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Abstract	
Natural evolution encodes rich information about the structure and function of	 	 	 	 	 	 	 	 	 	 	
biomolecules in the genetic record. Previously, statistical analysis of co-variation	 	 	 	 	 	 	 	 	 	
patterns in natural protein families has enabled the accurate computation of 3D	 	 	 	 	 	 	 	 	 	 	 	
structures. Here, we explored whether similar information can be generated by	 	 	 	 	 	 	 	 	 	 	
laboratory evolution, starting from a single gene and performing multiple cycles of	 	 	 	 	 	 	 	 	 	 	 	
mutagenesis and functional selection. We evolved two bacterial antibiotic resistance	 	 	 	 	 	 	 	 	 	
proteins, β-lactamase PSE1 and acetyltransferase AAC6, and obtained hundreds of	 	 	 	 	 	 	 	 	 	
thousands of diverse functional sequences. Using evolutionary coupling analysis, we	 	 	 	 	 	 	 	 	 	
inferred residue interactions in good agreement with contacts in the crystal structures,	 	 	 	 	 	 	 	 	 	 	 	
confirming genetic encoding of structural constraints in the selected sequences.	 	 	 	 	 	 	 	 	 	
Computational protein folding with contact constraints yielded 3D structures with the	 	 	 	 	 	 	 	 	 	 	
same fold as that of natural relatives. Evolution experiments combined with inference of	 	 	 	 	 	 	 	 	 	 	 	 	
residue interactions from sequence information opens the door to a new experimental	 	 	 	 	 	 	 	 	 	 	 	
method	for	the	determination	of	protein	structures.	 	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/667790doi: bioRxiv preprint 

https://doi.org/10.1101/667790
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	

Introduction		
By continually generating random DNA sequence variation and selecting for survival,	 	 	 	 	 	 	 	 	 	 	
evolution has accumulated a coded record of the physicochemical constraints of the	 	 	 	 	 	 	 	 	 	 	 	
molecular components in evolving organisms. With advances in high-throughput	 	 	 	 	 	 	 	 	
sequencing technology, we now have access to extensive portions of this record in the	 	 	 	 	 	 	 	 	 	 	 	 	 	
form of DNA and protein sequence databases. Detecting sequence patterns in	 	 	 	 	 	 	 	 	 	 	
homologous proteins has allowed researchers to reconstruct accurate phylogenetic	 	 	 	 	 	 	 	 	
trees and identify functional amino acid residues. A more recent breakthrough uses	 	 	 	 	 	 	 	 	 	 	 	
statistical analysis of co-evolution in protein and RNA families to enable the computation	 	 	 	 	 	 	 	 	 	 	 	 	
of important interactions between residues or bases, and from those calculate accurate	 	 	 	 	 	 	 	 	 	 	 	
three-dimensional	folds	and	complexes		(	1	,		2	)	.		
	
Here we asked if evolution performed in the laboratory, with its much simplified	 	 	 	 	 	 	 	 	 	 	 	 	
evolutionary dynamics, similarly encodes information on functional interactions. In	 	 	 	 	 	 	 	 	
contrast, natural evolution is complex, occurring over long time periods, with highly	 	 	 	 	 	 	 	 	 	 	 	
variable population sizes (	3	)	, mutation rates (	4	, 5	)	, and fluctuating environmental	 	 	 	 	 	 	 	 	 	 	
conditions (	6	–	11	)	. Each of these factors may or may not be essential for deposition of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
structural constraints in the evolved sequences. For example, co-evolutionary patterns	 	 	 	 	 	 	 	 	 	
have been speculated to arise by the continuous degradation and restoration of protein	 	 	 	 	 	 	 	 	 	 	 	 	
function, i.e. compensatory evolution (	12	–	14	)	, driven by fluctuations in population sizes	 	 	 	 	 	 	 	 	 	 	
(	15	)	, or periods where functional selection is absent (	10	)	. Additionally, natural protein	 	 	 	 	 	 	 	 	 	 	 	
family members may vary in function, operate in various cellular environments, at	 	 	 	 	 	 	 	 	 	 	 	
different optimal temperatures, and importantly, have a broad sequence diversity that is	 	 	 	 	 	 	 	 	 	 	 	
practically unattainable by experimental evolution. The motivation for this work is to use	 	 	 	 	 	 	 	 	 	 	 	 	
laboratory evolution to elucidate the evolutionary determinants that give rise to	 	 	 	 	 	 	 	 	 	 	
co-evolutionary	patterns	and	structural	constraints	of	proteins.	

Results		
We subjected two bacterial antibiotic resistance proteins, the Pseudomonas	 	 	 	 	 	 	 	 	
β-lactamase PSE1 and aminoglycoside acetyltransferase AAC6, to repeated rounds of	 	 	 	 	 	 	 	 	 	
mutation and selection in the laboratory (Fig. 1). To promote sequence divergence, we	 	 	 	 	 	 	 	 	 	 	 	 	
applied a high mutation rate using an error-prone polymerase chain reaction (epPCR;	 	 	 	 	 	 	 	 	 	 	 	
introducing approximately 3-4% amino acid substitutions per round), and selected for	 	 	 	 	 	 	 	 	 	 	
functional proteins under permissive selective conditions (6 μg/mL ampicillin for PSE1	 	 	 	 	 	 	 	 	 	 	
and 10 μg/mL kanamycin for AAC6 — slightly above the minimal inhibitory	 	 	 	 	 	 	 	 	 	 	 	
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concentration, MIC, for E. coli lacking a resistance gene). These conditions generally	 	 	 	 	 	 	 	 	 	 	 	
resulted in survival of about 1% of the initial population post-selection (approx. 5×10	4	 	 	 	 	 	 	 	 	 	 	 	 	
cells for PSE1 and 2×10	5 for AAC6) in each round. Successive rounds of mutation and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
selection were applied by using the selected sequences in one round as the template	 	 	 	 	 	 	 	 	 	 	 	 	 	
for mutations in the next round. We deep-sequenced the selected populations, obtaining	 	 	 	 	 	 	 	 	 	 	 	
10	4	-10	6 high-quality unique reads, at rounds 10 and 20 for PSE1 and rounds 2, 4, and 8	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
for	AAC6.	
	

	
	

		
	

Figure 1. Approach: from laboratory evolution experiments to residue	 	 	 	 	 	 	 	 	
interactions and three-dimensional structures. The experiments involve	 	 	 	 	 	 	
repeated rounds of mutation and selection, starting from a single sequence	 	 	 	 	 	 	 	 	 	 	
(β-lactamase PSE1, 266 residues, or aminoglycoside acetyltransferase AAC6,	 	 	 	 	 	 	 	
148 residues). In each round, mutations are generated by error-prone PCR,	 	 	 	 	 	 	 	 	 	 	
followed by cloning into bacteria (	E. coli	), and selection for functional variants at	 	 	 	 	 	 	 	 	 	 	 	 	
relatively low antibiotic concentration (6 μg/ml ampicillin [Amp] for PSE1 and 10	 	 	 	 	 	 	 	 	 	 	 	
μg/ml kanamycin [Kan] for AAC6). A large number of full-length sequences at	 	 	 	 	 	 	 	 	 	 	 	
various rounds are obtained by deep sequencing after selection; at rounds 10	 	 	 	 	 	 	 	 	 	 	 	
and 20 for PSE1, and rounds 2, 4 and 8 for AAC6. Residue interactions are	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
inferred from co-evolution patterns in the selected sequences using the	 	 	 	 	 	 	 	 	 	
evolutionary couplings (EVcouplings (	1	)	) maximum entropy model, which are	 	 	 	 	 	 	 	 	
then used as distance constraints to compute three-dimensional structures using	 	 	 	 	 	 	 	 	 	
distance	geometry	and	simulated	annealing	molecular	dynamics		(	16	)	.	

	

	
	
Sequencing revealed that the mutation count relative to the ancestral sequence	 	 	 	 	 	 	 	 	 	 	
increases with the number of rounds of mutation and selection (Fig. 2A). In the final	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
round, the evolved sequences have an average of 34.2 mutations (12.9% of sequence	 	 	 	 	 	 	 	 	 	 	 	 	
length) in PSE1 and 8.7 mutations (5.9%) in AAC6. Thus, of the 3-4% amino acid	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mutations introduced per round in each sequence, the functionally-selected sequences	 	 	 	 	 	 	 	 	 	
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end up with an average of 1.7 (0.6%) and 1.2 (0.8%) amino acid mutations for PSE1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and AAC6, respectively. In the later rounds there was a trend towards fewer tolerated	 	 	 	 	 	 	 	 	 	 	 	 	 	
mutations, e.g. for PSE1, 1.9 mutations were added per round up to round 10 and 1.5	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mutations	were	added	per	round	between	rounds	10	and	20.	

	
	

	
	

Figure 2. Divergence, diversity and sequence space of lab-evolved	 	 	 	 	 	 	 	 	
sequences. (	A	) Distributions of amino acid mutations relative to starting	 	 	 	 	 	 	 	 	 	
(ancestral) sequence, per unique sequence obtained from laboratory evolution of	 	 	 	 	 	 	 	 	 	
PSE1 (top) and AAC6 (bottom). (	B	) Distributions of pairwise sequence diversity	 	 	 	 	 	 	 	 	 	 	
(percent positions with non-identical amino acids) calculated for 25×10	6 randomly	 	 	 	 	 	 	 	 	 	
chosen pairs of unique sequences for PSE1 (top) and AAC6 (bottom). Sequence	 	 	 	 	 	 	 	 	 	 	 	
diversity among natural homologs is substantially larger (inset at top right). (	C	)	 	 	 	 	 	 	 	 	 	 	 	
Two-dimensional representation of sequence sets (each point is one protein	 	 	 	 	 	 	 	 	 	
sequence) in sequence space projected down from the N-dimensional space	 	 	 	 	 	 	 	 	 	
using a variational autoencoder (	17	) with two latent variables (	z	1 and z	2	).	 	 	 	 	 	 	 	 	 	 	 	
Sequences of natural homologs (current databases, colored by taxonomy)	 	 	 	 	 	 	 	 	
occupy a much larger space than those from our laboratory evolution	 	 	 	 	 	 	 	 	 	 	
experiments. The lab-evolved sequences increasingly separate from the	 	 	 	 	 	 	 	
ancestral	sequence	with	increasing	rounds	of	mutagenesis	(point	cloud	on	right).	
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The mutational distance to the ancestor is not by itself a measure of diversity as the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
libraries could consist of sets of very similar sequences. To assess diversity, we	 	 	 	 	 	 	 	 	 	 	 	 	
monitored the all-against-all pairwise sequence differences in each population. We	 	 	 	 	 	 	 	 	 	
observed an average of 19.8% and 10.9% pairwise sequence differences in the final	 	 	 	 	 	 	 	 	 	 	 	 	
round of PSE1 and AAC6 evolution, respectively (Fig. 2B). For both proteins, this	 	 	 	 	 	 	 	 	 	 	 	 	
equates to an increase in pairwise sequence difference of ~1.2% per round — close to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the maximum possible increase if the populations were freely expanding in sequence	 	 	 	 	 	 	 	 	 	 	 	
space. We conclude that our approach effectively generates and preserves a high level	 	 	 	 	 	 	 	 	 	 	 	 	
of sequence diversity. In contrast, the mean pairwise sequence difference within the set	 	 	 	 	 	 	 	 	 	 	 	 	
of known natural homologs of PSE1 or AAC6 is around 80% (Fig. 2B). Projected onto	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
two-dimensional sequence space, the laboratory-evolved sequences increasingly	 	 	 	 	 	 	
disperse with increasing rounds of mutation and selection, but otherwise occupy a small	 	 	 	 	 	 	 	 	 	 	 	 	
and	dense	area	relative	to	natural	sequences	(Fig.	2C).		
	
Information about evolutionary constraints in iso-functional sequences increases both	 	 	 	 	 	 	 	 	
with sequence diversity and with the total number of non-identical sequences (	1	, 18	)	.	 	 	 	 	 	 	 	 	 	 	 	 		
Although the level of diversity and positional entropy in the lab-evolved sequence sets is	 	 	 	 	 	 	 	 	 	 	 	 	 	
lower than in families of natural homologs (Fig. 2C), we have generated many more	 	 	 	 	 	 	 	 	 	 	 	 	 	
lab-evolved sequences than are currently available for natural homologs (final	 	 	 	 	 	 	 	 	 	
laboratory evolution rounds have 1.6×10	5 unique functional sequences for PSE1 and	 	 	 	 	 	 	 	 	 	 	
1.3×10	6 for AAC6; the PFAM database has 3.7×10	4 homologs for PSE1 (PFAM ID =	 	 	 	 	 	 	 	 	 	 	 	 	 	
PF00144)	and	~1.2×10	5		unique	functional		for	AAC6	(PF00583).		
	
To quantify the extent to which the laboratory evolution process has encoded	 	 	 	 	 	 	 	 	 	 	 	
co-variation patterns that are informative of interactions between pairs of residue	 	 	 	 	 	 	 	 	 	 	
positions, we used a global probability model (EVcouplings) that has been successful in	 	 	 	 	 	 	 	 	 	 	 	 	
detecting such patterns in natural sequences (Fig. 1) (	1	, 19	, 20	)	. We compared the	 	 	 	 	 	 	 	 	 	 	 	 	 	
inferred interactions to actual contacts in published crystal structures closest in	 	 	 	 	 	 	 	 	 	 	
sequence to each of the two ancestral proteins (Protein Data Bank 1G68 for PSE1, and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4EVY for AAC6). Comparison with crystal structures tests whether functional selection	 	 	 	 	 	 	 	 	 	 	
(i.e., enzymatic deactivation of antibiotic) conserves three-dimensional structure - it is	 	 	 	 	 	 	 	 	 	 	
well established from analysis of natural sequences and structures that there is a high	 	 	 	 	 	 	 	 	 	 	 	 	 	
degree of structural conservation among iso-functional homologs even with highly	 	 	 	 	 	 	 	 	 	
diverged sequences (	21	)	. However, in lab evolution one may expect more structural	 	 	 	 	 	 	 	 	 	 	 	
variability compared to natural evolution, as some protein structural properties, such as	 	 	 	 	 	 	 	 	 	 	 	
those related to aggregation or thermodynamic stability (	12	, 22	)	, may be under weaker	 	 	 	 	 	 	 	 	 	 	 	 	
selection in the laboratory than in nature, given the much shorter timescales, smaller	 	 	 	 	 	 	 	 	 	 	 	 	
population	sizes,	and	homogeneous	environments		(	23	)	.		
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Figure 3. Agreement between residue contacts inferred from laboratory	 	 	 	 	 	 	 	 	
evolution and contacts in crystal structures. (	A	) Agreement versus number of	 	 	 	 	 	 	 	 	 	 	
inferred interactions (as fraction of sequence length, L	) during lab evolution of	 	 	 	 	 	 	 	 	 	 	 	
PSE1 (left) and AAC6 (right). PSE1 results evaluated for an equal number	 	 	 	 	 	 	 	 	 	 	 	
(4×10	4	) of unique sequences from rounds 10 and 20 to illustrate change in	 	 	 	 	 	 	 	 	 	 	 	 	
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agreement with increased rounds of mutation and selection, and all (1.5×10	5	)	 	 	 	 	 	 	 	 	 	 	
unique sequences at round 20 to illustrate change with increased number of	 	 	 	 	 	 	 	 	 	 	 	
sequences. AAC6 similarly assessed for an equal number (10	5	) of unique	 	 	 	 	 	 	 	 	 	 	
sequences at rounds 2, 4 and 8, and all (1.3×10	6	) unique sequences at round 8.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Random is the average result obtained with randomly chosen residue pairs. (	B	)	 	 	 	 	 	 	 	 	 	 	 	
Inferred interactions from PSE1 evolution at round 20 (left) and AAC6 evolution	 	 	 	 	 	 	 	 	 	 	 	
at round 8 (right), overlaid on contact maps of crystal structures. Inferred	 	 	 	 	 	 	 	 	 	 	 	
interactions either agree with monomer (red) or dimer (blue) contacts in the	 	 	 	 	 	 	 	 	 	 	 	
crystal structure (gray or light blue, respectively), or disagree (black). For PSE1,	 	 	 	 	 	 	 	 	 	 	 	
the distal residue interactions between the N- and C-terminal α-helices and	 	 	 	 	 	 	 	 	 	 	
β-strands (lower left) are particularly crucial constraints for the correct 3D fold via	 	 	 	 	 	 	 	 	 	 	 	 	
reduction of chain entropy. Dashed line in (A) and results in (B) are at L	/2 inferred	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
interactions; agreement of >50% at L	/2 often suffices to compute 3D structures	 	 	 	 	 	 	 	 	 	 	 	
(	2	)	. In (A) and (B), X-ray structure contacts are defined as residue pairs < 5 Å	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
minimum side chain atom distance; inferred interactions are limited to a primary	 	 	 	 	 	 	 	 	 	 	 	
sequence	distance	>	5	residues.	

	

	
	

In practice, we defined contact agreement as the percentage of top-ranked inferred	 	 	 	 	 	 	 	 	 	 	 	
interactions (typically L	/2 inferred interactions where L is the length of the protein) that	 	 	 	 	 	 	 	 	 	 	 	 	 	
are also contacts in the crystal structure. Agreement increases with successive rounds	 	 	 	 	 	 	 	 	 	 	 	
of mutation and selection (Fig. 3A) as sequence diversity increases. For PSE1, the	 	 	 	 	 	 	 	 	 	 	 	 	
agreement increased from 34% in round 10 to 49% in round 20 (for a subset of 4×10	4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
unique mutant sequences from each round). For AAC6 the agreement was 22% in	 	 	 	 	 	 	 	 	 	 	 	 	
round 2, 30% in round 4, and 42% in round 8 (for an equal size subset of 10	5 unique	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
sequences). These percentages are well above the random expectation of 1.9% and	 	 	 	 	 	 	 	 	 	 	 	
4.1% for PSE1 and AAC6 (approximated by the ratio of crystal structure contacts over	 	 	 	 	 	 	 	 	 	 	 	 	 	
the total number of pairs), even at early rounds (see AAC6 round 2, Fig 3A). Additional	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
sequencing also led to a higher agreement between inferred interactions and contacts:	 	 	 	 	 	 	 	 	 	 	 	
for the last rounds we obtained 1.6×10	5 unique functional sequences for PSE1 and	 	 	 	 	 	 	 	 	 	 	 	 	
1.3×10	6 for AAC6, leading to a contact agreement of 54% for PSE1 and 51% for AAC6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Fig. 3). These results indicate that simplified evolutionary dynamics in the laboratory do	 	 	 	 	 	 	 	 	 	 	 	 	
generate functional sequences with co-evolutionary patterns that reflect constraints	 	 	 	 	 	 	 	 	
imposed	by	three-dimensional	protein	structure.		
	
The residue interactions inferred from laboratory evolution include important structural	 	 	 	 	 	 	 	 	 	
features of both proteins (Fig. 3B). The β-lactamase fold, for example, consists of two	 	 	 	 	 	 	 	 	 	 	 	 	 	
structural domains, an all-α-helical domain and a mixed α/β domain (	24	, 25	)	. The	 	 	 	 	 	 	 	 	 	 	 	 	
polypeptide chain is interwoven between the two domains leading to extremely	 	 	 	 	 	 	 	 	 	 	
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sequence-distal contacts between the N- and C-terminal α-helices, and the N- and	 	 	 	 	 	 	 	 	 	 	 	
C-terminal β-strands. Consistent with the crystal structures, we likewise observe	 	 	 	 	 	 	 	 	 	
strongly co-evolving interactions between these sequence-distal structural elements in	 	 	 	 	 	 	 	 	
the PSE1 results (Fig. 3B). Proteins from the same subfamily of aminoglycoside	 	 	 	 	 	 	 	 	 	 	 	
acetyltransferases as AAC6 exist as homodimers, with the C-terminal β-strand of one	 	 	 	 	 	 	 	 	 	 	 	
protein chain inserted between two strands of the other chain (	26	)	. We also discern	 	 	 	 	 	 	 	 	 	 	 	 	 	
these dimer interactions among the top-ranked inferred residue-residue contacts (Fig.	 	 	 	 	 	 	 	 	 	
3B). Similar to previous work on natural sequences (	27	)	, identification of these	 	 	 	 	 	 	 	 	 	 	 	
inter-protein contacts demonstrates that laboratory evolution can also be informative of	 	 	 	 	 	 	 	 	 	 	
protein-protein	interactions.	
	
We next asked whether the inferred contacts from laboratory evolution are sufficient to	 	 	 	 	 	 	 	 	 	 	 	 	
compute the three-dimensional structure. For natural protein families, inferred residue	 	 	 	 	 	 	 	 	 	
interactions in the range of agreement with crystal structures of 50-60% are typically	 	 	 	 	 	 	 	 	 	 	 	 	
sufficient to compute three-dimensional folds that agree with those observed by	 	 	 	 	 	 	 	 	 	 	
crystallography or NMR (	1	, 28	)	. To assess whether laboratory evolution provides a	 	 	 	 	 	 	 	 	 	 	 	
similar level of information, we computed sets of structures using inferred residue	 	 	 	 	 	 	 	 	 	 	 	
interactions as distance constraints in molecular dynamics with simulated annealing (	1	,	 	 	 	 	 	 	 	 	 	 	
16	, 28	)	. The constraints are updated using a new filtering algorithm. For AAC6 we	 	 	 	 	 	 	 	 	 	 	 	 	 	
folded only the monomeric unit consisting of residues 1-134, as residues 135-148 are	 	 	 	 	 	 	 	 	 	 	 	 	
directly involved in dimer contacts and computation of a dimeric molecule from a	 	 	 	 	 	 	 	 	 	 	 	 	
compounded contact map is beyond the scope of this work. Algorithmic filtering of the	 	 	 	 	 	 	 	 	 	 	 	 	 	
constraints led to improved agreement between inferred interactions and crystal	 	 	 	 	 	 	 	 	 	
structure contacts, from 54% to 65% for PSE1, and from 45% to 59% for AAC6 (Fig.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4A).	
	
The final set of structures, computed from the inferred interactions after filtering, was	 	 	 	 	 	 	 	 	 	 	 	 	
assessed for agreement with the known crystal structure of the most sequence-similar	 	 	 	 	 	 	 	 	 	 	 	
homolog. Of the set of computed structures, 72% of PSE1 and 63% of AAC6 generated	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
structures (of 690 models generated for PSE1 and 720 for AAC6) have a template	 	 	 	 	 	 	 	 	 	 	 	 	 	
modeling score (TM-score) of 0.5 or greater; TM-scores in excess of 0.5 are generally	 	 	 	 	 	 	 	 	 	 	 	 	 	
considered to indicate overall fold similarity (	29	–	31	)	. The structures with the lowest C	 	 	 	 	 	 	 	 	 	 	 	 	
positional root-mean-square deviation (RMSD) over more than 90% of residues and	 	 	 	 	 	 	 	 	 	 	
which do not contain knots (	32	, 33	) have 4.5 Å RMSD for PSE1 (240/266 residues) and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3.8 Å RMSD for AAC6 (122/130 residues of 4EVY) (Fig. 4). Overall, we conclude that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the laboratory evolution process reflects natural evolution in constraining residue	 	 	 	 	 	 	 	 	 	
interactions	that	conserve	the	same	three-dimensional	fold.	
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Figure 4: 3D structures computed from experimental evolution compared to	 	 	 	 	 	 	 	 	 	
those from X-ray crystallography. (	A	) Inferred interactions after applying a	 	 	 	 	 	 	 	 	 	
constraint filtering algorithm; red agree with contacts in the crystal structure,	 	 	 	 	 	 	 	 	 	 	
black disagree. Shown are results for 2×	L inferred interactions. (	B	) 3D structures	 	 	 	 	 	 	 	 	 	 	 	
computed using the filtered inferred interactions as distance constraints. Red	 	 	 	 	 	 	 	 	 	
ribbons are structures with the lowest Cα positional RMSD over more than 90%	 	 	 	 	 	 	 	 	 	 	 	 	
of residues for either protein. (	C	) Computed structures compared to crystal	 	 	 	 	 	 	 	 	 	 	
structures (gray ribbons): for PSE1 (PDB 1G68, Cα positional RMSD 4.5 Å over	 	 	 	 	 	 	 	 	 	 	 	 	
240/266 residues, TM-score = 0.65); for AAC6 (structural homolog of AAC6 PDB	 	 	 	 	 	 	 	 	 	 	 	
4EVY, Cα positional RMSD 3.8 Å over 122/130 residues in 4EVY, TM score =	 	 	 	 	 	 	 	 	 	 	 	 	 	
0.59). For AAC6, the C-terminal β-strand known to be involved in dimer contact is	 	 	 	 	 	 	 	 	 	 	 	 	 	
excluded; we did not attempt to compute dimer structures. Overall, structures	 	 	 	 	 	 	 	 	 	 	
computed from interactions inferred from laboratory-evolved sequences have the	 	 	 	 	 	 	 	 	
same general fold as crystal structure, with template modeling score (TM-score	 	 	 	 	 	 	 	 	 	 	
(	29	)	) of >0.5 for 72% of PSE1 models (690 total models) and for 63% of AAC6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
models	(720	total	models).	
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Discussion	 	
	
The experimental evolution approach taken here opens the door to a new ab initio	 	 	 	 	 	 	 	 	 	 	 	 	 	
experimental method of determining protein structure, which we call 3Dseq. Using	 	 	 	 	 	 	 	 	 	 	
laboratory evolution for structure determination is complementary to established	 	 	 	 	 	 	 	 	
methods such as X-ray crystallography, NMR and cryo-electron microscopy, in several	 	 	 	 	 	 	 	 	 	 	
respects, with several advantages and disadvantages. For example proteins can be	 	 	 	 	 	 	 	 	 	 	
interrogated in a native cellular environment, not requiring biochemical purification of	 	 	 	 	 	 	 	 	 	 	
proteins; inter-molecular interactions can be elucidated without purification and/or	 	 	 	 	 	 	 	 	
crystallization of complexes (dimer contacts are already inferred in AAC6) by	 	 	 	 	 	 	 	 	 	 	
experimental evolution using, e.g., two-hybrid (	34	–	36	)	, or phage- or yeast- display	 	 	 	 	 	 	 	 	 	 	
approaches (	37	, 38	)	; and by targeted mutagenesis and/or controlling selective	 	 	 	 	 	 	 	 	 	
conditions, one can infer which constrained interactions are of functional importance	 	 	 	 	 	 	 	 	 	 	
under a given selection condition. However, as 3Dseq infers distance constraints from	 	 	 	 	 	 	 	 	 	 	 	
co-variation data in entire sets of diverse sequences, its precision of atomic positions,	 	 	 	 	 	 	 	 	 	 	 	 	
even when the fold is correct, is significantly less than that of single-sequence,	 	 	 	 	 	 	 	 	 	 	 	 	
single-conformation crystallography. The precision of determining single-sequence	 	 	 	 	 	 	
structures would increase with improvements in constrained molecular dynamics. To	 	 	 	 	 	 	 	 	 	
compute single sequence structures for all sequences in the lab-selected libraries, one	 	 	 	 	 	 	 	 	 	 	 	
would have to execute many thousands constrained molecular dynamics runs, which is	 	 	 	 	 	 	 	 	 	 	 	
beyond	the	scope	of	this	work.		
	
Future generalization of 3Dseq experimental technology would benefit from assays that	 	 	 	 	 	 	 	 	 	 	
directly select or screen for protein structural integrity, which is more generally	 	 	 	 	 	 	 	 	 	 	 	
applicable than dependence on selection for a particular cellular function (	39	–	41	)	, (e.g.,	 	 	 	 	 	 	 	 	 	 	 	
antibiotic resistance). A major efficiency gain would come from automated evolution	 	 	 	 	 	 	 	 	 	 	
systems, which combine mutation and selection in single cells and rely on proliferative	 	 	 	 	 	 	 	 	 	 	 	 	
advantage	in	pooled	experiments		(	42	–	44	)	.		
	
In using experimental evolution to elucidate constraints one is agnostic as to exactly	 	 	 	 	 	 	 	 	 	 	 	 	
how evolutionary constraints are encoded in the protein sequences. Recent work (	45	,	 	 	 	 	 	 	 	 	 	 	 	
46	) showed that two-way epistasis between amino acid mutations derived from deep	 	 	 	 	 	 	 	 	 	 	 	
mutational scans can capture structural constraints sufficient for the computation of 3D	 	 	 	 	 	 	 	 	 	 	 	
structures, at least for small proteins. Given the ability to control sequence diversity,	 	 	 	 	 	 	 	 	 	 	 	 	
depth of sequencing and quantitation of fitness in laboratory evolution, future evolution	 	 	 	 	 	 	 	 	 	 	 	
experiments will provide an opportunity to unravel evolutionary pathways, the level of	 	 	 	 	 	 	 	 	 	 	 	
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cooperativity in sets of mutations, and to discover constraints essential for the	 	 	 	 	 	 	 	 	 	 	 	
maintenance	of	structure	and	function.	
	
In contrast to natural evolution, laboratory evolution is typically performed in less diverse	 	 	 	 	 	 	 	 	 	 	 	 	
environments, over much shorter time scales, and with simpler population dynamics (	7	,	 	 	 	 	 	 	 	 	 	 	 	
23	)	. Nonetheless, our results indicate that laboratory evolution consisting of repeated	 	 	 	 	 	 	 	 	 	 	
cycles of random mutation and uniform selection can generate large and diverse sets of	 	 	 	 	 	 	 	 	 	 	 	 	 	
sequences with rich co-evolutionary interaction patterns. Experimental evolution	 	 	 	 	 	 	 	
approaches of this type can serve as a contribution to better understanding the	 	 	 	 	 	 	 	 	 	 	 	 	
complexities of natural evolution and to developing quantitative models of both	 	 	 	 	 	 	 	 	 	 	
retrospective	and	prospective	evolutionary	dynamics.	
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