is mainly governed by altitude (Solano et al. 2010a). Such population shifts will impact the density 
of cattle in either direction by impacting the transmission of trypanosomoses, which may in turn impact the 
distribution of wild fauna including lions (Carter et al. 2018). In addition, isolated populations could merge if 
close enough together in a changing habitat, possibly impairing control strategies. Conversely, new 
populations could become isolated, all the more so as temperature is the first driver of landscape friction in 
tsetse (Bouyer et al. 2015). 

The mechanistic spatio-temporal model developed to predict G. p. gambiensis population dynamics and 
how these evolve when adult mortality is increased is original compared to already published models. First, 
the model incorporated environmental heterogeneity through a data-driven approach, both accounting for 
variable temperatures and carrying capacities in space and time. The model used realistic assumptions and 
highlighted the importance of refuges in this species, which was not previously evidenced using theoretical 
assumptions (Childs 2011), knowledge-driven patterns (Barclay & Vreysen 2013), or aggregated patterns 
assuming a binary occupancy (Lin et al. 2015). The proposed model can be applied to other areas with 
available data and a known metapopulation structure. Second, recent field and laboratory data on mortality, 
development, and dispersal were incorporated into the model. Predicted age structure was in good 
agreement with field data, and proved robust in our simulations as it was barely impacted by parameter 
variations. Amplitude and duration of seasons are expected to be major drivers of ovarian age distribution, 
but this could not be assessed here as temperature data were only available for one year. Our results 
highlighted the need for more biological studies to better infer mortality variations with temperature, as well 
as the need for innovative methods to more accurately estimate temperatures as perceived by the insects. 
Such a complementary interplay between models, field observations, and laboratory experiments is 
fundamental to make accurate predictions. 

The fact that tsetse fly population dynamics was much more sensitive to mortality than reproduction is 
consistent with tsetse flies being specialists with a narrow niche. In this species, individual survival is 
prioritized over breeding (Pagabeleguem et al. 2016), where other species compensate for losses by boosting 
birth rates (Southwood et al. 1974). Glossina spp. have evolved towards an optimal utilization of energy and 
resources (Cody 1966), which makes them highly adapted to their ecological niche. Therefore, they are less 
likely to leave their habitat and expose themselves to other environments, which keeps the population at or 
near carrying capacity (Southwood et al. 1974). 

Efficient control methods have to be designed considering the ecological strategy of the concerned 
species (Southwood et al. 1974; Conway 1977). Fast action methods such as chemicals are better suited for 
species showing high reproductive rates, short generation times, along with broad food preferences and 
good dispersing abilities (Altieri et al. 1983). In contrast, pests reproducing at lower rates and having longer 
generation time but good competitive abilities would be more efficiently restrained with cultural control, 
host resistance, and sterilization (Altieri et al. 1983). Nonetheless, such quite extreme characteristics should 
be considered in conjunction with species relationships within communities (Ehler & Miller 1978; Altieri et 
al. 1983). 

Traps, targets, and insecticide-treated livestock are control tactics increasing adult mortality, which can 
drastically reduce tsetse populations (Kagbadouno et al. 2011; Dicko et al. 2014; Percoma et al. 2018). 
However, our results indicate also generation time as a contributing factor to population size variations. Such 
a factor can be indirectly modified using the sterile insect technique, which impair reproduction (Dyck et al. 
2005). Obtaining very low tsetse densities is not enough to reach eradication as was demonstrated recently 
against G. p. gambiensis in north-western Ghana (Adam et al. 2013), the Loos islands in Guinea (Kagbadouno 
et al. 2011), and the Mouhoun river in Burkina Faso (Percoma et al. 2018). In addition, in view of unexpected 
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local refuges where increasing adult mortality is not as effective as in other areas, it becomes necessary to 
further assess the effect of combined and spatially targeted control measures to achieve eradication. 

Our model provides a relevant tool to evaluate complex control strategies as it accounts simultaneously 
for density-dependent processes, spatial and temporal environmental heterogeneity, and all stages of tsetse 
lifecycle possibly targeted by control measures. Our framework could also be useful to identify where to 
focus stakeholders’ efforts to minimize impact of other specialist pests, such as the codling moth (Cydia 
pomonella) affecting apple and pear trees, and the sheep ked (Melophagus ovinus). Nevertheless, the 
importance of stochastic events when populations become very small must not be overlooked and these 
effects should be included in future developments. Our approach gives clues on how to trigger a drastic 
decline of the population. However, to predict the subsequent population dynamics at low densities and 
assess final steps of eradication strategies, a deterministic framework becomes irrelevant as it does not 
enable quantifying the probability of population extinction at local and large scales. 

Accounting for spatial heterogeneity is essential to better understand and predict tsetse population 
dynamics, as habitat fragmentation holds the key to population survival when conditions are globally hostile. 
However, parameters driving tsetse fly dispersal abilities did not structure their final distribution. Landscape 
ecology must be studied to identify patches that will need longitudinal surveillance. Optimal management 
strategies are therefore valid for a given species in a given habitat and should not be generalized without 
baseline data collection to characterize the ecosystem. 

To conclude, environmental carrying capacity largely explained the contribution of local source spots to 
tsetse fly population dynamics at a large scale, but unfavourable conditions resulted in a progressive 
disappearance of such spots and the existence of refuges that located in colder areas where the temperature 
was less variable. When applying a spatially homogeneous increase in adult mortality for one year, population 
size was less impacted in such refuges. In contrast, applying a spatially heterogeneous increase in adult 
mortality resulted in refuges located at the interface between controlled and uncontrolled zones, and 
previous temperature-dependent refuges disappeared. Areas to be controlled should be chosen with caution 
when facing a heterogeneous habitat. Our study confirmed the importance of a preliminary characterization 
of the study area before the start of control operations in order to include the most suitable habitats in the 
control strategy, which is the foundation of area-wide integrated pest management.  
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