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Abstract

The cultivated strawberry, Fragaria xananassa, originated in France approximately 270 years
ago via hybridization between two wild species introduced from North and South America. Both
the cultivated strawberry and its parental species are octoploids with 2n=8x=56 chromosomes. In
the recent publication of the genome of the cultivated strawberry, the authors present a novel
phylogenetic hypothesis, proposing that each of the four subgenomes originated from a different
2n=2x=14 diploid progenitor. They further suggest that the hexaploid species Fragaria moschata
was a direct ancestor of the strawberries. We reanalyzed the four octoploid subgenomes in a
phylogenomic context, and found that only two extant diploids were progenitors, a result that is
consistent with several previous studies. We also conducted a phylogenetic analysis of genetic
linkage-mapped loci in the hexaploid F. moschata, and resolved its origin as independent of the
octoploids. We identified assumptions in their tree-searching algorithm that prevented it from
accepting extinct or unsampled progenitors, and we argue that this is a critical weakness of their
approach. Correctly identifying their diploid progenitors is important for understanding and
predicting the responses of polyploid plants to climate change and associated environmental

stress.

Introduction

The publication by Edger et al.! of the first chromosome-scale genome assembly of the octoploid
strawberry Fragaria xananassa cultivar ‘Camarosa’ represents a significant scientific advance
and provides a foundational resource for this important cultivated plant. The authors also
identified four diploid species of Fragaria as the progenitors of the wild octoploid species of

strawberry (Table 1, Fig. 1a). Three of these species are distributed in Asia, the fourth in western
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North America. Edger et al. further hypothesized that the hexaploid species F. moschata “may
be evolutionary intermediate between the diploids and wild octoploid species”. This predicts that
the hexaploid’s three subgenomes should correspond to these three Asian diploid ancestors (Fig.

1a).

Results and Discussion

Since these phylogenetic conclusions conflict with several recent studies®>* (Table 1), we
conducted two new analyses: a chromosome-scale phylogenomic analysis of the four F.
xananassa subgenomes (Fig. 1b,c; Table 2, Figs. 2-3) and a phylogenetic analysis of genetic
linkage-mapped loci in F. moschata (Figs. 4-5). We evaluated the phylogenetic hypotheses of
Edger et al.! using topology tests and found no evidence of F. nipponica and F. viridis ancestry
in the octoploid (Table 3) and supported independent origins of the hexaploid and octoploid

strawberries (Table 4).

We believe that the “phylogenetic analysis of subgenomes” tree-searching algorithm (PhyDS)
developed by Edger et al. was responsible for the unsupported identification of F. nipponica and
F. viridis ancestry for the octoploids. Their analysis was based on 8,405 individual gene trees
compiled from the annotation of the newly assembled octoploid genome and 31 transcriptomes
from 12 diploid Fragaria species. In each gene tree, when multiple octoploid genes resolved as
sister to the same diploid, these were treated as in-paralogs, and ignored. This forces each of the
four octoploid subgenomes to have a different diploid ancestor, an assumption that is at odds
with most classical genetic hypotheses for the octoploid ancestry (reviewed in ref.%) as well as

the results of molecular phylogenetic analyses of Fragaria®™.
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In effect, Edger et al.! only considered gene trees as informative when genes from a single
octoploid and diploid comprise an exclusive clade. This is an effective strategy for subgenomes
A and B (Table 1), where a high proportion of PhyDS resolved gene trees (their Supplementary
Table 8) and 100-kb windows (labelled “sister” in Fig. 1c) resolve these with F. vesca and F.
ilinumae, respectively. However, the approach fails for subgenomes C and D (Table 1) where a
smaller percentage of PhyDS accepted gene trees (their Supplementary Table 8), and very few
100-kb windows (Fig. 1c), resolve an exclusive clade relationship between these subgenomes

and F. nipponica and F. viridis, respectively.

The rationale of Edger et al.! for treating in-paralogs in this way was to avoid errors when
homeologous exchange has “replaced” the syntelog of one subgenome with another, as
illustrated in their Supplementary Figure 8c. According to their Supplementary Table 10, 11.4%
of the genome has experienced homeologous exchange, suggesting that 90% of the syntelog gene
trees should correctly resolve subgenome ancestry. In contrast, only ca. 3% of syntelogs across
the genome resulted in a subgenome assignment by PhyDS. This indicates that their in-paralog
exclusion criterion was too strict. Our results suggest that the great majority of trees rejected by
PhyDS resolved F. iinumae as the diploid progenitor of three subgenomes (Fig. 1b, Fig. 2,
Supplementary Table 2). This topology matches the examples of “incorrectly identified as
progenitor” in their Supplementary Figure 8c, but in our view reflects the most likely

evolutionary scenario for the origin of the octoploid strawberries.
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Our phylogenomic approach found that 12.5% of the genome has experience homeologous
exchange (Fig. 1c, Table 2), similar to the Edger et al. estimate of 11.4%. Although none of the
2191 trees from 100-kb windows across the genome (Table 4) match the Edger et al. hypothesis
(Fig. 1a), a small number do resolve subgenome C or subgenome D with the diploid species F.
nipponica and F. viridis, respectively (Fig. 1c, Supplementary Table 2). However, these are
similar to the number of trees that resolve the opposite species, or F. nilgerrensis, as the most
closely related diploid. We suspect that these results can be attributed to incomplete lineage

sorting.

In 81.4% of the 2011 trees where subgenome A (Camarosa vesca) was resolved with the F. vesca
clade, its most recent common ancestor or sister taxon was F. vesca subsp. bracteata
(Supplementary Table 2), native to northwest North America. This is consistent with the PhyDS
results of Edger et al.}, and most previous studies>*5’. Likewise, our results and previous
studies resolve subgenome B (Camarosa iinumae) with F. iinumae from Japan. Subgenomes C
and D are most commonly resolved as sister to each other (Fig. 1b, Fig. 2), and may represent an
autotetraploid ancestor?, although this requires cytogenetic confirmation. Fragaria iinumae is the
closest diploid progenitor of these two subgenomes (Fig. 1c, Fig. 3). Whether they originated
with an extinct species® or an unsampled population of F. iinumae (e.g. from Sakhalin Island)
remains to be determined. The origin of the wild octoploid strawberry species likely occurred in
Pleistocene Beringia, which is temporally consistent with the estimated age of the octoploids®®

and spatially intermediate between the extant diploid ancestors.
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We also find no support for the Edger et al.! hypothesis that the hexaploid F. moschata is a direct
ancestor of the octoploids (Table 3, Figs. 4-5). Instead, its progenitors appear restricted to the

“vesca clade” (F. vesca, F. mandshurica, F. bucharica).

Polyploidy is increasingly being recognized for its role in generating novel diversity in
organismal evolution??, and the differential retention of diploid progenitors’ genes is central to
this process. In particular, these diploid progenitors have each experienced a unique set of
environments, pathogens and other challenges to survival, so prior to coming together in a
polyploid genome, each progenitor independently evolved “answers” to a diverse array of abiotic
and biotic conditions. Understanding the biology of these diploid species can inform polyploid
plant adaptation to changing climate and associated environmental stresst. For these reasons, it

is critical to correctly identify the diploid progenitors of polyploids.

Materials and Methods

Illumina sequencing libraries were prepared from leaf tissue of six diploid Fragaria species, and
9-32X genomic coverage was obtained (Table 2). Fragaria vesca subsp. bracteata, F. iinumae
and F. nipponica were sequenced at the Oregon State University Center for Genome Research
and Biocomputing Central Services Lab with 100 bp single ends on a HiSeq 2000. Fragaria
mandshurica, F. nilgerrensis and F. nipponica were sequenced at Berry Genomics (Hangzhou,
China) with 150 bp paired ends on a HiSeq 2000. We removed adapters and low-quality portions
of reads using Trimmomatic (v 0.35)* and settings LEADING:20, TRAILING:20,
SLIDINGWINDOW:5:20, MINLEN:50. The genome assemblies of octoploid Fragaria

ananassa ‘Camarosa’ and diploid outgroup Potentilla micrantha®® were downloaded from the
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Genome Database for Rosaceae (https://www.rosaceae.org/). The former was subdivided by the

Edger et al. based on diploid subgenome assignment into four sets of seven chromosomes. The
outgroup and subgenome assemblies were converted to 20X genomic coverage of random 100

bp sequences using BBTools randomreads.sh (https://jgi.doe.gov/data-and-tools/bbtools/). The

above sets of sequence reads were aligned with BWA (v 0.7.12) to the Fragaria vesca v 4.1
genome assembly®® after masking with the F. vesca v 4.1 transposable element library

downloaded from the Genome Database for Rosaceae (https://www.rosaceae.org/).

The twelve resulting alignments were converted to a variant call format (vcf) file with SAMtools
(v 1.9)% with the default settings of the mpileup and call options. The vcf file was converted into
a multisample variant format (mvf) file using MVFtools (v 0.5.1.4)*. All heterozygous sites
were converted to N, to account for the fact that the octoploid subgenome and outgroup
sequences were derived from haploid genome assemblies. MVFtools was used to automate
maximum-likelihood (ML) estimates of phylogeny using RAXML (v 8.2.12)*8 with the GTR+T"
model of sequence evolution and 100 bootstrap replicates. A taxon was excluded from the
analysis of a 100 kb window if it had <10% of aligned sites. Analyses were conducted for the
seven base chromosomes (Fig. 1b, Fig. 2) and for 2191 non-overlapping windows of 100 kb
across the seven chromosomes (Fig. 1c, Fig. 3, Supplementary Table 1). The phylogenetic
position of each subgenome relative to diploid species was recorded (see Fig. 3 for details) and
summarized for each base chromosome (Supplementary Table 1). Homeologous exchange was
inferred when the ‘Camarosa vesca’ subgenome shared a MRCA with F. iinumae or when the
other three subgenomes shared a MRCA with the F. vesca clade (F. vesca, F. mandshurica, F.

bucharica).
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We used an F1 cross for linkage mapping of the hexaploid F. moschata. Our F1 mapping
population was derived from two parental plants collected from Slovenia (46.6827°N,
16.2951°W). Following our previous protocols®, seeds of the experimental cross (N = 192) were
planted in a custom soil mixture (2 : 1, Fafard 4 : sand top-dressed with Sunshine Redi-earth
Plug & Seedling; Sun Gro Horticulture, Agawam, MA, USA), and grown under 16 °C /21 °C
night/day temperatures and a 14-h photoperiod in a growth chamber at the University of
Pittsburgh for 11 wk. We selected a random subset (N = 46) of the F1 progeny for targeted

sequence capture.

Targeted sequence capture was performed using previously developed Fragaria baits (v 2.0)%1°.
These 20,000 capture baits of 100 bp each are relatively randomly distributed across the seven
base chromosomes (1-7). DNA was isolated from silica-dried leaf tissue of the 46 progeny and
two parents at Ag-Biotech (Monterey, CA). We constructed individually indexed genomic
libraries using the NEBNext Ultra DNA Library Prep Kit (New England BioLabs, Ipswich, MA,
USA), which were then target enriched® and sequenced using a 1/3 lane of 150 bp paired ends on
a HiSeq 3000 at the Oregon State University Center for Genome Research and Biocomputing

Central Services Lab.

The hexaploid linkage mapping involved four steps: quality filtering of paired-end capture reads,
mapping reads to the above-mentioned diploid F. vesca v 4.1 genome assembly, genotype calling
in polyploids using POLIMAPS?, and linkage mapping using OneMap®. First, we removed
adapters and low-quality portions of paired-end reads using Trimmomatic (v 0.35)* as described
above, and merged the paired-end reads using PEAR (v 0.9.6)? with a minimum overlap size of
20 bp. Second, we mapped both the merged and un-merged paired-end reads to the F. vesca v

4.1 reference using BWA (v 0.7.12)%. The sorted BAM files were generated with SAMtools (v
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1.9)® and then were used to create the mpileup file. Third, with the mpileup file, we conducted
polyploid genotype calling using POLiIMAPS?, in which heterozygous and homozygous loci
were identified with the default parameters, except for the depth of >32X per progeny for the
hexaploid. Lastly, to construct maternal and paternal linkage groups (LGs), we assigned SNPs to
the most likely LGs based on a logarithm of odds (LOD) threshold of 5 using OneMap® in R (v

3.3.3)%. LGs with at least 20 SNPs were used for subsequent analyses.

To infer the phylogenetic replacement of F. moschata in relation to the octoploid strawberry and
other diploid Fragaria, we first extracted the quality-filtered reads that contained the above LG
SNPs, and mapped these reads to the F. vesca v 4.1 reference to generate consensus LG
sequences using POLIMAPS. We next used POLIMAPS and the variant call format file
described in the above Phylogenomic Analysis of Octoploid Subgenomes section to generate
multiple sequence alignments among F. moschata LG sequences, the four octoploid reference
subgenomes, diploid Fragaria genomes and the outgroup Potentilla. Phylogenetic inference was
conducted for each of chromosomes 1-7 and for maternal and paternal LGs separately, using the

ML method with the GTR+T model and 100 bootstrap replicates in RAXML (v 8.0.26).

To test the hypothesis of Edger et al. that F. nipponica and F. viridis are the progenitors (sister
taxa) of the respective ‘Camarosa_nipponica’ and ‘Camarosa_viridis’ subgenomes, we built the
ML tree of constrained topology that reflects this hypothesis ((Camarosa_nipponica, nipponica),(
Camarosa_viridis, viridis),(Camarosa_vesca,bracteata),(Camarosa_iinumae, iinumae)) (Table 3),
for each of the seven base chromosomes. These constrained trees were then compared to the ML

unconstrained trees using the Shimodaira—Hasegawa (SH) test in RAXML.

To test the hypothesis of Edger et al.! that the hexaploid F. moschata is an evolutionary

intermediate in the formation of the octoploid strawberry, we built ML trees of constrained
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topologies that reflect this hypothesis (Table 4). Specifically, under this hypothesis, each of the
three maternal or paternal LGs should be sister to one of the octoploid subgenomes (i.e.
Camarosa_viridis, Camarosa_iinumae, and Camarosa_nipponica). We built six constraint trees
by alternating the combinations of the three LGs and the three octoploid subgenomes, for each of
chromosomes 1-7 and for maternal and paternal LGs separately (Table 4). These constrained

trees were then compared to the ML unconstrained trees using the SH test in RAXML.
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Table 1: Summary of recent hypotheses for the diploid ancestors of the wild octoploid
strawberries, Fragaria virginiana and F. chiloensis. These two species were introduced to
Europe and hybridized approximately 270 years ago, creating F. xananassa, the cultivated
strawberry (reviewed in ref. °). Phylogenetic analyses support a single origin between 0.43-1.62
million years ago®. Kamneva et al.® found no evidence for additional progenitors beyond F.
vesca and F. iinumae, and while their results were consistent with 3 F. iinumae-like subgenomes,
this could not be directly evaluated. Yang and Davis* proposed an additional unknown
progenitor, and questioned whether each subgenome had a single diploid ancestry. The A,B,C,D

genome designations are to provide a common reference, and were not used in these studies.

genome A | genome B | genome C | genome D | authors

vesca linumae linumae- linumae- This study

bracteata related related

vesca linumae nipponica | viridis Edger et al. 2019
bracteata

vesca iinumae - - Kamneva et al. 2017
vesca iinumae bucharica | viridis Yang & Davis 2017
vesca iinumae linumae- | iinumae- Tennessen et al. 2014
bracteata related related
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Table 2: New sequences reported here. Detailed locality data is available at http://wildstrawberry.org

estimated
genome | percent
coverage | mapped
for WGS | reads for
voucher name | sequencing reads samples | targeted NCBI SRR
F. vesca bracteata | NA.OR.4.18.5 WGS 20641086 10
F. iinumae JP.HK.3.25.3 WGS 19026532 9
F. mandshurica CH.HL.8.13.1 WGS 44180874 32
F. nilgerrensis CH.YN.7.1.4 WGS 32261034 23
F. nipponica JP.HK.6.17.5 WGS 21047026 10
F. viridis CH.XJ.4.7.3 WGS 38332552 27
F. moschata EU.SI1.1.27.1 targeted 2161806 94.48%
F. moschata EU.SI.1.29.2 targeted 2536263 94.18%
F. moschata F1 MOSXB.105 targeted 3825308 88.64%
F. moschata F1 MOSXB.108 targeted 4073659 85.90%
F. moschata F1 MOSXB.109 targeted 3305483 87.16%
F. moschata F1 MOSXB.10 targeted 3636198 86.98%
F. moschata F1 MOSXB.112 targeted 4624772 84.64%
F. moschata F1 MOSXB.117 targeted 5141669 86.52%
F. moschata F1 MOSXB.118 targeted 3593912 85.85%
F. moschata F1 MOSXB.119 targeted 4184427 85.57%
F. moschata F1 MOSXB.11 targeted 4729689 86.89%
F. moschata F1 MOSXB.122 targeted 4056714 86.03%
F. moschata F1 MOSXB.130 targeted 3954656 86.31%
F. moschata F1 MOSXB.132 targeted 4614820 83.42%
F. moschata F1 MOSXB.13 targeted 3906454 86.03%
F. moschata F1 MOSXB.149 targeted 3687513 85.02%
F. moschata F1 MOSXB.14 targeted 3112895 88.49%
F. moschata F1 MOSXB.150 targeted 3854800 86.50%
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F. moschata F1 MOSXB.151 targeted 3757039 88.81%
F. moschata F1 MOSXB.152 targeted 3620346 86.94%
F. moschata F1 MOSXB.15 targeted 4009303 85.89%
F. moschata F1 MOSXB.165 targeted 4074828 85.56%
F. moschata F1 MOSXB.167 targeted 4011845 85.28%
F. moschata F1 MOSXB.168 targeted 3437484 86.12%
F. moschata F1 MOSXB.179 targeted 3728707 86.00%
F. moschata F1 MOSXB.180 targeted 3183301 87.41%
F. moschata F1 MOSXB.182 targeted 3163260 85.99%
F. moschata F1 MOSXB.183 targeted 3148561 85.94%
F. moschata F1 MOSXB.187 targeted 3094357 85.07%
F. moschata F1 MOSXB.19 targeted 5047685 84.97%
F. moschata F1 MOSXB.23 targeted 3587588 86.51%
F. moschata F1 MOSXB.25 targeted 3363580 85.84%
F. moschata F1 MOSXB.26 targeted 4217917 86.24%
F. moschata F1 MOSXB.27 targeted 3472967 84.89%
F. moschata F1 MOSXB.33 targeted 3679616 85.06%
F. moschata F1 MOSXB.35 targeted 2869162 84.43%
F. moschata F1 MOSXB.36 targeted 4025962 87.28%
F. moschata F1 MOSXB.37 targeted 2835874 86.94%
F. moschata F1 MOSXB.39 targeted 3235333 89.72%
F. moschata F1 MOSXB.40 targeted 4300475 85.22%
F. moschata F1 MOSXB.48 targeted 3134614 86.49%
F. moschata F1 MOSXB.71 targeted 4471722 85.82%
F. moschata F1 MOSXB.72 targeted 5257489 83.67%
F. moschata F1 MOSXB.7 targeted 3265668 84.28%
F. moschata F1 MOSXB.80 targeted 4261215 84.99%
F. moschata F1 MOSXB.8 targeted 4500479 85.32%
F. moschata F1 MOSXB.93 targeted 2448916 86.26%
F. moschata F1 MOSXB.97 targeted 4255696 85.32%



https://doi.org/10.1101/665216
http://creativecommons.org/licenses/by/4.0/

Table 3: Shimodaira—Hasegawa (SH) tests support an alternative scenario of the evolutionary origins of the octoploid strawberry,
relative to the hypothesis of Edger et al. (2019).

Chromo 1 2 3 4 5 6 7
some
ML unconstrained tree -LogeL 43776167 53635963 67303204 58266330 53739632 72891475 43776415
Edger et al. (2019) hypothesis
(Camarosa_vesca,bracteata),
(Camarosa_iinumae,iinumae),
(Camarosa_viridis,viridis), A-LogeL 158226 219842™ 198938  190332™ 192305 2451477 114341™
(Camarosa_nipponica,nipponic
a)

-LogeL: negative log likelihood; A -LogeL: the difference in -LogeL between the best ML constraint tree and the ML unconstrained
tree for each of chromosomes 1-7.
The P values of the SH tests are denoted as asterisks: ™, P < 0.01.
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Table 4: Shimodaira—Hasegawa (SH) tests do not support the hypothesis that the hexaploid Fragaria moschata was the evolutionary
intermediate of the octoploid strawberry, as evidenced by moschata maternal LGs (m1-m3) and paternal LGs (p1-p3).

Chromo 3 2 3 4 5 6 7
some
Maternal
ML unconstrained tree -LogeL 89129 278511 208456 213813 206867 392846 215159

Constrained trees

((Camarosa_viridis,m1),(Cama
rosa_iinumae,m2),(Camarosa_ A -LogeL - 831" 685" 558™ 341" 7617 104™
nipponica,m3));

((Camarosa_viridis,m1),(Cama
rosa_iinumae,m3),(Camarosa_ A -LogeL - 846" 381" 559 341™ 751" 100™
nipponica,m2));

((Camarosa_viridis,m2),(Cama
rosa_iinumae,m1),(Camarosa_ A -LogeL - 831" 715" 543™ 337 809™ 134™
nipponica,m3));

((Camarosa_viridis,m2),(Cama
rosa_iinumae,m3),(Camarosa_ A -LogeL - 846" 715™ 567" 382" 809™ 425™
nipponica,ml));

((Camarosa_viridis,m3),(Cama
rosa_iinumae,m1),(Camarosa_ A -LogeL - 928™ 643" 544 337 750" 131™
nipponica,m2));

((Camarosa_viridis,m3),(Cama
rosa_iinumae,m2),(Camarosa_ A -LogeL - 922" 684" 568" 382" 760" 153™
nipponica,ml));
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Paternal
ML unconstrained tree

Constrained trees

((Camarosa_viridis,pl),(Cama
rosa_iinumae,p2),(Camarosa_
nipponica,p3));

((Camarosa_viridis,pl),(Cama
rosa_iinumae,p3),(Camarosa_
nipponica,p2));

((Camarosa_viridis,p2),(Cama
rosa_iinumae,pl),(Camarosa_
nipponica,p3));

((Camarosa_viridis,p2),(Cama
rosa_iinumae,p3),(Camarosa_
nipponica,pl));

((Camarosa_viridis,p3),(Cama
rosa_iinumae,pl),(Camarosa_
nipponica,p2));

((Camarosa_viridis,p3),(Cama
rosa_iinumae,p2),(Camarosa_
nipponica,pl));

-LogeL

A -LOgeL

A -LogeL

A -LOgeL

A -LogeL

A -LogeL

A -LogeL

87227

275286

1033™

1046™

1072™

1068™

1046™

1030™

211795

1024™

1028™

1172

1176™

1013™

1041

215665

1461

1290™

1478™

1290™

1478

1461

208624

1112

1112™

1114™

1141*

*%

755

755"

382540

1542

1522™

1562™

1547

1504™

1528™

221318

1113™

882"

1136

884"

860"

862"

-LogeL: negative log likelihood; A -LogeL: the difference in -LogeL between the best ML constraint tree and the ML unconstrained
tree for each of chromosomes 1-7. The P values of the SH tests are denoted as asterisks: ~, P < 0.01. The maternal ML unconstrained
tree for each of chromosomes 1-7 can be found in Figure 1b and Supplementary Figure 3. Because there was only one maternal LG
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for chromosome 1, the SH test was not performed. In chromosomes 5 and 6, maternal LG m3 was missing. The paternal ML
unconstrained tree for each of chromosomes 1-7 can be found in Figure 1b and Supplementary Figure 4. Because there was only one
paternal LG for chromosome 1, the SH test was not performed.
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Figure 1. Phylogenomics of octoploid subgenomes. a, The phylogenetic hypothesis presented
by Edger et al.! suggesting that each octoploid subgenome has a different extant diploid
progenitor, and that three of these subgenomes (denoted by asterisks) comprise the hexaploid
species F. moschata. The bold lines represent the topology constraint we applied in the
Shimodaira-Hasegawa test of the Edger et al.* hypothesis vs. our phylogenomic results (Table 3).
b, Maximum likelihood estimate of phylogeny for base chromosome 1, all nodes have 100%
bootstrap support. This topology is shared by five of the seven chromosomes (Fig 1). c,
Summary of the phylogenetic positions of the four octoploid subgenomes in maximum

likelihood estimates of phylogeny in 2191 non-overlapping windows of 100 kb across the 7 base
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chromosomes. The octoploid subgenomes A ‘Camarosa vesca’ and B ‘Camarosa iinumae’
generally are sister to their eponymous diploids F. vesca (red) and F. iinumae (blue). In contrast,
subgenome C ‘Camarosa nipponica’ and subgenome D ‘Camarosa viridis’, predominantly share
a most recent common ancestor (clade) with F. iinumae (light blue). See Fig. 3 for an
explanation of the sister vs. clade categorization and the results for all 2191 windows. For data

sources and phylogenetic methods, see Materials and Methods.
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Figure 2: Maximum likelihood estimate of phylogeny for base chromosomes 2-7. Bootstrap

values for all nodes are 100%, unless indicated.
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Figure 3: Phylogenetic positions of the four octoploid subgenomes in maximum likelihood
estimates of phylogeny in 2191 non-overlapping windows of 100 kb across the 7 base
chromosomes. Phylogenetic matrices averaged 89077 nucleotides per 100 kb window
(Supplementary Table 1). For each window, we recorded the diploid species sharing the most
recent common ancestor (MRCA) with each octoploid subgenome, and we further noted when
this diploid was “sister” to that subgenome. If the MRCA diploid was not sister to that
subgenome, we labelled these as “clade”. This generally occurred when subgenomes were sister
to each other, e.g. ‘Camarosa viridis’ and ‘Camarosa nipponica’ in Fig. 1b. The two subspecies
of F. vesca and the closely related F. mandshurica and F. bucharica were grouped together for
MRCA scoring, and combined into a single color category. We restricted the category “vesca
sister” to windows where the octoploid subgenome is sister to one subspecies of F. vesca; all
other positions were scored as “vesca clade”. More than one diploid species shared a MRCA
with multiple subgenomes in 0.2% of the 2191 trees, and these were labelled “ambiguous”.
When an octoploid subgenome was excluded from a 100 kbp window (<10% of aligned sites) it
was scored “absent”. These regions primarily correspond to large duplications, e.g. at the 3" end

of chromosome 2 and 7 in the F. vesca subgenome.
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Figure 4: Maximum-likelihood phylogenies of base chromosomes 1-7 involving the

maternal linkage groups (LGs) of the hexaploid Fragaria moschata. These LGs are named
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after species (‘Fmos’), chromosome (I-V1I), maternal map (m) and LG number (1-3). Some
chromosomes (e.g. 1, 5 and 6) have incomplete F. moschata LG numbers. Numbers associated

with branches are ML bootstrap support values from 100 replicates.
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Figure 5: Maximum-likelihood phylogenies of base chromosomes 1-7 involving the
paternal linkage groups (LGs) of the hexaploid Fragaria moschata. These LGs are named

after species (‘Fmos’), chromosome (I-VI1I), paternal map (p) and LG number (1-3).
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Chromosome 1 has incomplete F. moschata LG numbers. Numbers associated with branches are

ML bootstrap support values from 100 replicates.
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