1 Paradoxical β-lactamase activity of archaeal encoding enzymes

- 2 Seydina M. Diene¹, Lucile Pinault², Nicholas Armstrong², Vivek Keshri¹, Saber Khelaifia³,
- 3 Eric Chabrière¹, Gustavo Caetano-Anolles⁴, Jean-Marc Rolain^{1,2}, Pierre Pontarotti^{1,5}, Didier
- 4 Raoult^{$1,2,3^*$}
- 5
- 6 1. Aix-Marseille Univ., MEPHI, IHU-Mediterranee Infection, Marseille, France.
- 7 2. Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection,
- 8 Marseille, France.
- 9 3. IHU-Mediterranee Infection, Marseille, France.
- 10 4. Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of
- 11 Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- 12 5. CNRS, Marseille, France.
- 13 * Corresponding author : Prof. Didier Raoult
- 14 Address : MEPHI, IHU-Mediterranee Infection, 19-21 Bd Jean Moulin, 13005 Marseille,
- 15 France. Phone: (+33) 4 13 73 24 01. Fax: (+33) 4 13 73 24 02.
- 16 Email: <u>didier.raoult@gmail.com</u>
- 17 Abstract: 176
- 18 Text words: 1337
- 19 Figures: 3
- 20 Suppl. Figures: 4; suppl. Tables: 2
- 21 **Keywords:** common ancestor sequence, metallo-β-lactamases, archaea, core genes,

23 Abstract

24	β -lactams targeting the bacterial cell wall are not efficient on archaea. Using
25	phylogenetic analysis and common ancestor sequences for bacterial β -lactamases, we found
26	serendipitously class B and class C-like β -lactamase genes in most archaea genomes. The
27	class B β -lactamase appears to be highly conserved in archaea and to has been transferred in
28	the bacterial genus <i>Elizabethkingia</i> . The experimentaly expressed class B enzyme from
29	Methanosarcina barkeri was able to digest penicillin G and was inhibited by a β -lactamase
30	inhibitor (i.e. sulbactam). The class C-like β -lactamase was more closely related to DD-
31	peptidase enzymes than know bacterial class C β -lactamases. The use of these very conserved
32	genes in this domain cannot be explored as a defense system against β -lactams but may be
33	used to feed β -lactams as a source of carbon as shown in bacteria.

35 Introduction

36	Antibiotics are part of the microorganism's arsenal in their struggle to master
37	microbial ecosystems (1). Most antibiotics are non-ribosomal peptides assembled by
38	megaenzymes, the non-ribosomal peptide synthetases (NRPS) that have structural motifs
39	which appear to be among the oldest of the living world (2, 3). As part of the Red Queen
40	theory of evolutionary law (4), in the fight against β -lactam antibiotics that act on the cell
41	wall, bacteria have developed enzymes hydrolyzing these molecules, the β -lactamases. These
42	enzymes, acting as hydrolases, also have extremely archaic motifs (3). Four molecular
43	classes (labelled A, B, C and D) are described todays (5). The three classes A, C, and D are
44	characterized by a serine residue in their catalytic active site whereas the class B, metallo- β -
45	lactamase enzymes, is characterized by zinc as an essential metal cofactor in their catalytic
46	active site (5). The struggle between β -lactams and β -lactamases appears to be essentially
47	limited to bacteria. In archaea microorganisms, it may be useless in this context as the
48	antibiotic target in their cell wall is lacking (6, 7). In the current study, following a phylogeny
49	analysis, we have investigated the presence of β -lactamase enzymes in archaeal species. The
50	reconstruction of a common ancestor for β -lactamases easily identify β -lactamases in genomic
51	databases and in most archaeal genomes. Here, we demonstrate that the gene annotated as a β -
52	lactamase in an encoding enzyme which when expressed, exhibits a typical β -lactamase

53 activity.

54 **Results**

55	Blast analysis of known bacterial β -lactamase genes such as class A (TEM-24, SHV-
56	12), class B (VIM-2, NDM-1), class C (CMY-12, AAC-1), and class D (OXA-23, OXA-58)
57	show no or insignificant results (% identity ≤ 24) against the NCBI archaeal database.
58	However, as described, ancestral sequences are capable of detecting remote homologous
59	sequences from published biological databases (8). Consequently, using constructed
60	phylogenetic trees (cf. suppl. figures) of the four bacterial β -lactamase classes, an ancestral
61	sequence for each class was inferred. From the four inferred ancestral sequences, homologous
62	sequences in the archaeal database were identified for the class B and C β -lactamases (fig. S1
63	and S2). No significant hits were obtained for the class A and D.
64	Archaeal Class B metallo- β -lactamase. An archaeal β -lactamase appeared highly
65	conserved in several classes of archaea including Archaeoglobi, Methanomicrobia,
66	Methanobacteria, Thermococci, Methanococci, Thermoplasmata and Thermoprotei (fig. 1;
67	Suppl. Table S1) (9). To evaluate these archaeal enzymes activity, the protein from
68	Methanosarcina barkeri (gi 851225341; 213 aa; 25.5 kDa)(fig. 1 and Suppl. Table S1) was
69	experimentally tested. Protein alignment of this latter with known bacterial metallo- β -
70	lactamase proteins reveals conserved motifs/amino acids including Histidine118 (His118),
71	Aspartic acid 120 (Asp120), His196, and His263, markers of this metallo-β-lactamase class B
72	as previously described (10)(fig. S3). Three-dimensional (3D) structure comparison of this
73	enzyme with known and well characterized proteins in the Phyre2 investigator database
74	reveals 100% of confidence and 94% of coverage with the crystal structure of the New Delhi
75	metallo- β -lactamase 1 (NDM-1; Phyre2 ID: c3rkjA) (Table S2). To evaluate these archaeal
76	enzymes activity, the MetbaB protein from Methanosarcina barkeri was experimentally
77	
	tested. As expected, this enzyme exhibits a significant hydrolysis activity on hitrocetin (fig.

79	$k_{cat}/K_M=22.19 \text{ s}^{-1}.\text{M}^{-1}$) and on penicillin G, when measuring its complete degradation toward
80	a single metabolite i.e. benzyl penilloic acid within three hours (fig. 2C). As shown on Suppl.
81	Figure S4, the MetbaB activity was also evaluated in different pH and was optimal on
82	nitrocefin at pH 7. Furthermore, to confirm the β -lactamase activity of this enzyme, the
83	combination of nitrocefin with β -lactamase inhibitor sulbactam (at 1 μ g/mL) was tested. As
84	shown in Figure 2A (column 4), in the presence of sulbactam, no degradation of the
85	nitrocefin β -lactam could be detected, suggesting a complete inhibition of the archaeal β -
86	lactamase enzyme. This neutralizing activity was confirmed microbiologically on a
87	<i>Pneumococcus</i> strain highly susceptible to penicillin (MIC =0.012 μ g/ml) and highly resistant
88	to sulbactam (MIC =32 μ g/ml). Indeed, bacteria could grow in the presence of 0.1 μ g/ml of
89	penicillin incubated with the archaeal β -lactamase, but not when sulbactam was added,
90	suggesting an inhibition of penicillin G enzymatic digestion (fig. 2D).
91	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this
91 92	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4
91 92 93	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely
91 92 93 94	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo
91 92 93 94 95	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the
91 92 93 94 95 96	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low
91 92 93 94 95 96 97	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low similarities (less than 36%) and this therefore suggests an ancient HGT from an archaic
91 92 93 94 95 96 97 98	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low similarities (less than 36%) and this therefore suggests an ancient HGT from an archaic phylum to this bacterial group, which furthermore exhibited β -lactam hydrolysis activity.
91 92 93 94 95 96 97 98	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low similarities (less than 36%) and this therefore suggests an ancient HGT from an archaic phylum to this bacterial group, which furthermore exhibited β -lactam hydrolysis activity,
91 92 93 94 95 96 97 98 99	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low similarities (less than 36%) and this therefore suggests an ancient HGT from an archaic phylum to this bacterial group, which furthermore exhibited β -lactam hydrolysis activity, previously considered to be fairly atypical for a bacterium (Table S3). Indeed, because
91 92 93 94 95 96 97 98 99 99 100	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low similarities (less than 36%) and this therefore suggests an ancient HGT from an archaic phylum to this bacterial group, which furthermore exhibited β -lactam hydrolysis activity, previously considered to be fairly atypical for a bacterium (Table S3). Indeed, because archaea are naturally resistant to β -lactams, the role of these β -lactamases in these
91 92 93 94 95 96 97 98 99 100 101	The antibiotic susceptibility testing of a recombinant <i>E. coli</i> mutant containing this archaeal β -lactamase also revealed a reduced susceptibility to penicillin (from 1 µg/ml to 4 µg/ml) (data not shown). Interestingly, it appears that these archaeal β -lactamases are closely related to bacterial enzymes known as "GOB" (AF090141), which are fully functional in vivo and present in a single bacterial genus, namely <i>Elizabethkingia</i> (11, 12) (fig. 1). However, the MBL protein sequences of this bacterial genus compared to those of archaea reveal low similarities (less than 36%) and this therefore suggests an ancient HGT from an archaic phylum to this bacterial group, which furthermore exhibited β -lactam hydrolysis activity, previously considered to be fairly atypical for a bacterium (Table S3). Indeed, because archaea are naturally resistant to β -lactams, the role of these β -lactamases in these microorganisms remains to be clarified, but the digestion of β -lactams by β -lactamases in

103	Archaeal class C-like β -lactamases: Four significant sequences homologous to
104	bacterial class C β -lactamase sequences were identified in archaea database using the inferred
105	bacterial class C ancestor sequence (fig. 3; Suppl. Table S1). The phylogeny analysis shows
106	that this third-class C-like of β -lactamases appears to be a very old class, a putative new clade,
107	which cannot be identified without the reconstruction of the common ancestor (fig. 3). As
108	shown in this figure, this class C-like enzyme appears more closely related to DD-peptidase
109	enzymes than the known bacterial class C β -lactamases. Protein alignment reveals the same
110	conserved motifs ($S^{64}XXK$ and $Y^{150}XN$) identified in bacteria, the signature motifs of this
111	class C β -lactamase (fig. S5). The three-dimensional (3D) structure comparison of this
112	archaeal class C-like enzyme with known and well characterized proteins in the Phyre2
113	investigator database reveals 100% of confidence and 66% of coverage with the crystal
114	structure of the octameric penicillin-binding protein (PBP) homologue from pyrococcus
115	abyssi (Phyre2 ID: c2qmiH) (Table S2). Similarly, the identified archaeal enzyme of this
116	class C (gi 919167542) was also cloned in <i>E. coli</i> and found to be active in enzymatic level by
117	hydrolyzing the nitrocefin (data not shown). This enzymatic activity was also confirmed by
118	the kinetic assays showing the catalytic parameters kcat=9.67×10-3 s-1, Km=583.6 μ M and
119	kcat/ Km=16.57 s-1.M-1, according to Michaelis-Menten equation fitting (R^2 =0.984).
120	However, the β -lactams susceptibility testing of the recombinant <i>E. coli</i> strains harboring this
121	sequence reveals no reduced susceptibility as compared to the control E. coli strains.

123 **Discussion**

124 The archaea microorganisms, in which these β -lactamases were identified, are fully 125 resistant to β -lactam antibiotics. So far, β -lactamases have been described and considered as 126 one of the elements in the fight against β -lactams acting on the cell wall (14). Nevertheless, 127 given the well-known and documented natural resistance of archaea to β -lactam antibiotics, it 128 did not make sense to discover the existence of archaic β -lactamases in this microorganism 129 group. In this current study, we show that two classes of β -lactamases can be found in 130 archaea, especially in *Methanosarcina* species. These latter have the largest genomes in the 131 archaea kingdom because of a massive horizontal gene transfer (HGT) from bacteria (15). 132 The identified class B appears highly conserved in archaea, with a unique transfer event in 133 *Elizabethkingia* species whereas, the class C enzyme appears as a new clade and more closely 134 related to the DD-peptidase enzymes i.e. the penicillin binding proteins. So far, metallo- β -135 lactamase enzymes in Archaea are essentially described with respect to their role in the DNA 136 and RNA metabolism (16, 17). Here, we show that these archaeal enzymes can hydrolyze also 137 β -lactam antibiotics, as known for bacteria, and are inhibited by β -lactamase inhibitors. So, 138 the role of β -lactamases in Archaea is not totally understood. Our findings suggest that 139 archaeal β -lactamases are as ancestral as those of bacteria, and HGT events have occurred 140 from archaea to bacteria. Moreover, we highlight here that the use of consensual ancestor 141 sequences from phylogenetic analyses, is an interesting approach to fish out remote 142 homologous sequences to known ones in any sequences database. 143 Finally, the existence of β -lactamases in the world of archaea is showing that β -144 lactamases are not only a defense system against β -lactams. The use of antibiotics as a 145 nutriment sources for archaea as key to degrade β -lactam molecules and use them as carbon 146 sources as described in bacteria, is a plausible hypothesis (13, 18–20).

148 Materials and Methods

149 Sequence analysis:

150	A total of 1,155 amino acid sequences were retrieved (Class A: 620; B: 174; C: 151,
151	and D: 210) from the ARG-ANNOT database (21). The phylogenetic trees were inferred
152	using the approximate maximum-likelihood method in FastTree (22). For a detailed and
153	comprehensive diversity analysis, a few sequences from each clade of the trees were selected
154	as representatives of the corresponding clades (labeled in red in fig. S1 and S2).
155	The ancestral sequence was inferred using the maximum-likelihood method conducted
156	by MEGA6 (23) software. Then, these ancestral sequences were used as queries in a BlastP
157	(24) search (\geq 30% sequence identity and \geq 50% query coverage) against the NCBI-nr
158	archaeal database. For Class C β -lactamase analysis, DD-peptidase sequences (penicillin
159	binding proteins) were downloaded from the NCBI database. 2515 sequences were selected
160	for local Blast analysis with the archaeal Class C-like β -lactamase used as query sequence
161	(GI: 919167542). From this analysis, 24 DD-peptidase sequences were identified as
162	homologous to the query and thus used for further phylogenetic tree analysis. The selected
163	archaeal sequences were aligned with known bacterial β -lactamase sequences (representative
164	sequences of a known clade from the guide tree) using the multiple sequence alignment
165	algorithm MUSCLE (25) and the phylogenetic tree was inferred using FastTree (22).
166	Antibiotic susceptibility testing

167 The antibiotic susceptibility testing was performed on 15 antibiotics including 168 ampicillin, ampicillin/sulbactam, penicillin, piperacillin, piperacillin/tazobactam, cefoxitin, 169 ceftriaxone, ceftazidime imipenem, meropenem, aztreonam, gentamicin, ciprofloxacin, 170 amikacin, and trimethoprim-sulfamethoxazole (I2a, SirScan Discs, France). A filtred aqueous 171 solution of each antibiotic was prepared anaerobically in a sterilized Hungate tubes at

172 concentration of 5 mg/ml. Then, 0.1 ml of each one of these solutions was added to a freshly

inoculated culture tube containing 4.9 ml of the tested stain to obtain a final concentration of 100µg/ml for each antibiotic herein tested. The mixture of antibiotic and archaeal culture was then incubated at 37°C and the growth of archaea was observed after 5 to 10 days incubation depending on the tested strain. Control cultures without antibiotic were also incubated in the same conditions to assess the strain growth and non-inoculated culture tubes were used as negative control.

179 In vitro activity test:

180 Protein expression and purification: The selected beta-lactamases were optimized for 181 protein expression in *Escherichia coli* and synthesized by GenScript (Piscataway, NJ, USA) 182 and then cloned into the pET24a(+) expression vector. Recombinant β -lactamases were 183 expressed in E. coli BL21(DE3)-pGro7/GroEL (TaKaRa) using ZYP-5052 media. Each 184 culture was grown at 37° C until reaching an OD600 nm = 0.8, followed by addition of L-185 arabinose (0.2% m/v) and induction with a temperature transition to 16° C over 20 hours. Cells 186 were harvested by centrifugation (5000 g, 30 min, 4° C) and the resulting pellets were 187 resuspended in Wash buffer (50 mM Tris pH 8, 300 mM NaCl) and stored at -80°C overnight. 188 Frozen cells were thawed and incubated on ice for 1 hour after adding lysozyme, DNAse I 189 and PMSF (Phenylmethylsulfonyl fluoride) to final concentrations of, respectively, 0.25 190 mg/mL, 10µg/mL and 0.1 mM. Partially lysed cells were then disrupted by three consecutive 191 cycles of sonication (30 seconds, amplitude 45) performed on a Q700 sonicator system 192 (QSonica). Cell debris was discarded following a centrifugation step (10,000 g, 20 min, 4° C). 193 Recombinant β -lactamases were purified using Strep-tag affinity chromatography (Wash 194 buffer: 50 mM Tris pH 8, 300 mM NaCl and Elution buffer: 50 mM Tris pH 8, 300 mM 195 NaCl, 2.5 mM desthibiotin) on a 5 mL StrepTrap HP column (GE Healthcare). Fractions 196 containing each protein of interest were pooled. Protein expression and purity were assessed

using a 10% SDS-PAGE analysis (Coomassie stain). Protein concentrations were measured
using a Nanodrop 2000c spectrophotometer (Thermo Scientific).

199	β -Lactamase detection: Purified recombinant β -lactamases were submitted for a
200	BBL TM Cefinase TM paper disc test(26) (Becton Dickinson). All protein samples were adjusted
201	to a final concentration of 2 mg/ml. 15 μl of each recombinant β -lactamase were deposited
202	onto a paper disc impregnated with nitrocefin and incubated at room temperature. 15 μ l of
203	extracted proteins from induced BL21(DE3)-pGro7/GroEL strain that did not contain any β -
204	lactamase genes, was used as negative control. When a change of color from yellow to red
205	was visible within 30 minutes of incubation, corresponding to the hydrolysis of the amide
206	bond in the beta-lactam ring of nitrocefin, it was considered that the tested fraction contained
207	an active β -lactamase enzyme. The hydrolysis of the nitrocefin and penicillin G in presence of
208	sulbactam, was also monitored using a Synergy HT microplate reader (BioTek, USA).
209	Reactions were performed at 25°C in a 96-well plate in PBS buffer and 5 % DMSO with a
210	final volume of 100 μ l for each well. Time course hydrolysis of nitrocefin (0.5 mM) was
211	monitored for 10 minutes after adding 50 μ L of previously prepared protein sample, with
212	absorbance at 486 nm. For the inhibition assay, active β -lactamases at a final concentration of
213	0.5 mg/ml were briefly incubated with 0.1 mM sulbactam. Negative controls with only
214	sulbactam in buffer and positive controls containing enzymes without any inhibitor were also
215	prepared. After adding 0.5 mM nitrocefin, its hydrolysis was monitored over time with
216	absorbance at 486 nm. Furthermore, the activity of MetbaB enzyme was evaluated at different
217	pH (between pH7 and pH10) using the same nitrocefin assay conditions.

218 β -lactamase kinetic characterization: Kinetic assays were monitored with a Synergy 219 HT microplate reader (BioTek, USA). Reactions were performed at 25°C in a 96-well plate 220 (6.2 mm path length cell) in buffer 50 mM Tris pH 8, 300 mM NaCl, 5% DMSO with a final 221 volume of 100 µl for each well. The time course hydrolysis of nitrocefin (ε486 nm = 20 500 M-1.cm-1) with final concentrations varying between 0.05 and 1.5 mM was monitored for 10 minutes following absorbance variations at 486 nm, corresponding to the appearance of a red product. Both enzymes were kept at a final concentration of 0.3 mg/ml for kinetic studies. For each substrate concentration, the initial velocity was evaluated by Gen5.1 software. Mean values obtained were fitted using the Michaelis-Menten equation on GraphPad Prism 5 software in order to determine catalytic parameters.

228 β-lactam hydrolysis monitored by Liquid Chromatography-Mass Spectrometry (LC-

229 MS). Water and acetonitrile solvents were ULC-MS grade (Biosolve). Penicillin G and

sulbactam stock solutions at 10 mg/ml were freshly prepared in water from the corresponding

high purity salts (Sigma Aldrich). A 1X phosphate-buffered saline (PBS) solution at pH 7.4

was prepared in water from a commercial salt mixture (bioMerieux). Pure solutions of the

archaeal class B (MetbaB) β -lactamase enzyme was buffer-exchanged in PBS, and the

concentration was adjusted to 1 mg/ml. 30 µl was then spiked with penicillin G and sulbactam

at a final concentration of $10 \,\mu$ g/ml. Negative controls consisted of PBS spiked with penicillin

236 G and sulbactam Several solutions were prepared to measure metabolites at different

237 incubation times at room temperature. Each time point corresponded to triplicate sample

preparations. Then, 70 µl of acetonitrile was added to each sample, and tubes were vortexed

239 10 minutes at 16000 g to precipitate proteins. The clear supernatant was collected for analysis

240 using an Acquity I-Class UPLC chromatography system connected to a Vion IMS Qtof ion

241 mobility-quadrupole-time of flight mass spectrometer. For each sample, 5 µl stored at 4°C

was injected into a reverse phase column (Acquity BEH C18 1.7 μm 2.1x50 mm, Waters)

243 maintained at 50°C. Compounds were eluted at 0.5 ml/min using water and acetonitrile

solvents containing 0.1% formic acid. The following composition gradient was used: 10-70%

acetonitrile within 3 minutes, 95 % acetonitrile for a 1-minute wash step, and back to the

initial composition for 1-minute. Compounds were ionized in the positive mode using a

247	Zspray electrospray ion source with the following parameters: capillary/cone voltages 3
248	kV/80 V, and source/desolvation temperatures 120/450°C. Ions were then monitored using a
249	High Definition MS(E) data independent acquisition method with the following settings:
250	travelling wave ion mobility survey, 50-1000 m/z, 0.1 s scan time, 6 eV low energy ion
251	transfer, and 20-40 eV high energy for collision-induced dissociation of all ions (low/high
252	energy alternate scans). Mass calibration was adjusted within each run using a lockmass
253	correction (Leucin Enkephalin 556.2766 m/z). The Vion instrument ion mobility cell and
254	time-of-flight tube were calibrated beforehand using a Major Mix solution (Waters) to
255	calculate collision cross section (CCS) values from ion mobility drift times and mass-to-
256	charge ratios. 4D peaks, corresponding to a chromatographic retention time, ion mobility drift
257	time and parents/fragments masses, were then collected from raw data using UNIFI software
258	(version 1.9.3, Waters). As reported, penicillin G can be degraded in alkaline or acidic pH and
259	in the presence of β -lactamase into different metabolites, including benzyl penilloic acid or
260	benzylpenillic acid. A list of known chemical structures, including penicillin G and its
261	metabolites (27, 28), were targeted with the following parameters: 0.1 minutes retention time
262	window, 5 % CCS tolerance, 5 ppm m/z tolerance on parent adducts (H+ and Na+) and 10
263	mDa m/z tolerance on predicted fragments. Retention times and CCS values were previously
264	measured from penicillin G degradation experiments at pH 2 and pH 10 in order to perform
265	subsequent accurate structures screening. Detector counts of the targeted structures were then
266	collected for data interpretation.

268 Acknowledgements

269	Financial support from the IHU Mediterranee Infection, Marseille France and
270	American Journal Experts (AJE) for English corrections of the manuscript are gratefully
271	acknowledged.
272	
273	Author contributions:
274	D.R. conceived and designed the study. S.M.D., L.P., V.K., N.A, P.C, S.K., G.C-A., J
275	M.R., B.L, P.P., and D.R. analysed and interpreted data. S.M.D., L.P., V.K., N.A, P.C, S.K.,
276	G.C-A., JM.R., B.L, P.P., and D.R. drafted the manuscript and/or made critical revisions.
277	All of the authors read and approved the final manuscript.
278	
279	Funding:
280	This work was supported by the French Government under the "Investments for the
281	Future" program managed by the National Agency for Research (ANR), Méditerranée-
282	Infection 10-IAHU-03 and was also supported by Région Provence Alpes Côte d'Azur and
283	European funding FEDER PRIMMI (Fonds Européen de Développement Régional -
284	Plateformes de Recherche et d'Innovation Mutualisées Méditerranée Infection).
285	
286	Competing interests:

- 287 We declare that we have no conflicts of interest.
- 288

289

Figure legends

290	Figure 1: Phylogenetic Tree of Class B β -lactamases from archaea and bacteria. Archaeal
291	sequence colored in green is which expressed and experimentaly tested.
292	Figure 2: Characterization of the archaeal class B MBL (MetbaB) identified in
293	<i>Methanosarcina barkerii</i> . (A and B): β -lactamase activity of the <i>M. barkeri</i> Class B MBL
294	enzyme (MetbaB) on a chromogenic cephalosporin substrate (Nitrocefin). A1 and A2 refer to
295	the nitrocefin degradation test using the BBL TM Cefinase TM paper disc respectively at t=0 and
296	t=30 min. A3 refers to this same test performed in liquid medium in the absence of sulbactam
297	while A4, with the addition of 1 μ g/ml sulbactam, both after 30 minutes of incubation; (B)
298	monitored nitrocefin degradation by following the absorbance at 486 nm over time in the
299	presence and absence of the β -lactamase inhibitor. (C): LC/MS average relative response of
300	screened metabolite compounds of penicillin G in the presence the M. barkeri Class B MBL
301	enzyme monitored for three hours. Penicillin G (in orange) refers to the intact form of the
302	antibiotic while penilloic acid (in purple) and penillic acid (in light blue) refer to the penicillin
303	G metabolites. Penicillin G control in PBS did not show any degradation towards any
304	metabolite (data not shown). (D), Microbiological test of the mixture of penicillin G (0.1
305	μ g/ml) with the MetbaB enzyme in the presence and absence of sulbactam (15 μ g/ml) on a
306	<i>Pneumococcus</i> strain highly susceptible to penicillin G (MIC= $0.012 \mu g/ml$) and highly
307	resistant to sulbactam (MIC= $32 \mu g/ml$). The halo around holes 1 and 5 reveals growth
308	inhibition of the <i>Pneumococcus</i> strain. The absence of this halo around holes 2, 3, and 4
309	means no effect of the mixture on the Pneumococcus growth could be observed.
210	Figure 3. Phylogenetic Tree of Class C & lactamasos and DD pontideses protains (perioillin
210	Figure 5. Phylogenetic free of Class C p-factamases and DD-peptidases proteins (penicillin
311	binding proteins). The class A β -lactamases is used as root.

312		References
313 314	1.	Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: surviving and thriving in the microbial Jungle. Natl Rev Microbiol 8:15–25.
315 316 317	2.	Caetano-Anollés G, Kim KM, Caetano-Anollés D. 2012. The phylogenomic roots of modern biochemistry: Origins of proteins, cofactors and protein biosynthesis. J Mol Evol 74:1–34.
318 319 320	3.	Caetano-Anollés D, Kim KM, Mittenthal JE, Caetano-Anollés G. 2011. Proteome evolution and the metabolic origins of translation and cellular life. J Mol Evol 72:14–33.
321	4.	Van V L. 1973. A new evolutionary law. Evol Theory 30:1–30.
322 323	5.	Walther-Rasmussen J, Høiby N. 2007. Class A carbapenemases. J Antimicrob Chemother 60:470–82.
324 325	6.	Kok J. 2011. Murein and pseudomurein cell wall binding domains of bacteria and archaea — a comparative view 921–928.
326 327 328	7.	Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. 2011. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother 66:2038–2044.
329 330 331	8.	Sharma V, Colson P, Giorgi R, Pontarotti P, Raoult D. 2014. DNA-Dependent RNA Polymerase Detects Hidden Giant Viruses in Published Databanks. Genome Biol Evol 6:1603–10.
332 333 334	9.	Vivek Keshri, Arup Panda, Anthony Levasseur, Jean-Marc Rolain, Pierre Pontarotti DR. 2018. Phylogenomic analysis of betalactamase in archae and bacteria enables the identification of putative new members. Genome Biol Evol 10:1106–1114.
335 336	10.	Bush K. 2013. The ABCD's of β -lactamase nomenclature. J Infect Chemother 19:549–559.
337 338 339 340 341	11.	Opota O, Diene SM, Bertelli C, Prod'hom G, Eckert P, Greub G. 2016. Genome of the carbapenemase-producing clinical isolate Elizabethkingia miricola EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens. Int J Antimicrob Agents 1:93–97.
342 343 344 345	12.	Horsfall LE, Izougarhane Y, Lassaux P, Selevsek N, Li??nard BMR, Poirel L, Kupper MB, Hoffmann KM, Fr???re JM, Galleni M, Bebrone C. 2011. Broad antibiotic resistance profile of the subclass B3 metallo-β- lactamase GOB-1, a di-zinc enzyme. FEBS J 278:1252–1263.
346 347 348 349	13.	Crofts TS, Wang B, Spivak A, Gianoulis TA, Forsberg KJ, Gibson MK, Johnsky LA, Broomall SM, Rosenzweig CN, Skowronski EW, Gibbons HS, Sommer MOA, Dantas G. 2018. Shared strategies for β -lactam catabolism in the soil microbiome. Nat Chem Biol 14:556–564.
350 351	14.	Bush K, Bradford PA. 2016. β -lactams and β -lactamase inhibitors: An overview. Cold Spring Harb Perspect Med.
352 353	15.	Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke

354 355 356 357		M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk H-P, Gunsalus RP, Fritz H-J, Gottschalk G. 2002. The Genome of Methanosarcina mazei: Evidence for Lateral Gene Transfer Between Bacteria and Archaea JMMB Research Article. J Mol Microbiol Biotechnol 4:453–461.
358 359	16.	Dominski Z. 2007. Nucleases of the Metallo- β -lactamase Family and Their Role in DNA and RNA Metabolism 67–93.
360 361 362	17.	Fischer S, John von Freyend S, Sabag-Daigle A, Daniels CJ, Allers T, Marchfelder A. 2012. Assigning a function to a conserved archaeal metallo-β-lactamase from Haloferax volcanii. Extremophiles.
363 364 365	18.	Woappi Y, Gabani P, Singh A, Singh O V. 2016. Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. Crit Rev Microbiol 42:17–30.
366 367 368	19.	González T de JB, Zuidema T, Bor G, Smidt H, van Passel MWJ. 2016. Study of the aminoglycoside subsistence phenotype of bacteria residing in the gut of humans and zoo animals. Front Microbiol 6:1–7.
369 370 371 372	20.	Xin Z, Fengwei T, Gang W, Xiaoming L, Qiuxiang Z, Hao Z, Wei C. 2012. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy. FEMS Microbiol Ecol 82:703–712.
373 374 375	21.	Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain J-M. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–20.
376 377	22.	Price MN, Dehal PS, Arkin AP. 2010. FastTree 2approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.
378 379	23.	Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.
380 381	24.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic Local Alignment Search Tool. J Mol Biol 215:403–410.
382 383	25.	Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.
384 385 386 387	26.	Qadri SMH, Perryman F, Flournoy D. 1983. Detection of Beta Lactamase Producing Bacteria by Cefinase : Nachweis von Beta-Laktamase produzierenden Bakterien mit Cefinase : Zentralblatt fr Bakteriol Mikrobiol und Hyg / A Medizinische Mikrobiol Infekt und Parasitol 255:489–493.
388 389	27.	Deshpande AD, Baheti KG, Chatterjee NR. 2004. Degradation of β -lactam antibiotics. Curr Sci 87:1684–1695.
390 391 392	28.	Aldeek F, Canzani D, Standland M, Crosswhite MR, Hammack W, Gerard G, Cook J- M. 2016. Identification of Penicillin G Metabolites under Various Environmental Conditions Using UHPLC-MS/MS. J Agric Food Chem 64:6100–6107.
393		

0.1

Bootstraps

min max

Aeromonas jandaeijSubclass-B2lcoha Aeromonas veronii/Subclass-B2/Imis WP 1054 bioRxiv preprint doi: https://doi.org/10.1101/667907; this version posted June 12, 2019. The copyright holder for this preprint (which was not bioRxiv preprint doi: https://doi.org/10.1101/667907; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder/lwho has granted bioRxiv a license to display the preprint in perpetuity. It is made available under certified by peer review) is the author/funder/lwho has granted bioRxiv a license to display the preprint in perpetuity. It is made available under we oge712883.1 MBL fold metallo-hydrolase Methanohalophilus sp WP 072561168.1 MBL fold metallo-hydrolase Methanohalophilus euhalobius WP 096712883.1 MBL fold metallo-hydrolase Methanohalophilus euhalobius

Chinys

Chryseobacterium indologene

Chryseobacterium Intologene

Elizabenkingia meningoseptical Subclass B1BlaB 10

Aeromonas veronij/Subclass-B2lcph46

Myroides odoratus/Subclass.B1/TUS-1

ResiSubclass BIIMO 14

enesiSubclass. Blind. 10

WP 072561168.1 MBL fold metallo-hydrolase Methanohalophilus halophilus

WP 091936933.1 MBL fold metallo-hydrolase Methanolobus profundi

gij1001921197 Methanolobus sp T82-4

WP 094227559.1 MBL fold metallo-hydrolase Methanolobus psychrotolerans

WP 011305305- metallo-Hydrolasemethanosarcina barkert Wr unvarue 1 1 MBL fold metallo-hydrolase Methanosarcina spelaei WP 095644491.1 MBL fold metallo-hydrolase WP 048105622.1 MBL fold n WP 048116639.1 MBL fold metallo-hydrolase Methanosarcina vacuolata WP 048153217.1 MBL 1 WP 048176996.1 MBL fold metallo-hydrolase Methanosarcina sp WP 048167565.1 MBL fold metallo-hydrolase Methanosarcina thermophila WP 054299025.1 MBL fold metallo-hydrolase Methanosarcina flavescens WP 048123985.1 MBL fold metallo-hydrolase Methanosarcina lacustris è Methanosarcina ma OEU43897.1 MBL fold hydrolase Methanosarcina sp. , gi|WP 048136620|Methanosarcina horonob_f WP 011024487.1 MBL fold metallo-hydrolase Methanosarcina acetivo WP 048168988.1 MBL fold metallo-hydrolase Methanosarcina

udomonas monteilii[Subclass-B1|IMP-13

mirabilis|Subclass-B1|IMP-27

roteus

udomonas putida|Subclass-B1|IMP-19

9//735015437 e

9i|851219309 Candidatus Methanoplasma

9i|490731539 Methanor

thanocaldococcus jamaschii D

911502745672 Methano

Occus I

Caldno

9ij851372756 Methano

91/2495897 Methe

^{Inocaldococcus} so FS406.2

91/816389003 Lokiarchaeum Sp GCL4 75

Chaperst.

C.

⁷ archaeon GW2011 AR11

iosa|Subclass-B1|IMP

aerugii

as

Idomonas

aeruginosa|Subclas aeruginosa|Subclass

-B1|IMP-25

B1|IMP-14

Klebsiella pneumoniae|Subclass-B1|IMP-6

ler calcoaceticus|Subc

ass-B1|IMP-11 lass-B1|KHM-1

Citrobacter

r freundiil/Subcl Imannii|Subcla

S-BINIM-20 BININ-18

BTININ'38 S-BINIM

3

BIICHAS

5-BIICHAIA

S-BINDMA

ass BUNDAN'S

dass Billino IS

WP 011033233.1 MBL fold metallo-hydrolase M

or the season of 48k14109.1 bela/aclamase domain protein Metham

PC136221 MBI fold medalo Iburlogse Menlanoseed so. SOE OYT64249.1 MBL fold hydrolase Methanosarcinales archaeon ex4484 138 RLG28604.1 MBL fold metallo-hydrolase Methanosarcinales archaeon WP 015411713.1 MBL fold metallo-hydrolase Methanosarcina ma

RLG24951 MBL fold means hydrolase Methanosarchales archaeon RJS68042.1 MBL IOU metallo tworologe Annie 2 duster archiegon RLG30979 1 MRL told measurement of the manual courses accurates PHE63063 WELLOO WOODS ANNE? COUSE ACTOR R. BACKS J. MR. 100 means manage managements actual on the second Orroand we want the second of WR OLD BORD WELLOW HOURS HOURS

WP 097299847.1 WBL fold metallo-thydrolase Candidatus Methanoperedens minoreduced on a second datus minoreduced on

gil504866623 Methanolobus psychrophilus WP 091690310.1 MBL fold metallo-hydrolase Methanococcoides vulcani WP 048196086.1 MBL fold metallo-hydrolase Methanococcoides methylutens WP 011499809.1 MBL fold metallo-hydrolase Methanococcoides methylutens VP 116481656 1 MBL fold metallo-hydrolase Candidatus Methanococcoides burroni VP 116481656 1 MBL fold metallo-hydrolase Candidatus Anthenonecedenese archae

WP 091710655.1 MBL fold metallo-hydrolase Methanolobus vulcani gi|564600023 Methanolobus tindarius

WP 013038383.1 MBL fold metallo-hydrolase Methanohalophilus mahii

WP 072361682.1 MBL fold metallo-hydrolase Methanohalophilus portucalensis

ODV50251.1 beta-lactamase Methanohalophilus sp.

Anthe South Contraction of the state of the GH200863468 Themonesmales actue on DG-TO windo meningogatica 608 A Eugenwood new georgeous Copits ont5124628 Themococous paravinetae OINP 01813474 Themanosacina sp gilp51281001Palaeococcus terrophilus gipostconour one handregula boonel gil5016901 catmenter filera sedula gil500271928|Metall0sphaera sedula gipuver and strategic stra 91/2 Louise 1 gil170934313 (Pyrobaculum neutrophilum V245ta gil919520712[Sulfolobus tokodaii gil18160175|Pyrobaculum aerophilum str IM2 gi[145282681] Pyrobaculum arsenaticum DSM13514 gij375160102|Pyrobaculum oguniense TE7 gil1008838121 Thermoplasmatales archaeon SM1 50 RLF43520.1 MBL fold metallo-hydrolase Thermoplasmata archaeon RLF49298.1 MBL fold metallo-hydrolase Thermoplasmata archaeon WP 019264982.1 MBL fold metallo-hydrolase Methanobrevibacter smithii WP 042691878.1 MBL fold metallo-hydrolase Methanobrevibacter oralis WP 109941847.1 MBL fold metallo-hydrolase Methanospirillum stamsii WP 109968835.1 MBL fold metallo-hydrolase Methanospirillum lacunae WP 007314732.1 MBL fold metallo-hydrolase Methanolinea tarda 9i/973113610 Methanocalculus sp 52 23 9i/973162189 Methanomicrobiales archaeon 53 19 9ij973162103 metallo-hydrolase Methanoplanus limicola WP 048152172 1 MBL fold metallo.hydrolase Methanomicrobiales archaeon PKL 69688 1 MBL IOIG Inetalion Installion In PKG32672.1 MBL fold metallo.nv.usosc investore WP 015284180.1 MBL fold metallo. Notices and the second se KUK61264 I Berg Indea PKI 62393 I MBL fold metallo Jydrolase Methanomicobiales archaeon AND CLEAR ASSAULT HAR LOUD RECEILOR NAUCHESE MERENDOL AR GROLOSE. HUR LOID RECEIPENDER LOID RECEIPENDER AND CLEAR ASSOCIATE MARTINE AND THE AN WP OBTOTT I WAL HAR MERANDAH AN ARABASE MEMAADAALIILEUS CHIMADOEMISS WP 014305965.1 MBL IOId metallo-hydrolasse Methamosarcina barkeri Methanoculleus SP. MILBER anoculleus sediminis

