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Abstract 

 The oncogene LSF has been proposed as a novel target with therapeutic potential for 

multiple cancers. LSF overexpression correlates with poor prognosis for both liver and colorectal 

cancers, for which there are currently limited therapeutic treatment options. In particular, 

molecularly targeted therapies for hepatocellular carcinoma targeting cellular receptors and 

kinases have yielded disappointing clinical results, providing an urgency for targeting distinct 

mechanisms. LSF small molecule inhibitors, Factor Quinolinone Inhibitors (FQIs), have 

exhibited robust anti-tumor activity in multiple pre-clinical models of hepatocellular carcinoma, 

with no observable toxicity. To understand how the inhibitors impact cancer cell proliferation, 

we characterized the cellular phenotypes that result from loss of LSF activity. Phenotypically, 

inhibition of LSF activity induced a mitotic delay with condensed, but unaligned, chromosomes. 

This mitotic disruption resulted in improper cellular division leading to multiple outcomes: 

multi-nucleation, apoptosis, and cellular senescence. The cellular phenotypes observed upon 

FQI1 treatment were due specifically to the loss of LSF activity, as siRNA specifically targeting 

LSF produced nearly identical phenotypes. Taken together, these findings confirm that LSF is a 

promising therapeutic target for cancer treatment. 

 

Significance Specific inhibition of LSF by either small molecules or siRNA results in mitotic 

defects resulting in cell death or senescence, supporting the promise for LSF inhibitory strategies 

as treatment for LSF-related cancers with high unmet medical needs.  
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Introduction 

 LSF (encoded by TFCP2) is an evolutionarily conserved transcription factor that is normally 

expressed ubiquitously at low levels, but is significantly overexpressed in hepatocellular 

carcinoma cell lines and patient samples. Levels of LSF in patient samples from multiple 

populations rise with increased stage and severity of disease (1-4). Furthermore, LSF is 

oncogenic for hepatocellular carcinoma, as it is sufficient, in the background of a non-

tumorigenic, but tumor-primed hepatocyte cell line, for hepatocellular carcinoma tumor growth 

in mouse xenograft models (1). Elevated LSF levels have also been documented in a number of 

other cancers, as well (5). In both colorectal cancer and hepatocellular carcinoma, patients with 

elevated LSF levels have significantly worse prognosis, with shorter median disease-free 

survival times than those with low LSF levels (3, 6). Finally, recent reports demonstrated that 

LSF can function as a co-activator for key transcription factors downstream of the Hippo and 

Wnt signaling pathways - YAP (4) and β-catenin (7) – both of which are widely accepted to 

contribute to liver proliferation and oncogenesis, as well as other cancer types. 

 Primary liver cancer and colorectal cancer are among the most common cancers worldwide 

(sixth and third, respectively), and represent leading causes of cancer mortality (second and 

fourth, respectively) (8-10). Although treatment options have improved, patients are often 

diagnosed with late stage, metastatic disease, resulting in high mortality. Hepatocellular 

carcinoma represents approximately 70-80% of primary liver cancer cases (9, 11). The only two 

FDA-approved therapies for late-stage hepatocellular carcinoma, Sorafenib and Regorafenib 

(multi-kinase inhibitors), unfortunately demonstrate only modest improvement in patient survival 

rates (12, 13), and result in significant side effects and rapid development of drug resistance. 

Thus, a large unmet medical need remains for hepatocellular carcinoma and colorectal patient 

populations. Therapies directed to distinct molecular targets, ideally to which the cancer is 

oncogene addicted, have been promoted for mitigating these diseases (11). 

 A family of small molecule inhibitors of LSF, Factor Quinolinone Inhibitors (FQIs), was 

identified that inhibits the DNA binding and transcription activity of LSF, but not that of 

transcription factors from multiple other structural classes (14). Activity of p53, the closest 

structural relative of the LSF family (15, 16), was also not inhibited by FQIs. Phenotypically, 

FQIs inhibit growth of hepatocellular carcinoma cells in vitro. They also inhibit hepatocellular 
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carcinoma tumor growth in vivo in multiple mouse models, including a mouse endogenous liver 

tumor model (17). In all cases, inhibition of tumor growth occurred in the absence of toxicity, as 

assessed by liver injury markers, histopathology of tissues with rapid cell turnover, or blood cell 

counts (18). These results suggested that hepatocellular carcinoma cells are oncogene addicted to 

LSF (14, 19).  

 Oncogenic transcription factors are promising therapeutic targets given that they regulate 

tumorigenic pathways. However, transcription factors, in general, have been notoriously difficult 

to target with small molecule inhibitors as their DNA binding domains are commonly small and 

the proteins themselves are intrinsically disordered promiscuity (20). Identification of the 

transcription factor LSF as an oncogene and the significant inhibition of tumor growth upon LSF 

inhibition with no observed toxicity indicate that LSF holds considerable promise as a cancer 

therapeutic target (1, 14, 21). Targeting a transcription factor has been challenging, therefore 

validation of the biological specificity of the LSF inhibitors is essential. Here we demonstrate 

that the molecular and phenotypic consequences of knockdown of LSF with a specific siRNA are 

the same as treatment of cells with FQI1, therefore confirming that FQIs are highly specific in 

targeting this transcription factor. 

 The molecular mechanisms by which LSF promotes cancer cell survival has not been well 

characterized, although initial data indicated that FQIs induce a “prometaphase-like” arrest in 

hepatocellular carcinoma cells (17). Clarifying the pathways by which inhibition of LSF leads to 

cell death is important to further support the candidacy of FQIs as a molecular therapy. Cell 

cycle analysis by flow cytometry and time-lapse microscopy revealed mitotic defects including 

mitotic delays with condensed, but unaligned chromosomes, leading to increased time in mitosis, 

defective cell division, multi-nucleation, and apoptosis. In addition, loss of LSF activity induced 

senescence in a sub-population of cells in a dose-dependent manner. Senescence, as well as 

mitotic arrest and apoptosis, are all desirable outcomes for a cancer chemotherapeutic.  

 

Materials and Methods 

Preparation of FQI1 

 FQI1 was synthesized as previously described (14). FQI1 was dissolved in analytical grade 

DMSO (Sigma). The final DMSO concentration added to the cells was 0.5%.  
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Cell lines and synchronization 

 HeLa cells (gift from Devanand Sarkar, Virginia Commonwealth University) were cultured 

at 37oC in 10 % CO2 in DMEM (Corning Cellgro) supplemented with 10% Fetal Bovine Serum 

(FBS; Atlanta Biologicals). For synchronization using a double thymidine block protocol, cells 

were treated with 2 mM thymidine (Sigma) in complete medium for 18 hours, and then released 

into complete medium for 6 hours followed by incubation in 2 mM thymidine in complete 

medium for a second 18-hour incubation. For release from the G1/S block, cells were transferred 

into complete medium. The single thymidine block involved a single 24 hour incubation in 2 

mM thymidine and release into complete media. As indicated, the release medium also contained 

20 μM of thymidine. 

siRNA transfection 

 siRNAs were designed and synthesized at Alnylam Pharmaceuticals, Inc. siRNA sequences 

used: LSF Sense: 5' GUGUGAUGUUUAAcAGGAATT 3'; LSF Antisense: 5' 

UUCCUGUUAAACAUCACACTT 3'; LBP1A Sense 5' UUUCAGGUGCCGACUUAUUTT 3'; 

LBP1A Antisense: 5' AAUAAGUCGGCACCUGAAATT 3'. The siRNAs were stabilized using 

certain chemical modifications as previously described allowing durable knockdown (22, 23). 

The siRNA control was a sequence targeting RNA encoding firefly luciferase and was, therefore, 

non-targeting in the cells utilized for these studies. Cells were transfected using RNAimax (Life 

Technologies) according to manufacturer’s instructions. Transfection efficiency was measured 

by fluorescent microscopy 24 hours post transfection by cellular uptake of the Cy3 labeled 

control siRNA, and was determined to be >90%. For all siRNA experiments, the initial 

thymidine block was started 24 hours after transfection of the siRNA. 

Time-lapse microscopy 

 In order to image cell cycle progression for HeLa cells, retroviral Packaging Cells (GP2-

293; Clontech) were transfected with pVSV-G (Clontech) and a pBABE vector containing both a 

gene for YFP-tagged histone H2B protein and for a gene encoding G418 resistance (gift from 

Jagesh Shah laboratory, Harvard Medical School). The virus-containing supernatant was 

collected for transduction of HeLa cells and the population of resistant cells was selected with 

G418 (Gibco).  
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 For time-lapse microscopy of siRNA-treated cells, the HeLa cells expressing H2B-YFP 

were transfected and synchronized with a single thymidine block and release. After release, cells 

were imaged in CO2 independent medium (Leibovitz's L-15 without phenol red) on a Nikon 

TA10 Eclipse with a 20X objective at 37°C. For time-lapse microscopy of FQI1-treated cells, 

HeLa cells expressing H2B-YFP were treated with either vehicle or 0.9, 1.8, or 3.6 µM FQI1 in 

CO2 independent medium (Leibovitz's L-15 without phenol red). Cells were imaged immediately 

on a Nikon TA10 Eclipse with a 20X objective at 37°C. Images were acquired every four 

minutes at 7-10 positions per sample, over a five- to eleven-hour time span. Length of mitosis 

was measured from nuclear envelope breakdown to anaphase. Nuclear envelope breakdown was 

identified as the first image displaying disordered, condensed chromosomes. Anaphase was 

identified as the first image showing sister chromatid separation (for normal anaphases) or 

showing a furrow beginning to form over the chromosomes. For experiments, 100 to 101 cells 

were examined per condition.  

Cell flow cytometry 

 Cells were harvested, washed, and fixed with ethanol. Cells were stained with the Guava cell 

cycle reagent (EMD Millipore) according to manufacturer’s instructions. Fluorescence was 

analyzed on a BD Dickenson FACS Calibur.  

Immunoblotting 

 Cells were lysed in RIPA buffer (125 mM Tris HCl, 150 mM NaCl, 0.1% NP-40, 1.0% 

Sodium deoxycholate, 1.0% SDS, pH 7.6) containing ROCHE protease cocktail phosphatase 

inhibitors (Sigma Aldrich 4693159001) at the manufacturer’s recommended concentrations. 

Lysates were electrophoresed through 4-20% Mini-PROTEAN® TGX™ Precast gradient gels 

(Bio-rad). The proteins were transferred to a PVDF membrane, and membranes were incubated 

for 1 hour in odyssey blocking buffer (LI-COR Biosciences cat# 927-40000). Primary antibodies 

included Aurora Kinase B (Abcam AB2254), Cdc20 (Abcam AB26483), Cyclin B1 (AB72), 

LBP-1a (ABE181), LSF (Abcam ABE180), phosphorylated Histone 3 Serine 10 (Abcam 

ab5176), phosphorylated Histone 3 Serine 28 (Abcam, ab5169), and α-Tubulin (Sigma, 10002). 

Secondary antibodies were from LI-Cor, Inc. and included donkey anti-mouse IR800 (926-

32212), donkey anti-rabbit IR800 (926-32213), goat anti-rabbit IR680 (926-68073), and goat 

anti-mouse IR680 (926-32214). PVDF membranes were imaged using the Licor Odyssey (24). 
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Infrared detection quantitated each band on an individual pixel basis using western analysis tools 

in the Image Studio program.  

Gene expression determination 

 For most experiments, RNA was isolated using the Qiagen RNAeasy kit following the 

manufacturer’s instructions. cDNA was generated using a Reverse Transcription kit from 

Applied Biosystems (4368814). Probes for RNA quantification were acquired from Life 

Technologies with the Taqman gene expression system (Life Technologies). Target gene 

expression was normalized to a ubiquitous control (GAPDH) utilizing a dual label system. Cp 

values were measured using a Light Cycler 480 (Roche). The following probes were used: 

(AURKB) HS009645858 M1, (CDC20) HS00426680 M1, (UBP1, which encodes LBP1A) 

HS00232691 M1m, (TFCP2, which encodes LSF) HS00232185 M1, (MAD2L1) HS00365651 

M1, and (GAPDH) 4333764F. 

Cellular senescence measurement 

 HeLa cells were synchronized with a double thymidine block with either FQI1 treatment or 

LSF knockdown. The cells were stained for β-galactosidase using the activity kit (Kit 9860S) 

from Cell Signaling Technologies according to the manufacturer’s protocol. Following the 

overnight incubation, cells were imaged on a phase Axiovert 40 CFL (Zeiss) microscope. The 

number of blue-staining cells was quantified, irrespective of the intensity of the signal, in 

comparison to the number of cells lacking blue staining. 

Statistical analysis 

 Statistical significance was determined using a two-tailed Student T Test; *P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001. 

Data Availability 

 The ChIP-seq data have been submitted to GEO. The data that support the findings of this 

study are available from the corresponding author upon request. 

 

Results 

Chemical inhibition of LSF induces mitotic defects  

 Previously, we reported that LSF inhibition by small molecule inhibitors (FQIs) resulted in 

cells delayed with G2/M (“4n”) DNA content in hepatocellular carcinoma cell lines. 
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Furthermore, fluorescent staining of synchronized cells for DNA and tubulin demonstrated that 

when control cells completed mitosis and re-entered G1, FQI-treated cells generally remained in 

mitosis with condensed but unaligned DNA (17). In order to elucidate the basis for these FQI1-

mediated mitotic defects and their consequences in greater detail, and over a range of FQI1 

concentrations, we synchronized HeLa cells, which demonstrate the same phenotype, with a 

double thymidine block (Fig. 1A), and analyzed samples for cellular DNA content throughout 

the subsequent cell cycle. At 1.8 µM, FQI1-treated cells were initially delayed in returning from 

G2/M to G1, remaining with 4n DNA content, compared to control cells that had re-entered G1 

(Fig. 1B, 8.5 h), an observation consistent with previous studies (17). Following this delay, a mix 

of phenotypic outcomes was observed at 20 hours after release from G1/S, with FQI1-treated 

cells having divided to a 2n DNA content, initiated cell death pathways (subG1 DNA content), 

or retained their duplicated DNA content. At the highest FQI1 concentration tested (3.6 µM), 

cells were also initially delayed with 4n DNA content, but  a large fraction of the population 

converted to subG1 DNA content by 20 hours post release from the G1/S block (Fig. 1B). 

 Given limitations in interpretation of population-wide data, it was critical to analyze the 

phenotype(s) on a per cell basis upon inhibition of LSF. Using HeLa cells stably expressing 

fluorescently labeled histone H2B chromosomal DNA was visualized as cells passed through 

mitosis by time-lapse microscopy. Asynchronous H2B-YFP-expressing cells were treated with 

increasing concentrations of FQI1. At 1.8 µM (Fig. 1C) mitotic progression was delayed with 

condensed, unaligned chromosomes. Cells subsequently appeared to exit mitosis without proper 

chromosome segregation, resulting in a multinuclear (4n) G1 state (Fig. 1C) (17). In contrast, 

cells treated with vehicle progressed through mitosis normally (Fig. 1C and D). Mitotic time 

(time from nuclear envelope breakdown (NEB) to anaphase) was dose-dependent, increasing 

with increasing concentrations of FQI1 (Fig. 1D). At the lower concentrations of FQI1, cells 

exited mitosis aberrantly after the mitotic delay (Fig. 1C, D and E). However for cells treated 

with 3.6 µM FQI1, mitotic time was indeterminable (Fig. 1E); cells arrested with condensed but 

unaligned chromosomes but never exited mitosis, either normally or aberrantly, throughout the 

640 minutes of imaging (Supplementary Fig. S1A).  

 In some cell lines, LSF is necessary for upregulation of thymidylate synthase expression and 

therefore efficient transition through S phase (25). However, our previous studies indicated that 
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adequate thymidylate synthase expression is achieved despite reduction in LSF activity (14, 26). 

Nonetheless, since S phase defects can ultimately lead to mitotic defects, DNA damage was 

monitored by measuring phosphorylated H2AX (γ-H2AX) chromosomal foci. Cells treated with 

1.8 µM FQI1 or vehicle during synchronization were analyzed for γ-H2AX by 

immunofluorescence 8 hours after release from the G1/S block (Fig. 1F). UV-irradiated cells, a 

positive control, demonstrated extensive γ-H2AX staining. In contrast, only comparable, low 

levels of phosphorylated H2AX were visualized in both the vehicle- and FQI1-treated cells, 

consistent with low levels of DNA damage known to occur in cancer cells (27). These data 

suggest that FQI1-mediated mitotic defects are due to a direct requirement for LSF in regulating 

proper progression through mitosis. 

LSF small molecule inhibition during cell synchronization results in reduced expression of 

key mitotic regulators 

 Upon LSF activity inhibition, we observed defects in chromosome alignment and 

segregation, resulting in mitotic delay and multi-nucleation: phenotypes previously reported 

following inhibition or deficiency of major mitotic regulators Aurora kinase B (AURKB) and 

Cyclin Division Cycle 20 (CDC20) (28, 29). To investigate whether inhibition of LSF alters 

expression of AURKB and CDC20 RNA, HeLa cells were synchronized with a double thymidine 

block (Fig. 2A). RNA levels were measured in vehicle-treated cells at the G1/S border (0 hours) 

and as cells progressed to or just through mitosis (8 hours), as demonstrated by DNA profiling 

(Fig. 1B) and fluorescence microscopy (Supplementary Fig. S1B). As expected, mitotic 

expression of CDC20 was elevated approximately 6-fold compared to RNA levels at G1/S 

(Supplementary Fig. S1C). However, AURKB RNA levels in vehicle-treated cells increased only 

1.2 fold in mitosis, consistent with dysregulated overexpression in these cancer cells. Incubation 

with 1.8 µM FQI1 during the synchronization protocol resulted in reduction of both AURKB and 

CDC20 RNA levels compared to the control cells 8 hours post release (Fig. 2B). Consistent with 

transcript reduction, AURKB and CDC20 protein levels were also reduced in a dose-dependent 

manner (Fig. 2C and 2D), whereas LSF protein levels were unchanged, as expected (Fig. 2C). 

The impact of the downregulation of AURKB was tested by monitoring phosphorylation of an 

AURKB substrate. Phosphorylation of Histone 3 on Serine 10 (30) was reduced by FQI1 in a 

dose-dependent manner (Fig. 2C and 2D).  
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 The mitotic phenotypes would indeed be consistent with inhibition of Aurora kinase B 

and/or CDC20. Aurora kinase B inhibition leads to defects in kinetochore-microtubule 

attachment and cytokinesis, followed by multinucleation (31, 32), and knockdown of CDC20 

results in an increase in mitotic time (29). In addition, both LSF and AURKB are upregulated in 

hepatocellular carcinoma patient samples, with each positively correlating with disease severity 

(1, 33). However, in contrast to previous results in asynchronous cells (17), Cyclin B levels were 

also downregulated (Fig. 2C), particularly when cells were treated with the highest 

concentrations of FQI1 during the synchronization procedure. This finding suggested that cells 

treated with FQI1 during synchronization are not efficiently proceeding through the cell cycle 

into mitosis after the G1/S arrest, complicating straightforward interpretation of the gene 

expression results. Due to the induction of cell cycle defects upon LSF inhibition, the protein 

expression data could not therefore distinguish whether downregulation of AURKB and CDC20 

was the cause or consequence of the phenotypic outcomes.  

 In order to distinguish whether diminished AURKB and CDC20 gene expression resulted 

from lack of cell cycle progression of LSF inhibited cells or from diminished expression of these 

genes in mitosis, we analyzed RNA in synchronized, LSF-inhibited cells only from cells in 

mitosis, isolated by the standard mitotic shakeoff methodology (Supplementary Fig. S2A-B). A 

reproducible decrease in CDC20, but not AURKB, RNA was observed. As an alternative method 

to identify candidate LSF target genes, we sought to identify genes around which LSF binds. The 

absence of a sufficiently robust antibody against LSF for chromatin immunoprecipitation (ChIP) 

prevented testing for endogenous LSF. Instead, a HEK cell line expressing an inducible, HA-

tagged LSF (14) was used for initial ChIP-sequencing analysis. Multiple HA-LSF binding peaks 

were observed around the AURKB gene (Supplementary Fig. S2C), and binding of LSF was 

validated both at the AURKB promoter and around 3000 bp upstream of the transcription start 

site by quantitative PCR (Supplementary Fig. S2D). In contrast, no HA-LSF binding peaks were 

observed within 20 kb of the CDC20 gene. Taken in combination, whether LSF activates 

AURKB expression in these, or other, cells remains unresolved. However, these data suggest that 

LSF may regulate CDC20 expression, although either indirectly or from distant binding sites. 

Global gene expression data from cells treated with FQI1 between G1/S and mitosis did not 
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identify dysregulation of any other mitotic regulators that would cause an early mitotic delay 

(34). 

RNAi mediated knockdown of LSF phenocopies inhibition of LSF with the small molecule 

inhibitor FQI1 

 A critical aspect of interpreting the data with FQI1 was to determine whether its effects truly 

reflected inhibition of the identified target. FQI1 inhibits LSF DNA-binding and protein-binding 

activities, whereas it does not impact activity of a number of other transcription factors, both of 

disparate and similar structural domains (14, 35). These data support that targeting of LSF by 

FQIs is highly specific. Furthermore, since only LSF, but not its other widely-expressed paralog, 

LBP1A, is overexpressed in hepatocellular carcinoma or as yet implicated in cancer (1, 5), we 

predicted that knockdown of LSF alone would cause the same molecular and phenotypic 

outcomes in these cells as those caused by FQI1. Although LSF has a half-life of approximately 

24 hours (36), we identified an siRNA that resulted in robust and durable knockdown of LSF 

(Fig. 3B and C, Supplementary Fig. S3A-C). In addition, since certain siRNAs can cause 

nonspecific reduction in mRNA encoding MAD2 (37), which controls the spindle assembly 

checkpoint, we verified that the selected siRNA targeting LSF did not inadvertently reduce 

MAD2L1 transcript levels (Supplementary Fig. S3D).  

 In order to compare downstream molecular outcomes from FQI1 and LSF siRNA 

treatments, whether direct or indirect, AURKB or CDC20 RNA levels were measured following 

RNAi mediated knockdown of either LSF or a non-expressed control. HeLa cells were 

transfected with siRNAs, to initiate protein knockdown, 30 hours prior to synchronization. RNA 

and protein expression were analyzed at two time points - when control cells were arrested at 

G1/S (0 hours) and when these cells were largely in mitosis after release from the block (8 hours) 

(Fig. 3A, Supplementary Fig. S4A). For ease of comparison, RNA levels were plotted relative to 

the level in the control siRNA sample at each time point. At 20 nM siRNA, significant 

knockdown of both LSF-encoding RNA (Fig. 3B) and protein (Fig. 3C) were achieved over this 

time course. Consistent with the results generated with the LSF small molecule inhibitor at 8 

hours after G1/S release (Fig. 2B), AURKB and CDC20 RNA levels were reduced (Fig. 3B). 

Immunoblotting of lysates harvested at the approximate time of mitotic entry of the control cells 

(8 hours) confirmed a dose-dependent reduction in AURKB and CDC20 protein levels after 
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siRNA-mediated knockdown of LSF (Fig. 3C and D), consistent with the findings upon 

inhibition of LSF with FQI1 (Fig. 2C). As expected, phosphorylation of AURKB substrates 

Serine 10 and 28 of histone H3 (30, 38) was reduced. As with FQI1 treatments, Cyclin B levels 

were also reduced in a dose-dependent manner. Thus, LSF siRNA phenocopied the molecular 

consequences of FQI1 on gene expression, whether due to direct transcriptional effects, and/or 

consequences of cell cycle dysregulation. 

 To determine whether LSF knockdown resulted in similar cellular phenotypes to those 

observed with FQI1, synchronized YFP-H2B-expressing HeLa cells were transfected with 

siRNAs targeting LSF or a non-expressed control. A single thymidine block protocol was 

sufficient for synchronization (Fig. 4A), as mitotic progression is viewed on a cell-by-cell basis. 

Representative time-lapse images of cells treated with the highest concentration (20 nM) of 

either LSF targeting siRNA or control siRNA highlight dramatic changes in mitotic progression. 

Control cells exhibited progression through normal mitotic phases in a timely manner (Fig. 4B). 

However, cells with diminished LSF levels exhibited an extensive delay with condensed, but 

unaligned chromosomes, generally followed by defective cellular division and multinucleation 

(Fig. 4B). In addition, some cells remained in mitosis with condensed chromosomes throughout 

the entire time lapse analysis. Upon quantitation mitotic time was dramatically increased when 

LSF levels were reduced (Fig. 4C). Counterintuitively, the lower concentrations of LSF siRNA 

resulted in longer times for mitotic progression. We propose that at the higher LSF knockdown 

conditions the more defective cells are unlikely to enter mitosis, thus selecting for a less severe 

population available for the analysis. Indeed, when siRNA-transfected cells were imaged by time 

lapse microscopy after a double thymidine block, there was an inverse correlation between 

higher levels of LSF knockdown and the number of cells capable of entering mitosis 

(Supplementary Fig. S4B). 

 By histone H2B fluorescence, the most striking mitotic outcome for individual cells treated 

with LSF siRNA after the extended delay in mitosis appeared to be mitotic slippage (Fig. 4B). 

This was confirmed by immunofluorescence of synchronized cell populations, co-stained for 

DNA and α-tubulin (Supplementary Fig. S5A-B). Quantitation of these immunofluorescence 

data demonstrated significant increases in cells with condensed, but nonaligned chromosomes, 

incomplete cytokinesis, and multinucleation upon LSF knockdown. These phenotypes mimicked 
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those observed with FQI1 treatment (Supplementary Fig. S5C-D). Finally, both types of 

treatments yielded mitotic cells with cellular protrusions (Supplementary Fig. S5E).  

 Also consistent with the results from FQI1 treatment, knockdown of LSF did not induce 

phosphorylated H2AX (γ-H2AX) foci, as monitored the beginning of mitosis in a synchronized 

cell population (Fig. 4E). This result suggests that the effects of inhibiting LSF on mitotic 

progression are not due to defects induced indirectly in S phase. 

 Since FQI1 also inhibits activity of paralog LBP1A (T. Grant, unpublished observations), a 

widely expressed paralog of LSF (39), we also investigated the mitotic phenotypes upon LBP1A 

siRNA treatment. The identified siRNA resulted in robust and durable knockdown of LBP1A 

(Supplementary Fig. S6A-B), with no reduction in MAD2L1 transcript levels (Supplementary 

Fig. S6C). Knockdown of LBP1A did reduce overall cell proliferation to some extent, but much 

less so than did knockdown of LSF (Supplementary Fig. S7A). Despite that proliferative effect, 

LBP1A knockdown did not significantly diminish cell viability, in stark contrast to consequences 

of LSF knockdown and FQI1 treatment (Supplementary Fig. S7B-C). Furthermore, LBP1A 

knockdown did not observably inhibit mitotic progression as measured by cellular DNA 

profiling (Supplementary Fig. S7D). However, time-lapse microscopy did detect a subtle (1.5–

fold) increase in mitotic time upon LBP1A knockdown alone (Supplementary Fig. S7E), 

consistent with the diminished cell proliferation. No abnormal mitotic phenotypes were observed 

either by time-lapse or immunofluorescent microscopy. Given the minimal consequences upon 

inhibiting LBP1A, we conclude that inhibition of LSF activity is what drives the dramatic FQI1-

mediated mitotic defects. 

Induction of cellular senescence following inhibition of LSF 

 In addition to mitotic delay resulting from LSF inhibition, some cells undergoing 

synchronization while inhibiting LSF were arrested at other points in the cell cycle:cellular DNA 

profiling of FQI1- or LSF siRNA-treated cells being synchronized with a double thymidine 

block, captured cells that no longer progressed from the 2n state into S phase upon release from 

the G1/S block (Fig. 1B, Supplementary Fig. S4A), and time-lapse microscopy showed that a 

considerable fraction of the cells treated with LSF siRNA during a double thymidine block never 

entered mitosis during 10-12 hours after release from the G1/S block (Supplementary Fig. S4B). 

Mitotic defects, caused by multiple distinct insults, can lead to senescence after G1 re-entry with 
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either 2n or 4n DNA content (40, 41). Thus, we hypothesized that mitotic defects from 

decreasing LSF levels or activity during previous cell divisions resulted in senescence. To test 

this hypothesis, HeLa cells were synchronized as before by a double thymidine block in the 

presence of FQI1, or LSF siRNA, and analyzed for senescence by monitoring β-galactosidase 

activity at low pH (42) at a time point when control cells entered mitosis. Both reduction in LSF 

levels and inhibition of LSF activity resulted in significantly greater numbers of β-galactosidase-

positive cells (stained blue) compared to the respective controls (Fig. 5A-B). Overall, there was a 

3- to 5-fold increase in senescent cells with increasing amounts of LSF inhibition, although 

treatment with 0.9 μM FQI1 was not sufficient to induce senescence. These data show that 

inhibition of LSF can result in senescence of cancer cells, and support the hypothesis that 

reduced LSF levels or activity during previous cell cycle(s) can predispose cells to senescence. 

 

Discussion 

 The transcription factor LSF is an oncogene in multiple cancer types, notably including 

hepatocellular carcinoma (1, 5, 21). Small molecule inhibitors directly targeting LSF inhibited 

hepatocellular carcinoma cell proliferation in vitro and tumor growth in vivo with no signs of 

toxicity at doses required for tumor inhibition (14, 17, 18). Together, these data indicate that LSF 

is a promising therapeutic candidate for hepatocellular carcinoma patients, and likely for other 

cancer types. The robust anti-tumor activity of FQIs is consistent with the initial report that a 

dominant negative LSF reduced tumorigenicity (1). Given the difficulties generally encountered 

in targeting transcription factors with small molecules (20), further investigation was warranted 

to confirm that anti-tumor effects of FQIs were due to specific targeting of LSF. Here, we 

demonstrated that a siRNA targeting LSF produced strikingly similar results to that of FQI1 

treatment in all aspects, confirming specific targeting by the small molecule inhibitor. 

Furthermore, knockdown of the close LSF paralog, LBP1A, did not result in such mitotic 

defects. Thus, we conclude that LSF is the factor required for accurate and efficient mitotic 

progression in these cancer cells. 

 The simplest interpretation from the mitotic phenotypes observed is that, as a transcription 

factor, LSF directly regulates expression of mitotic regulators. Indeed, both FQI1 and LSF 

siRNA result in downregulation of AURKB and CDC20 expression. However, further 
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examination indicates that these consequences may be indirect. Furthermore, it is noteworthy 

that unlike the emphasis on Cyclin B levels in a previous report (17)  in which asynchronous 

cells were treated with FQI1, when synchronized cells were examined Cyclin B protein levels in 

1.8 µM FQI1-treated cells were similar to those in control cells, and certainly not increased (Fig. 

2C). We conclude that the increase in cyclin B protein levels observed in Rajasekaran et al. 

resulted simply from accumulation of cells in mitosis when treated with 2 µM for 12-24 hours, 

whereas the control cells were continually cycling in those asynchronous populations. This 

underscores the need to perform experiments in synchronized cells, as was done here. Further 

investigations in synchronized cell populations are ongoing to demonstrate the mechanistic basis 

for the profound mitotic defects leading to apoptosis or senescence that result from LSF 

inhibition. 

 It has been previously demonstrated that LSF inhibition limits tumor progression, and that 

LSF inhibition causes apoptosis in multiple hepatocellular carcinoma cell lines (14, 17), as 

demonstrated here by HeLa cells with sub-G1 cellular DNA content (Fig. 1A, Supplementary 

Fig. S4). Here, we report for the first time that senescence can also be induced by LSF inhibition 

in cancer cells. Using both small molecule inhibition and siRNA knockdown, the percentage of 

senescent cells was proportional to the extent of inhibition of LSF during the synchronization 

protocol (Fig. 5). Both senescence and apoptosis are desirable outcomes for treatment of cancer.  

 Since both small molecule inhibitors and siRNAs targeting LSF can lead to cancer cell death 

or senescence in vitro, it is worthwhile to consider the targeting strategy for LSF inhibition in 

patients. Many cancer drug candidates target mitosis in an effort to exploit this key vulnerability 

of cancer cells. However, many such therapies have failed in trials, which may result from: 

(1) tumor escape, where pathway redundancy or evasive resistance in mammalian cells enables 

the tumor cell to escape the therapy (43, 44), or (2) low mitotic index where the drug half-life 

may not be long enough to suppress the target when cell division is triggered for any particular 

tumor cell (45, 46). As a target, LSF may have an advantage toward avoiding tumor escape. 

Inhibiting a transcription factor can target multiple pathways simultaneously, thus the likelihood 

that system redundancy would fully compensate is diminished. In addition, the issue of low 

mitotic index may be avoidable for the LSF inhibitors, since the apparent lack of toxicity in 

preclinical models may permit dosing in manners that generate sustained drug levels. Gene 
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silencing based approaches may also provide a useful strategy to counter low mitotic index for 

hepatocellular carcinoma patients.  The first RNAi drug, which uses a lipid nanoparticle to 

encapsulate and efficiently deliver siRNA to hepatocytes, was recently approved following 

robust and durable gene silencing over the 18-month pivotal study (47). Additionally, a ligand-

based strategy to deliver LSF siRNA to hepatocytes may provide added benefit as recent human 

data using a triantennary N-acetylgalactosamine (GalNAc) mediated siRNA delivery system 

demonstrated robust knockdown of a hepatic target that was sustained for more than a year (48, 

49). The target of GalNAc, asialoglycoprotein receptor (ASGR1) (23), is expressed , in early 

stages and often in later stages of hepatocellular carcinoma (50), although whether tumors retain 

ubiquitous expression is not clear. 

 In summary, comparing cellular and molecular outcomes of small molecule inhibitors that 

eliminate LSF activity to those of RNAi that specifically targets LSF, the specificity of FQI1 for 

LSF was confirmed. Both mechanisms resulted in similar mitotic defects, followed by cellular 

death or senescence, proving that LSF regulates mitosis in cancer cells. Therefore, the anti-tumor 

activity of FQI1 in multiple preclinical models is explicitly due to loss of LSF activity. These 

findings support the candidacy of LSF targeting agents for treatment of hepatocellular carcinoma 

and other cancers in which LSF is identified as an oncogene.  
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Figure Legends 

Figure 1. FQI1-treated HeLa cells exhibit mitotic defects. A. Schematic of experimental 

protocol. FQI1 or vehicle was added to HeLa cells during synchronization to the G1/S border 

using a double thymidine block. Cells released from the block in the presence of the FQI1 or 

vehicle, plus 20 µM of thymidine, were harvested at multiple times during progression through 

the cell cycle. B. At the indicated time points following release from the G1/S block with 0, 0.9, 

1.8, or 3.6 µM of FQI1, cells were analyzed for DNA profiling by flow cytometry. Data are 

representative of at least three independent experiments. C. Representative time-lapse images of 

individual cells treated with vehicle or 1.8 µM FQI1. Numbers represent the time (in minutes) 

for one particular cell in the image from nuclear envelope breakdown (designated as time=0 for 

that cell). D. Quantitation of mitotic time from nuclear envelop breakdown (NEB) to anaphase 

for the population of asynchronous cells during treatment for approximately 16 hours with FQI1 

or vehicle. Mitotic times (mean time in minutes +/- standard error of the mean, n) for vehicle, 

and 0.9 or 1.8 µM FQI1 treatments were: 48.7 +/- 1.5, 104; 84.5 +/- 4.9, 104; and 228 +/- 15, 77; 

respectively. Mitotic time for cells treated with 3.6 µM was not quantifiable, as those cells that 

entered mitosis during the imaging period never reached anaphase or nuclear division. 

E. Quantitation of cellular events at increasing concentrations of FQI1 during the time lapse 

microscopy, including percentage of cells that entered mitosis but were delayed with condensed, 

but unaligned chromosomes, and the percentage that apparently underwent mitotic slippage with 

formation of multiple (>2) nuclei. 120-140 cells were analyzed for each concentration of FQI1, 

including vehicle alone. F. Bottom: γ-H2AX staining of HeLa cells treated with vehicle or 1.8 

µM FQI1. Top: Representative image of UV-treated HeLa cells as a positive control. All images 

were taken at the same intensity. Scale bars: 20 µm. 

 

Figure 2. FQI1 treatment diminished expression of mitotic regulators. A. Schematic of 

experimental protocol. FQI1 or vehicle was added to HeLa cells during synchronization to the 

G1/S border using a double thymidine block. Cells were released from the block, including 

addition of 20 µM of thymidine, for subsequent analyses. B. Lysates from cells treated with 

vehicle or 1.8 µM FQI1 were harvested at release from the G1/S block (0 hours) or 8 hours post 

release and analyzed for AURKB or CDC20 RNA levels, as normalized to levels of GAPDH 
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RNA. Data are plotted relative to the expression from vehicle treated cells at each time point and 

are representative of 3 independent experiments. C. Immunoblots for the indicated proteins in 

lysates harvested 8 hours post release from a G1/S block, after treatment with increasing 

concentrations of FQI1. D. Quantitation of the protein levels from immunoblots as in C. Protein 

levels were normalized to those of β-actin. Data are representative of two independent 

experiments. 

 

Figure 3. RNAi mediated knockdown of LSF reduced expression of mitotic regulators. 

A. Schematic of experimental protocol. siRNAs targeting LSF or a non-expressed target were 

transfected into HeLa cells at the indicated concentrations, followed by synchronization of cells 

and release from the G1/S block. B. Cells synchronized during treatment with 20 nM of LSF (+) 

or control siRNA (-) were harvested for RNA at 0 or 8 hours after release from the final G1/S 

block. TFCP2 (which encodes LSF), AURKB, and CDC20 RNA levels were measured and 

normalized to those of GAPDH from the same time point. The relative gene expression levels are 

reported as the fraction of the RNA levels in the control siRNA-treated cells at 0 hours. Data are 

averages from three independent experiments. C. Representative immunoblots of the indicated 

proteins or protein modifications are shown for lysates harvested at 8 hours post release from the 

final G1/S block. D. Quantification of immunoblots of AURKB and CDC20 (e.g. panel C). Each 

target protein was normalized to the level of β-actin in the same sample. Error bars represent 

standard deviation and are representative of three independent experiments. 

 

Figure 4. LSF knockdown in HeLa cells results in mitotic defects. A. Effects of LSF-specific 

siRNA on synchronized HeLa cells expressing YFP-labeled H2B were analyzed utilizing time-

lapse microscopy. Schematic of experimental protocol for panels B-E. B. Representative images 

of cells treated with 20 nM of either control siRNA (top) or LSF siRNA (bottom). Numbers 

represent the time (in minutes) for one particular cell in the image from nuclear envelope 

breakdown (designated as time=0 for that cell). C. Quantitation of mitotic time from nuclear 

envelope breakdown (NEB) to anaphase for a population of cells treated with control siRNA or 

siRNA targeting LSF. Mitotic times (mean time in minutes +/- standard error, n) for 20 nM 

control siRNA, and 5, 10, or 20 nM LSF siRNA were: 57.9 +/- 2.8, 101; 296 +/- 16, 77; 324 +/- 
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25, 48; and 235 +/- 16, 84; respectively. Error bars indicated standard error of the mean, based on 

the number of cells analyzed in a single experiment. D. Quantitation of cellular events at 

increasing concentrations of LSF siRNA during the time lapse microscopy, including the 

percentage of cells that entered mitosis but were delayed with condensed but unaligned 

chromosomes, and the percentage that exited mitosis, but with multinucleation. The control had 

neither of these phenotypes among the cells counted (~100 per group). E. Bottom: γ-H2AX 

staining of HeLa cells treated with 20 nM control or LSF siRNA. Top: Representative image of 

UV-treated HeLa cells as a positive control. All images were captured at the same intensity. 

Scale bars: 20 µm. 

 

Figure 5. Inhibition of LSF activity induces cellular senescence. A-B. HeLa cells treated 

either with increasing concentrations of FQI1 (0=vehicle control) or with control or LSF siRNA 

were synchronized using a double thymidine block (protocols in Fig. 2A and 3A, respectively) 

and then fixed at 8 h after release from the second thymidine block and stained for β-

galactosidase activity. Phase contrast images were taken at 20x magnification. Images shown are 

representative of three independent experiments. Arrows point to examples of cells positive for 

β-galactosidase. C-D. The correlation of increasing LSF siRNA concentrations (C) or increasing 

FQI1 concentrations (D) with the number β-galactosidase positive cells is depicted as a 

percentage compared to the control for each individual FQI1 and LSF siRNA concentration. The 

data reflect analysis of 75 cells per condition in each experiment, averaging over three 

independent experiments. The Pearson correlation coefficients are indicated. 
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Figure 2 

 

 

 
 
 
 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/665570doi: bioRxiv preprint 

https://doi.org/10.1101/665570
http://creativecommons.org/licenses/by/4.0/


 

26 

 

 

 

Figure 3 
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Figure 4 
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