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Abstract

The inherent noise of neural systems makes it difficult to construct models which
accurately capture experimental measurements of their activity. While much
research has been done on how to efficiently model neural activity with descriptive
models such as linear-nonlinear-models (LN), Bayesian inference for mechanistic
models has received considerably less attention. One reason for this is that these
models typically lead to intractable likelihoods and thus make parameter inference
difficult. Here, we develop an approximate Bayesian inference scheme for a
fully stochastic, biophysically inspired model of glutamate release at the ribbon
synapse, a highly specialized synapse found in different sensory systems. The
model translates known structural features of the ribbon synapse into a set of
stochastically coupled equations. We approximate the posterior distributions by
updating a parametric prior distribution via Bayesian updating rules. We show that
model parameters can be efficiently estimated for synthetic and experimental data
from in vivo two-photon experiments in the zebrafish retina. Also, we find that the
model captures complex properties of the synaptic release such as the temporal
precision. Our framework provides a viable path forward for linking mechanistic
models of neural activity to measured data.

1 Introduction

The activity of sensory neurons is noisy — a central goal of systems neuroscience has therefore been
to devise probabilistic models that allow to model the stimulus-response relationship of such neurons
while capturing their variability [1]. Specifically, linear-nonlinear (LN) models and their generaliza-
tions have been used extensively to describe neural activity in the retina [2, 3]. However, these type
of models cannot yield insights into the mechanistic foundations of the neural computations they aim
to describe, as they do not model their biophysical basis. On the other hand, mechanistic models on
the cellular or subcellular level have been rarely used to model stimulus-response relationships: they
require highly specialized experiments to estimate individual parameters [4, 5], making it difficult to
employ them directly in a stimulus-response model; alternatively, they often result in an intractable
likelihood, making parameter inference challenging [6].
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Figure 1: Overview of the model. A. After a linear-non-linear processing stage, the signal is passed
to a biophysically inspired model of a ribbon synapse in which vesicles are released in discrete
events. B. Sketch of a bipolar cell with attached photoreceptors (left) and a high resolution electron
microscopy (EM) image of a ribbon synapse with its vesicle pools. The readily releasable pool is
highlighted in red, the reserve pool is shown in white (EM image adapted from [13]).

Here we make use of recent advances in approximate Bayesian computation (ABC) [6, 7, 8, 9, 10, 11]
to fit a fully stochastic, biophysically inspired model of vesicle release from the bipolar cell (BC)
axon terminal to functional two-photon imaging data from the zebrafish retina (Fig. 1). It includes a
linear-nonlinear stage to model the stimulus dependency, and a set of stochastically coupled equations
modeling biophysical properties of the BC synapse. At this so-called “ribbon synapse”, a specialized
protein complex, the “ribbon”, acts as a conveyor belt that “tethers” and “loads” vesicles onto active
zones for future release [12]. It organizes vesicles into multiple pools: the “docked” (or readily
releasable) pool consists of a number of vesicles located directly above the plasma membrane, while
the “ribboned” pool consists of vesicles attached to the ribbon further from the cell membrane. The
docked vesicles are thus primed for immediate release and can be released simultaneously (so called
multivesicular release, MVR). The ribboned vesicles are held in reserve to refill the docked pool as it
is depleted by exocytosis [13, 14]. The transitions of vesicles between those pools can be modeled by
a set of coupled differential equations [15, 4], which we extend to a stochastic treatment. In addition
to photoreceptors and bipolar cells in the retina [16], ribbon synapses are featured in many other
sensory systems, such as in auditory hair cells and the vestibular system [17].

Thus, our proposed Bayesian framework links stimulus-response modeling to a biophysically inspired,
mechanistic model of the ribbon synapse. This may contribute to a better understanding of sensory
computations across levels of description, with applications in a diverse range of sensory systems.

2 Previous work

Models of neural activity Variants and extensions of LN models have been widely used to model
the activity of retinal neurons [2, 18, 1, 3]. In these descriptive models, the excitatory drive to
a cell is modeled as the convolution of a receptive field kernel with the stimulus, followed by a
static nonlinearity. The result of this computation sets the rate of a stochastic spike generator, most
commonly using either a Binomial or Poisson distribution. These basic models have also been used to
approximate BC activity [19], however they do not explicitly model the dynamics of vesicle release at
the ribbon synapse. Existing mechanistic models of synaptic release often require highly specialized
experiments to estimate parameters [20] or make only indirect inferences based on the spiking activity
of post-synaptic cells [21, 22]. In addition, they have not been used to perform system identification.
The linear-nonlinear kinetics (LNK) model [23] attempts to address this issue. After an initial LN
stage, the LNK model passes this information into a “kinetics block” consisting of a first-order set
of kinetic equations implicitly representing the availability of vesicles. However, the LNK model
treats the states of the pools as rescaled Markov process and cannot easily account for discrete vesicle
release or MVR at the given noise level of single synapses.
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Table 1: Variables, parameters and distributions of the model.

Variable Description Parameter Movement
distribution Distribution

time stretch of the kernel γ N (µ, σ2)

non-linearity k, h N (µ,Σ)

correlation of exocytosed vesicles ρ N (µ, σ2)

dt exocytosed vesicles pdt Beta-Bin

D vesicles at dock

r vesicles ribbon→ dock pr res. Binomial N (µ, σ2)

R vesicles on ribbon

c vesicles cytoplasm→ ribbon λc res. Poisson Γ

We address these issues by proposing a model that combines LN modeling for system identification
with a probabilistic, biophysically inspired model for the ribbon synapse, with the capability to model
discrete, multi-vesicular release. In contrast to classical LN models, the parameters of this model are
readily interpretable as they directly refer to biological processes.

Approximate Bayesian Computation Many mechanistic models in computational neuroscience
only provide means to simulate data and do not yield an explicit likelihood function. Therefore,
their parameters cannot be inferred easily. In such simulator-based models, Bayesian inference can
be performed through techniques known as Approximate Bayesian Computation or likelihood-free
inference [8]. The general inference problem can be defined as follows: given some experimental
data x0 and a mechanistic, simulator-based model p(x|θ) parametrized by θ, we want to approximate
the posterior distribution p(θ|x = x0). The simulator model allows us to generate samples xi given
any parameter θ, but the likelihood function cannot be evaluated. Often, xi is first mapped to a
low dimensional space (so called “summary statistics”), in which a loss function is computed. This
mapping defines the features the model is trying to capture [10].

There are two main approaches to solve the inference problem: (1) approximate the likelihood
p(x0|θ) and then sample (e.g. via MCMC) to get the posterior [8, 10]. In this approach, guided
sampling is often used to generate new samples and either train a neural network or update other
parametric models for the likelihood [8, 9]. One disadvantage of this approach is that there is a second
sampling step necessary to obtain the posterior, which can be as time consuming as the inference
of the likelihood. (2) approximate the posterior p(θ|x = x0). In principle, inference via rejection
sampling could be applied, but is often inefficient. Thus, recently proposed methods use parametric
models (like a mixture of Gaussian) to approximate the posterior over several sampling rounds [6].
In our work, we use an ABC method of type (2) with parametric prior distributions and Bayesian
updating rules to approximate the posterior distribution p(θ|x = x0). We show that it efficiently
learns the parameters of the proposed release model.

3 Linear Non-Linear Release Model

Our model consists of two main parts (Fig. 1): a linear-nonlinear (LN) stage models the excitatory
drive to the BC and a release (R) stage, models the vesicle pools as dependent random variables (see
Appendix A for pseudocode). Therefore, we refer to the model as LNR-model.

3.1 Linear-Nonlinear stage

The first stage of the LNR model is a standard LN model, in which a light stimulus l(t) is convolved
with a receptive field wγ to yield the surrogate calcium concentration ca(t) in the synaptic terminal
which is then passed through a static nonlinearity:

ca(t) =

∫ T

τ=0

l(t− τ)wγ(τ)dτ .
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We assume wγ to be a biphasic kernel in order to model the signal processing performed in the
photoreceptor and the BC [15, 24] (Figure 1A, B). A single parameter γ was used to stretch/compress
the kernel on the time axis to estimate the receptive field (see Appendix C). This could be generalized
to allow for more flexible receptive field shapes in principle. We used a sigmoidal non-linearity to
convert the calcium signal to the release probability:

pdt(t) = 1/
(
1 + exp(−k(cat − h))

)
, (1)

where the parameters for the slope k and the half activation h are inferred from the data. We add a
small positive offset to the non-linearity and renormalized it to allow for spontaneous release.

3.2 Release stage

The second stage of the LNR model consists of a model for the synaptic dynamics based on the
structure of the BC ribbon: we define variables representing the number of vesicles present in each
pool of the ribbon and the number of vesicles moving between pools (see Table 1). We use capital
letters to define the number of vesicles in a specific pool, and lowercase letters to indicate the moving
vesicles. At each time step, vesicles are first released from the dock, then new vesicles are moved
from the ribbon to the dock, and finally the ribbon is refilled from the cytoplasm. For simplicity, we
assume that only the vesicle release probability is modulated by the excitatory drive; the docking
probabilities and rates of movement to the ribbon are constant over time.

Vesicle Release To model the correlated release of docked vesicles, we use a beta binomial distri-
bution. This is a binomial distribution for which the parameter p is itself a random variable, leading
to correlated events [25]. The release probability pdt is assumed to be the output of the LN stage
according to equation 1. To achieve a correlation ρ and a release probability of pdt the parameters for
the beta binomial distribution are:

αt = pdt ·
(

1

ρ
− 1

)
and βt = αt ·

(
1

pdt
− 1

)
, if pdt 6= 0.

Thus, in each time step, we first draw the parameter p̃t for the binomial distribution according to
a beta distribution: p̃t ∼ Beta(αt, βt) and then sample the number of released vesicles dt from a
binomial distribution with parameters n = Dt−1 (the numbers of vesicles at the dock) and p̃t:

p(dt|Dt−1) =

{
0 if pd = 0,(
Dt−1

dt

)
p̃ dtt (1− p̃t)(Dt−1−dt) otherwise.

Movement to the dock We assume that rt vesicles located at the ribbon move to the dock in each
time step. Because there is a maximum number of vesicles Dmax that can be docked, such that
rt +Dt−1 ≤ Dmax, we use a restricted binomial distribution to model stochastic vesicle docking:

p(rt|Rt−1, Dt) =


(
Rt−1

rt

)
prtr (1− pr)(Rt−1−rt) if rt < Dmax −Dt∑

rt≥Dmax−Dt

(
Rt−1

rt

)
prtr (1− pr)(Rt−1−rt) if rt = Dmax −Dt

0 otherwise.

The first case is the standard binomial distribution with appropriate parameters, the second case
models the assumption that moving more vesicles to the dock than its maximum capacity simply fills
the dock.

Movement to the ribbon We assume a large number of vesicles available in the cytoplasm (which
is not explicitly modeled), such that the number of vesicles ct moving from the cytoplasm to the
ribbon follows a Poisson distribution, again respecting the maximal ribbon capacity Rmax:

p(ct|Rt) =


e−λ λ

ct

ct!
if ct < Rmax −Rt∑

ct≥Rmax−Rt
e−λ λ

ct

ct!
if ct = Rmax −Rt

0 otherwise.
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Figure 2: Overview of the inference method. In each round samples are drawn from the (proposal)
prior, the model is evaluated and the response is mapped to its summary statistic. From this, the loss
per parameter θ is calculated and the best samples are accepted and used to update the (proposal)
prior via Bayesian updating rules.

4 Bayesian Inference of Model Parameters

In the previous section, we constructed a fully stochastic model of vesicle release from BCs, including
an explicit mechanistic model of the ribbon synapse, reflecting the underlying biological structures.
The maximal capacity of the dock Dmax was set based on measured data to the largest quantal event
observed in the functional recordings (Dmax ≈ 7− 8). Rmax, the maximal capacity of the ribbon,
was set to an estimate on the maximal number of vesicles at the ribbon in goldfish rod bipolar cells
[26, 27], but decreased to reflect the smaller size of BCs in zebrafish larva (Rmax ≈ 50).

Next, we developed an ABC framework for likelihood free inference to infer the remaining model
parameters (Table 1) from functional two-photon recordings. Our method uses parametric prior
distributions which are updated in multiple rounds via Bayesian updating rules to provide a unimodal
approximation to the posterior (Figure 2). Briefly, in each round we first draw parameters θ from
the (proposal) prior and evaluate several runs of the model d̂i for each sampled parameter. Due
to the stochasticity of the model, each evaluation returns a different trace, for which a summary
statistic is calculated. This summary statistic reduces the dimensionality of the simulated trace to
a low dimensional vector. Based on this the loss function L(θ) is calculated by comparing it to the
summary statistic of the observed data. The best parameters are used to calculate a posterior, which
is then used as a proposal prior in the next round (Fig. 2, pseudocode in Appendix E).

4.1 Prior distributions and inference

As priors, we used normal distributions for all parameters except for λc (Table 1), where we used a
gamma distribution (the conjugate prior to the Poisson distribution). Some parameters were bounded
e.g. to the interval [0, 1] and their distributions renormalized to effectively truncate the priors.

In each inference round, we used Bayesian updating rules to calculate the posterior distribution [28,
29] based on the j best parameters {θ}. For example, in round n+1, we updated the hyperparameters
for the multivariate normal distribution of the NL parameters, k and h, as:

µn+1 =
κn

κn + j
µn +

j

κn + j
θ̄

Λn+1 = Λn + S +
κnj

κn + j
(θ̄ − µn)(θ̄ − µn)T ,

where θ̄ is the mean over the best parameters and S =
∑j
i=1(θi − θ̄)(θi − θ̄)T the (unnormalized)

covariance of these parameters. The mean is thus updated as a weighted average of the prior mean
and the mean of the best parameters, with weights specified by κ, which is updated as κn+1 = κn+ j.
The posterior degrees of freedom νn+1, which is used to sample the covariance matrix Σ, is the prior
degrees of freedom plus the updating sample size: νn+1 = νn + j. With these updates we end up
in a two step sampling procedure: first we draw the covariance Σ(n+1)i for each sample i of round
n+ 1 from the inverse-Wishart distribution Inv-Wishart(Λ−1n+1, νn+1), and then we draw the samples
from the normal distribution N (µn+1,Σ(n+1)i).
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Figure 3: Results for synthetic data. A. Simulated traces for the synthetic data and simulations with
the recovered, fitted parameters in response to a binary light stimulus. B. The time course of the mean
and standard deviation of the different one dimensional marginal distributions over several rounds.
Notice the asymmetric distribution for λc. See Appendix Fig. 8 for the two dimensional marginals.
C. Histogram over the number of vesicles released per release event, error bars indicating ± std. D.
Discrepancy of the data and fitted traces. The discrepancy is defined as the difference between the
weighted summary statistics of a single data trace and the remaining data (“leave-one-out-procedure”)
and accordingly the difference between the weighted summary statistics of a single fitted trace and
the data. Error bars indicating ± std. E. The kernel of the linear stage. F. The non-linearity. Although
its parameter k is not matched perfectly in (B), there is almost no difference between the fitted and
the true non-linearities.

The parameters for the univariate normal distributions as well as for the Γ-distribution are similarly
updated in a Bayesian manner (see Appendix D). The number of drawn and accepted parameters
was constant (20 · 103 and 10) except for the first round, where the number of drawn parameters was
doubled.

4.2 Summary statistics and loss function

As a summary statistic, on which the discrepancy between different traces is defined, we used (1)
the histogram over the number of vesicles released in each event and (2) the Euclidean distance
between the simulated and measured response trace, convolved with a Gaussian kernel (width:
100 ms, inspired by [30]). The former proved especially useful in early rounds of inference. As
experiments typically consist of multiple repetitions of the same stimulus, we first calculated the
summary statistics s(di) for the individual traces di, normalized each entry by the summary statistic
of the data traces and scaled it for its importance. This linear transformation is summarized in a
diagonal weight matrix W . We used the average euclidean distance of these weighted summary
statistics as the loss function L(θ) (see also Appendix E and F). For n data traces di and a batchsize
of m simulations d̂j per parameter θ, this yields:

L(θ) =
1

nm

∑
i,j

||Ws(di)−Ws(d̂j)||2 .

The (weighted) summary statistics can also be used to calculate the variability of the data and compare
it to the summary statistics of the simulated data, giving us an estimate of the discrepancy between
the different traces (e.g. Fig. 3C, Fig. 5C).
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Figure 4: Two-photon imaging of in vivo zebrafish BCs allows for counting glutamatergic vesi-
cles. A. Image of a zebrafish BC expressing the Superfolder-iGluSnFR transgene. Dashed circles
indicate active zones where glutamate is releaed. B. Experimental glutamate release traces as ∆F/F
of one OFF BC in two trials and extracted events in response to a binary light stimulus. Notice the
high inter-trial variability.

5 Results

5.1 Model inference on synthetic data

Next, we tested whether we can successfully infer the parameters of the mechanistic model with the
procedure outlined above. For that, we chose a realistic parameter setting and used the model to
generate data. As the sample size per cell is severely limited in experimental data, we generated only
four traces of 140 seconds each (Fig. 3A). The light stimulus was the same binary noise stimulus that
we used for the experimental recordings.

The inference procedure proved very efficient: most parameters converged quickly to their true values
with reasonable uncertainty (Fig. 3B). After inference, it is difficult to differentiate between the true
and the fitted traces and the histogram over the number of vesicles released in each time step can be
fitted well (Fig. 3C). Indeed, simulations from the model where as similar to the data as different data
trials to one another (Fig. 3D). Our procedure identified the time scale of the linear receptive field as
well as the non-linearity effectively (Fig. 3E and F). We validated the efficacy of our method also for
other choices of parameters (not shown).

5.2 Model inference on BC recordings from zebrafish retina

We acquired two-photon imaging measurements of the glutamate release from BC axon terminals
in the zebrafish retina (n = 2 cells, see Fig. 4). Briefly, linescans (1 x 120 pixels) were recorded at
1 kHz across the terminal of a BC expressing the glutamate reporter Superfolder-iGluSnFr, while
showing a 140 second light stimulus (discrete Gaussian or binary noise) with a frame rate of 10
Hz. For each recording, a region of interest (ROI) was defined and the time series extracted as the
weighted average of the spatial profile. Baseline drift was corrected, the traces were converted to
∆F/F and deconvolution was done with the kinetics of the reporter. Release events were identified
as local maxima above a user-defined threshold in the imaging trace. The number of vesicles in each
release event was estimated using a mixture of Gaussian model. For more details see [31].

Figure 5A shows the LNR model fitted to four recordings from one OFF BC (total duration of the
recordings: 560 sec). We find that model parameters both for the LN-stage as well as the release stage
of the model can be inferred efficiently. Posteriors converged quickly (Fig. 5B and Appendix Fig.
9). Interestingly, parameters such as the ribbon-to-dock-transition rate pr, which model not directly
observable properties of the system, also had larger uncertainty estimates. Similar to the synthetic
data, the histogram over the number of vesicles released in each event was matched well overall (Fig.
5C). In contrast to the synthetic data, the discrepancy among data traces was a bit smaller than the
discrepancy between the model fit and the data traces (Fig. 5D). This is likely due to the fact that
some events were missed and the data contained more large amplitude events than predicted by the
model (Fig. 5A, C).

We finally tested whether the simple model captured two known properties of release events: the
temporal precision of events and the maximal release rates of the system. Interestingly, events with
many released vesicles were temporally more precise for both the data and the fitted model (Fig. 5E,
F). As no summary statistic explicitly measured the temporal precision of different release event types
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Figure 5: Results for experimental data. A. Two experimental data traces and simulated traces
with corresponding fitted parameters in response to a binary noise stimulus. B. Some parameters
are more restricted than others by the model. (See Appendix Section I for all parameters, the two
dimensional marginals, and the corresponding kernel and non-linearity) C. Histogram over event
types. D. Discrepancy as in Fig. 3C. E. Temporal jitter of different event types in response to a binary
light stimulus (mean±std, see Appendix Fig. 7 for the Gaussian noise stimulus). F. Cumulative
release in response to a “calcium step” (see Appendix Fig. 11 for a comparison to experimental data).

at this resolution, this can be seen as evidence that our model captures crucial aspects of processing
in BCs. Additionally, when comparing release rates with those recorded from electrically stimulated
cells, we find the shape of cumulative vesicle release matches well with previously published results
(Fig. 5F and Appendix J). This indicates that the model also extrapolates well to new stimuli.

6 Discussion

Here we developed a Bayesian inference framework for the LNR model, a probabilistic model of
vesicle release from BCs in the retina, which combines a systems identification approach with a mech-
anistic, biophysically inspired component. In contrast to purely statistical models, the parameters of
the LNR model are readily interpretable in terms of properties of the ribbon synapase. Specifically, we
show that its parameters can be fitted efficiently on synthetic data and two-photon imaging measure-
ments. The latter is remarkable, as mechanistic models often require highly specialized experiments
to determine individual parameters. In this proof-of-principle study, we show that the parameters of
the LNR model can be simply inferred from the functional measurements, opening possibilities for
inferring mechanistic models from large-scale imaging experiments e.g. for comparison across cell
types.

We found that the data overall was able to constrain the parameters very well, for both the LN-stage
and the release-stage of the LNR model. Parameters that referred to parts of the model that were not
directly observed in our measurements (such as the transition probability from the ribbon to the dock
pr) were fitted with somewhat higher uncertainty, indicating that a larger range of parameter values
was compatible with the measurements. In addition, the LNR model captured MVR (the inferred
correlation between vesicles is ρ ≈ 0.35), despite the inherent variability at the level of the single
synapse. In addition, the LNR model captured trends in temporal precision within MVR events as
well as release rates to non-phyisiological stimuli such as electrical stimulation - neither of which
were used during inference.

Our proposed framework for Bayesian inference in the LNR model is comparable to recent likelihood-
free inference methods (like [6, 11]). In contrast to those, we do not use a mixture density network
(MDN) to approximate the posterior distribution, but rather parametric distributions and analytic
Bayesian updating rules. In practice, MDNs can lead to unstable behavior for very small or large
weights and sometimes have non-optimal extrapolation properties (but see [32]). Due to its simplicity,
our method is less susceptible to such problems, but provides only a unimodal approximation of the
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posterior p(θ|x = x0). For the LNR model, we rarely observe multimodality in the posterior, so our
methods yield a good and very fast approximation to the true posterior.

We combined a biophysically inspired mechanistic model with an efficient likelihood free inference
method. This eases the development of more accurate and interpretable models, without the necessity
of having closed-form likelihoods. At the same time, we could show that our model is able to capture
the variablity inherent to the neural system we studied. Taken together, the presented methods will
allow for further investigations into more complex systems, gaining mechanistic insight into how
neurons cope with noise.
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Appendix

A Pseudocode of the linear-non-linear release model

Algorithm 1: Pseudocode for the LNR-model
Calculate output of LN-block: pdt = NL(wγ(t) ∗ l(t));
Initialize pools D0, R0;
for t ∈ (1, timesteps) do

Draw dt ∼ beta Binomial(Dt−1, ρ, pdt );
Dt = Dt−1 − dt;
Draw rt ∼ restricted binomial(Rt−1, pr|Dt);
Dt = Dt + rt;
Rt = Rt−1 − rt;
Draw ct ∼ restricted Poisson(λc|Rt);
Rt = Rt + ct

end

B Experimental Methods

The data were collected and analyzed as described in [31], in accordance with redacted guidelines and
with the approval of the Anonymous University local ethical committee. RibeyeA:Gal4 transgenic
zebrafish were crossed with 10 x UAS:Superfolder iGluSnFR fish [33]. The resulting larva were
imaged at 5-7 days post fertilization in vivo after embedding in 5 percent low-melting agarose.
Imaging was done with a Scientifica microscope using a Coherent laser tuned to 915 nm. All stimuli
were delivered full-field with an LED (lmax = 590 nm, Thorlabs), filtered through a 590/10 nm BP
filter (Thorlabs), and output through a light-guide, resulting in a mean intensity of approximately
316 nW/mm2. Two white noise stimuli were used for the experiments: a binary stimulus constructed
using an m-sequence protocol, and a discrete Gaussian stimulus, both with a frame rate of 10 Hz.
Two cells recorded from two eyes of a single fish were used for the experiment.

C Linear kernel

Figure 6: Example kernels for 100 samples of compress/stretch parameter γ, drawn from the prior
distribution (γ ∼ N (1, 0.2)), and the corresponding kernels for the mean (red) and ±2 standard devi-
ations (dashed red). The remaining parameters were hold constant: τr = 0.05, τd = 0.05, τphase =
100, φ = −π/7.

The linear part of the model is the convolution of a kernel with the (light) stimulus l(t):

ca(t) =

∫ T

τ=0

l(t− τ)wγ(τ)dτ .
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We used a typical kernel for photoreceptors from previous work [15, 24], which depends on a rise and
decay constant (τr and τd) and additional phase parameters (φ and τphase). To get different time scales,
we included a new parameter γ that stretches or compresses the kernel in time and was inferred from
the data. Including γ, the equation of the kernel becomes:

w(t, γ) =
−
(

t
γτr

)3
1 + t

γτr

· exp

(
−
(

t

γτd

)2
)
· cos

(
2πt

γφ
+ τphase

)
.

Figure 6 shows example kernels for different draws of γ.

D Detailed updating rules

We follow the standard Bayesian updating rules to calculate the posterior [28, page 73].

Normal distributions As already stated, we use a two dimensional multivariate normal distribution
with unknown mean and covariance as distribution for the non-linearity parameters k and h. For
the remaining parameters, we take independent one dimensional normal distributions with unknown
mean and variance (except for λc), such that the updating rules are basically the same: in round n+ 1,
we take the j best parameters {θ} and update as follows:

µn+1 =
κn

κn + j
µn +

j

κn + j
θ̄

κn+1 = κn + j

νn+1 = νn + j

Λn+1 = Λn + S +
κnj

κn + j
(θ̄ − µn)(θ̄ − µn)T

where θ̄ is the mean of the best parameters and S =
∑j
i=1(θi − θ̄)(θi − θ̄)T the (unnormalized)

estimation for the covariance of the best parameters.

To sample from the posterior distribution, we first draw Σ from the inverse-Wishart distribution
Σ ∼ Inv-Wishart(Λ−1n+1, νn+1), and then we draw samples from N (µn+1,Σ).

For the one dimensional normal distributions we follow the same updating rules, except that the
variance σ2

n+1 is updated as following:

σ2
n+1 =

1

νn
(νnσ

2
n + S +

κnj

κn + j
(θ̄ − µn)2)

To sample from the posterior we first draw σ2 ∼ Inv-χ2(νn+1, σ
2
n+1) and then draw samples from

N (µn+1, σ
2).

Gamma distribution The parameter λc for the Poisson distribution has a Γ-distribution as conju-
gate prior, which is as well updated in a Bayesian way. We update the hyperparameters k and θ of the
Γ distribution for the j best parameters {λi}i=1,...,j as:

kn+1 = kn +

j∑
i=1

λi

θn+1 =
θn

(1 + j · θn)
.
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E Pseudocode of the ABC method

Algorithm 2: Parametric approximation of the posterior via Bayesian updating
Input: Simulator p(x|θ); data traces {x0i}i∈I ; Summary statistics s(x) with weights W ; prior

distribution p(θ); number of rounds R; simulations per round N ; batchsize B, number of
accepted parameters nbest.

p̃1(θ) := p(θ) ;
for r ∈ (1, R) do

for n ∈ (1, N) do
Draw θr,n ∼ p̃r(θ) ;
for b ∈ (1, B) do

Simulate x̂r,n,b ∼ p(x|θr,n) ;
end
L(θr,n) := 1

IB

∑
i,b ||Ws(x0i)−Ws(x̂r,n,b)||2 ; // compute loss

end
θsorted := sort({θr,n}n∈N ) ; // sort by loss function
θbest := θsorted[0 : nbest] ; // accept best samples
p̃r+1(θ) := p̃r(θ|x0, θbest) ; // Bayesian updating of (proposal) prior

end
Return: p̃R+1(θ)

F Detailes for the inference method

For the presented data we run 100 rounds with 20 · 103 samples per round (except for the first round,
where we used 40 · 103 samples) and a batchsize of 4 simulated data traces per sampled parameter.
We accepted the 10 best parameters per round (the ones producing the lowest loss) and used these to
update our (proposal) prior.

For the prior distributions we used the following hyperparameters:

For the multivariate distribution for the non-linearity we used

µ0 = (20, 0.5)

κ0 = 4

ν0 = 4

Λ0 = Id2 ·
(

400
0.1

)
,

and truncated the distribution to the domain (0, 50)× (−2, 3).

For the univariate distribution for pr (ρ, γ) we used

µ0 = 0.3 (0.5, 1)

κ0 = 3

ν0 = 3

σ2
0 = 0.05 (0.05, 0.2) ,

and truncated the distribution to the interval (0, 1) ((0, 1), (0.05, 2)).

For the Gamma distribution Γ(k, θ) we specified k0 = 2, θ0 = 0.25 (E[λ] = kθ) and bounds (0, 1)
as additional prior information.

As described in the main text we took the histogram over the different event types as summary
statistics as well as the euclidean distance of the traces convolved with a Gaussian kernel g. As
additional entry we took the overall released vesicles. As scalings for for the summary statistics we
took Id8 · (5, 5, 5, 5, 2, 2, 4, 2)t in the order (|di ∗ g − d̂j ∗ g|2, total release,

∑
1d̂j=1, ...,

∑
1d̂j=6),

where di are the data traces and d̂j is the simulated data. The weight matrix W is the product of the
normalizing constants, which is the mean summary statistic of the data traces, with these scalings.
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Figure 7: Temporal jitter for the response to the Gaussian noise stimulus. Same as Fig. 5E, but
here for a Gaussian noise stimulus. As in previous studies [31], the lower contrast stimulation of the
Gaussian noise stimulus results in higher temporal jitter when compared to the binary noise stimulus.
This is well captured by the model. The exact numbers differ slightly to previous studies where a
sinusoidal stimulus was used instead of binary and binned Gaussian noise.

G Temporal jitter

In order to define the temporal precision of release events, we begin by computing the vector strength
for each quantal event type, V Sq:

V Sq =
1

Nq

√√√√√ Nq∑
i=1

cos

(
2πtqi
T

)2

+

 Nq∑
i=1

sin

(
2πtqi
T

)2

,

where Nq is the number of q-quantal events, tqi is the phase of the i-th q-quantal event with respect
to the stimulus, and T is the stimulus period. This metric takes values from zero to one, with zero
representing complete independence between event times and stimulus phase, while a value of one
indicates perfect phase-locking with all events occurring at exactly the same phase.

Temporal precision is more commonly expressed as temporal jitter, the standard deviation in millisec-
onds of the phase of the event times, as this yields a more intuitive interpretation. Vector strength can
be mapped to temporal jitter by a one-to-one function:

TJq =

√
2(1− V Sq)

2πf
,

where f is the stimulus frequency.
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H Results for the synthetic data

Figure 8: Approximated marginals for the synthetic data. One and two dimensional marginals of
the posterior distribution for all parameters inferred from synthetic data in response to a binary noise
stimulus.
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I Results for the experimental data

Figure 9: Marginals of the posterior for the experimental data (binary noise stimulus). A. The
time course of the mean and standard deviation of the one dimensional marginal distributions. B.
One and two dimensional marginals of the posterior.
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Figure 10: LN portion of the model for experimental data. A. Linear kernel according to the prior
and the posterior for the response to the binary noise stimulus. B. Non-linearity according to the prior
and the posterior for the response to the binary noise stimulus.

J Comparison to experimentally measured release rates

Figure 11: Inferred parameters reproduce the overall shape of vesicle release, as compared
with previously published results. A. Cumulative release rates for the model fit to experimental
data bypassing the LN block (same as Fig. 5F). B. Estimates of the cumulative release from a goldfish
rod bipolar cell in response to electric stimulation (taken from [34]).

Previous work has estimated maximum release rates from ribbon synapses by electrically stimulating
the cell and estimating the cumulative number of vesicles released [34]. In order to compare these
results with those estimated by fits of our model on experimental data, we bypassed the LN portion of
our model, instead setting the release probability parameter pd to mimic electrical stimulation. pd was
set to 0.8 during the period to simulate electrical stimulation, and 0.2 during the 250 ms period after
the stimulation to mimic lingering increases in internal calcium (based upon experimental recordings
[34]). All other parameters were set as fit with experimental data.

While the cumulative release between previous reports and our model vary by a constant scaling
factor, this is likely due to the stimuli used to fit the model to experimental data. The maximal
release rates estimated using physiological stimuli differ from those estimated using direct electrical
stimulation.
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