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Abstract 

Background 

Following infection with Mycobacterium tuberculosis (M.tb) individuals may rapidly develop 

tuberculosis (TB) disease or enter “latent” infection state with a low risk of progression to disease. The 

mechanisms underlying this process are incompletely known. Mathematical models use a variety of 

structures and parameterisations to represent this progression from infection with M.tb to disease. 

This structural and parametric uncertainty may affect the predicted impact of interventions leading to 

incorrect conclusions and decision making. 

Methods 

We used a simple dynamic transmission model to explore the effect of uncertainty in model structure 

and parameterisation on the predicted impact of scaling up preventive therapy. We compared three 

commonly used model structures and used parameter values from two different data sources. Models 

1 and 2 are equally consistent with observations of the time from infection to disease. Model 3, 

produces a worse fit to the data, but is widely used in published modelling studies. We simulated 

treatment of 5% of all M.tb infected individuals per year in a population of 10,000 and calculated the 

reduction in TB incidence and number needed to treat to avert one TB case over 10 years.  

Results 

The predicted impact of the preventive therapy intervention depended on both the model structure 

and the parameterisation of that structure. For example, at a baseline annual TB incidence of 

500/100,000, the impact ranged from 11% to 27% and the number needed to treat to avert one TB 

case varied between 38 and 124. The relative importance of structure and parameters varied 

depending on the baseline incidence of TB.    

Discussion 

Our analysis shows that the choice of model structure and the parameterisation can influence the 

predicted impact of interventions. Modelling studies should consider incorporating structural 

uncertainty in their analysis. Not doing so may lead to incorrect conclusions on the impact of 

interventions.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/666669doi: bioRxiv preprint 

https://doi.org/10.1101/666669
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Tuberculosis (TB) is an infectious disease most commonly caused by the bacteria mycobacterium 

tuberculosis (M.tb). Following infection with M.tb it is commonly stated that 10-15% of individuals will 

develop disease in their lifetime [1]. The risk of developing TB is known to vary with time since 

infection, with the highest risk in the first year following infection [2].  Disease which occurs soon after 

infection is typically referred to as primary TB. TB may also occur many years after initial exposure, 

either through reactivation of “latent” infection or due to re-infection [3, 4]. The mechanisms that 

underlie this process are incompletely known.   

Mathematical models are increasingly used to predict the impact of TB control strategies and to inform 

policy making. These models use a variety of structures and parameters to represent the progression 

from infection with M.tb to TB disease. While modelling studies often explore the sensitivity of results 

to parameters, sensitivity to the choice of model structure is rarely addressed in a systematic way. 

Two recent papers [5, 6] have compared different model structures to describe the progression from 

infection to disease and assessed their ability to reproduce observations of the time from M.tb 

infection to TB disease onset. These analyses suggested that certain model structures capture these 

dynamics better than others, and that the parameters and structures used in many published 

modelling studies do not accurately reproduce the temporal pattern of disease following exposure to 

M.tb observed in many settings. These findings raise important questions about how the structure 

and parameters commonly used to represent progression to disease may affect model predictions of 

the impact of control strategies.  

In this paper we use a simple dynamic transmission model of TB preventive therapy to explore the 

effect of the model structure and parameterisation used to represent progression from infection to 

disease on the predicted impact of a control strategy. The World Health Organisation (WHO) 

recommends TB preventive therapy for a number of high risk populations including people living with 

HIV, household contacts of pulmonary TB cases and dialysis and organ transplant patients [7]. Previous 

modelling [8-10] has highlighted increased use of preventive therapy as a key component of reaching 

the WHO global TB targets [11]. As preventive therapy aims to prevent progression from infection to 

disease, it is important to understand how the model structure and parameters used to represent this 

process effect the model results.  
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Methods 

Selection of model structures 

We compare 3 model structures for progression from infection to disease that are commonly used in 

TB modelling studies. The systematic literature review reported in Menzies et al [6] found that these 

3 structures accounted for approximately 70% of all published TB models. Both Menzies et al [6] and 

Ragonnet et al [5] showed that models 1 and 2 gave equally good fit to the available data on the 

cumulative incidence of TB following infection and it was not possible to distinguish a “best” model. 

Both studies also found model 3 gave a significantly worse fit, but as this structure is employed in a 

large proportion of published modelling studies (approximately 50% based on the literature review in 

[6]) we included it in our analysis.  

Description of models 

Figure 1 shows the different model structures incorporated into a simple dynamic transmission model 

of TB. The equations and steady state solutions for each of the models are given in the appendix.  

The following features are common to all models. Susceptible individuals (S) are infected with M.tb at 

a rate λ=βI where β is the rate of effective contact and I is the prevalence of TB. Background mortality 

is modelled at a constant rate, u, in all states. In addition, those in the disease state, I, are subject to 

an additional disease associated mortality rate, m. The birth rate is set to maintain a constant 

population size. All births are assumed to be susceptible. In all models we assume that those with TB 

disease (I) are removed back to the “slow” latent state (Ls) at a rate, τ. This represents effective 

treatment and natural recovery from disease. Prior exposure to M.tb. is assumed to confer some 

immunity against re-infection. This is captured through the parameter q which represents the relative 

susceptibility to re-infection among those with latent infection compared to the susceptibility to first 

infection among previously uninfected individuals.  

Preventive therapy is incorporated in a simple manner, aiming to be consistent across all models. The 

intention is not to make detailed predictions of the impact of preventive therapy, rather to illustrate 

how the impact may vary due to the choice of model structure. In each case we assume the population 

in all latent states is provided with effective preventive therapy at a constant rate θ. Those given 

preventive therapy move to the preventive therapy state, P where they have no risk of progression to 

disease but can be re-infected.  

Model 1 consists of 2 sequential latent states. Following infection all individuals enter the “fast” latent 

state (LF) where they have an annual rate of progression to disease, k. Those who do not develop 

disease transition to the “slow” latent state (LS), at an annual rate, e, where they have an annual rate 

of disease progression c (where c<k). Biologically, this assumes that all infected individuals have the 

same risk of developing TB following infection. Individuals in the “slow” latent state (Ls) and those 

who have been given preventive therapy (P) can be re-infected and return to LF. 

Model 2 consists of 2 parallel latent states. Following infection, some proportion (b) enter the “fast” 

latent state (LF) where they have an annual rate of progression to disease, k. The remainder (1-b) 

enter the “slow” latent state (LS) where they have an annual rate of disease progression c (where c<k). 

Biologically, this assumes that some proportion of individuals (b) are pre-determined to have a high 

risk of developing TB following infection. Individuals in LS and P can be re-infected with a proportion 

b moving to LF and the remainder remaining in/going to LS.  

Model 3 consists of a single “slow” latent state, LS. Following infection, some proportion (a) develop 

disease immediately. The remainder (1-a) enter the “slow” latent state where they have an annual 
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rate of disease progression c.  This can be seen as equivalent to model 2 but with an infinite rate of 

progression from the fast latent state to disease. Individuals in LS and P can be re-infected with a 

proportion a progressing directly to disease and the remainder remaining in/going to LS. 

 

 

Figure 1. Schematic of model structures. S = susceptible; LF = “fast” latent state; LS = “slow” latent 

state; I = TB disease; P = post preventive therapy. Definitions of model parameters are given in table 

1. 
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Model parameterisation 

The analysis in Ragonnet et al [5] and Menzies et al [6] compared the various model structures to 

different data sets and therefore identified different best-fitting parameters. We compare the impact 

of using these 2 different parameter sources on the model predictions of the impact of preventive 

therapy. The parameter values are shown in table 1. 

 Model 

 1 2 3 

 Menzies Ragonnet$ Menzies Ragonnet$ Menzies Ragonnet$ 

a, proportion 
progressing directly to 
disease 

- - - - 0.0665 0.085* 

b, proportion entering 
fast latent state 

- - 0.0866 
 

0.09 - - 

c, rate of progression 
to disease from slow 
latent state (per year) 

5.94x10-4 2.01x10-3 5.94x10-4 2.01x10-3 3.37x10-3 3.29x10-3 

k, rate of progression 
to disease from fast 
latent state (per year) 

0.0826 0.4015 0.955 4.015 - - 

e, rate of movement 
from fast latent state 
to slow latent state 
(per year) 

0.872 4.015 - - - - 

q, relative 
susceptibility to re-
infection compared to 
first infection 

0.5 

τ, rate of recovery from 
TB disease (per year) 

1 

β, number of effective 
contacts (per year) 

Varied to produce different TB incidence 

m, rate of TB 
associated mortality 

0.03 

 

Table 1. Parameters for the transmission model. $For Ragonnet et al we use the parameters 

estimated using least squares methods. *These parameters are not reported in Ragonnet et al so have 

been estimated to reproduce figure S14. Parameters in Ragonnet et al are reported in daily units and 

have been converted to annual units.  
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Modelling the impact of preventive therapy 

To explore the effect of structure and parameterisation on the model predictions we simulated the 

introduction of preventive therapy for all latently infected individuals in a population with TB 

prevalence in steady state (see appendix for steady state solutions for each model). We explore a 

range of baseline TB incidence from 0 to 1000/100,000. We assumed an annual coverage of 100% 

efficacious preventive therapy of 5%. We calculated the percentage reduction in TB incidence 

(compared to the endemic equilibrium) after 10 years of preventive therapy. We also calculated the 

cumulative number of cases averted, the cumulative number of people given preventive therapy and 

the average number needed to treat (NNT) with preventive therapy to avert one TB case over the 10-

year period assuming a constant population of 10,000. 
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Results 

Cumulative risk of TB 

Figure 2 and table 2 show the predicted cumulative incidence of TB after infection (in the absence of 

reinfection or preventive therapy) predicted by each model using each parameter set in table 1. 

Models 1 and 2 predict the same cumulative incidence over time. Beyond the time period of the data 

the models were fitted to (5 years and 10 years respectively, shown by the vertical dashed lines in 

figure 2), model 3 predicts a higher cumulative risk of TB than models 1 and 2.  

 
Figure 2. Cumulative proportion that have developed TB by time since infection. Colours indicate 

model, line type indicates source of parameter estimates. The vertical lines indicate the maximum 

time of the data to which the models were fitted. Note, results for models 1 and 2 overlap. 

 Menzies Ragonnet 

 Cumulative proportion of those infected developing TB 

Model 1 0.11 0.17 

Model 2 0.11 0.17 

Model 3 0.20 0.21 

 Proportion of disease occur due to fast progression  

Model 1 0.76 0.52 

Model 2 0.76 0.52 

Model 3 0.33 0.40 

Table 2. Cumulative proportion developing TB for each model and each parameter source. 

To better explore the relative effect of model structure and parameters we re-parameterised model 

3 to give the same cumulative incidence as models 1 and 2. We fixed the rate of progression to disease 
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from the slow latent state (c) to be the same in model 3 as in models 1 and 2 and calculated the value 

of a, the proportion progressing directly to disease in model 3, required to give the same cumulative 

incidence (see appendix equation 39). This gives new values for a of 0.084 for Menzies and 0.090 for 

Ragonnet. In the following analysis we consider both the original and updated parameterisations of 

model 3.  

Steady state incidence 

Figure 3 shows the steady state TB incidence for each model as a function of the contact parameter, 

β. The left hand panel shows the results using the parameter estimates from Menzies et al, the right 

hand panel those obtained with the parameters from Ragonnet et al.  

Figure 3. Steady state TB incidence as a function of the contact parameter, β. Left: results using 

parameter estimates from Menzies et al; right: results using estimates from Ragonnet et al. Colours 

indicate the different models. Dashed lines show the results when reinfection is not included in the 

model. Note, results for models 1, 2 and 3 (updated parameters) overlap.    

In the full model including reinfection (solid lines in figure 3) the original parameterisation of model 3 

(blue line) results in the highest incidence at a given value of β due to the higher lifetime risk of 

developing TB following infection (see figure 2). At low values of β models 1, 2 and the updated 

parameterisation of model 3 give the same incidence. However, as the contact rate, β, increases the 

model predictions diverge with a lower incidence predicted with model 1 at a given value of β. This 

divergence occurs due to differences in the risk of reinfection. In model 1, all individuals spend some 

time in the “fast” latent state where they are not at risk of reinfection and therefore the incidence of 

disease is lower. This role of reinfection can be seen by contrasting with the results from a model with 
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no reinfection (dashed lines in figure 3). In this case models 1, 2 and the updated parameterisation of 

model 3 predict the same incidence as a function of β.  

The same qualitative patterns are observed for both parameter sources but the divergence at higher 

incidence is smaller when using the parameters from Ragonnet et al.  

Impact of preventive therapy 

Figure 4 shows the results of simulating 10 years of preventive therapy for each model structure as a 

function of the steady state TB incidence. Solid lines show the results using the parameterisation from 

Ragonnet et al., dashed lines the results using parameters from Menzies et al.  

There is considerable difference between the predictions using different models and 

parameterisations. For example, at an incidence of 500/100,000 the predicted reduction in incidence 

(top left panel of figure 4) ranges from 11% to 27%. At the same incidence, the NNT (bottom left panel 

of figure 4) varies from 38 to 124. 

For all models the impact declines as a function of increasing steady state TB incidence. This trend is 

due to two factors: at higher incidence the prevalence of infection is higher so there is less indirect 

benefit of reducing future transmission by preventing incident TB; at higher incidence the risk of 

reinfection after preventive therapy is greater which reduces the long-term benefit of treatment.   

The largest impact is predicted using the original parameterisation of model 3. This is due to the higher 

risk of developing disease following infection in this model (see figure 2). As a result, the contact rate 

needed to produce a given incidence is smaller (see figure 3) and therefore the risk of reinfection after 

preventive therapy is lower. The prevalence of infection at a given incidence is also lower in this model 

which results in a greater indirect benefit of preventing incident TB. In contrast, the lowest impact is 

observed with the re-parameterised version of model 3. This is because it is not possible to directly 

prevent fast progression to disease in this model structure by providing preventive therapy to the 

latent populations; these cases do not pass through a “fast” latent state where they can be treated 

with preventive therapy. At low incidence we see a very similar predicted impact for models 1 and 2, 

however the predictions diverge at higher incidence, with a larger impact observed with model 2 

compared to model 1. This divergence is due to the different risk of reinfection after preventive 

therapy (with no reinfection models 1 and 2 predict the same impact at any incidence). In model 1 a 

higher β value is needed to give the same incidence of disease (see figure 3) and therefore the risk of 

reinfection is higher at a given incidence.  These qualitative patterns are the same for both parameter 

sources. 
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Figure 4. Results of simulating 10 years of preventive therapy as a function of steady state TB 

incidence. Top left: Percentage reduction in TB incidence from steady state equilibrium; top right: 

cumulative number given preventive therapy (assuming a constant population size of 10,000); 

bottom left: cumulative number of TB cases averted; bottom right: average number needed to treat 

with preventive therapy to avert one case of TB. Colours indicate the different models. Line types 

indicate the different sources of parameter estimates. 

Despite the declining impact, the absolute number of cases averted increases with increasing steady 

state incidence because there are more cases which can be prevented. Similarly, the number of people 

treated with preventive therapy also increases with steady state incidence, reflecting the higher 

prevalence of latent infection. For models 1 and 2 the NNT declines with increasing steady state 

incidence while for model 3 we observe non-monotonic behaviour where the NNT initially declines 

with increasing incidence before increasing at higher incidence. This occurs because at a higher 

incidence a larger proportion of disease is due to reinfection and rapid progression. As this cannot be 

prevented in model 3 the impact predicted by model 3 declines more rapidly with increasing 
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incidence. This behaviour was observed in a previous analysis using model with structure 1 [12]. We 

explore this further below.   

Comparison of models 1 and 2 

The previous analysis of model structures for progression from infection to disease [5, 6] showed that 

it was not possible to select a “best” model using available data on timing of disease after infection 

and that models 1 and 2 produced an equally good fit. Figure 5 shows the results of combining the 

predictions of these 2 models only (i.e. excluding model 3 which gives a poorer fit to the data) within 

and across parameter sources. The solid black lines show the total envelope of predicted results while 

the shaded areas show the prediction when the results for both structures are combined for a given 

parameters source. Excluding model 3 reduces the overall range in model predictions however there 

is still considerable variation, particularly in the estimated NNT at low to intermediate incidence (right 

panel of figure 5). Figure 5 also highlights that the relative importance of model structure and 

parameters depends on the baseline incidence. At low to intermediate incidence the model structure 

does not affect the results and the uncertainty is almost entirely due to the different parameter 

sources. However, at higher incidence, the model structure becomes increasingly important. 

Figure 5. Range of predictions from models 1 and 2. Solid black lines show the total envelope of 

predictions for both models and both parameterisations. The shaded grey area shows the range using 

parameters from Menzies et al, the shaded yellow area the values using parameters from Ragonnet 

et al. 
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Non-monotonic relationship between NNT and steady state incidence 

Previous analysis of a simple model of preventive therapy [12] found a non-monotonic relationship 

between baseline incidence and NNT using model structure 1 with a minimum NNT occurring at an 

incidence in the region of 700/100,000. In this analysis we observed this non-monotonic relationship 

for model 3 but not for models 1 or 2 within the range of incidence explored. The key difference 

between the parameterisations of model 1 here and the analysis in [12] is the duration of the fast 

latent state which is determined by e, the rate of movement from the fast latent state to the slow 

latent state. In [12] this was assumed to be 5 years while in the parameterisations used here it is much 

shorter (between 0.25 and 1.15 years).  

To explore this, we compared model 1 with values of e of 1, 0.5, 0.33̇3, 0.25 and 0.2 which give 

durations of the fast latent state of 1 to 5 years. We set the rate of progression from the slow latent 

state c = 5.94x10-4 and calculated the value of k (the rate of progression from the fast latent state) to 

give a cumulative risk of TB of 0.11, the same as with the parameters estimated in Menzies et al. (see 

table 2). 

Figure 6 shows the predicted outputs of the simulated preventive therapy intervention for each 

duration of the “fast” latent state.   

This shows that the non-monotonic behaviour is observed but that the “optimum” incidence (i.e. the 

value at which the NNT is minimised) is dependent on the duration of the fast latent state. With a 

duration of 5 years (yellow line) the minimum NNT occurs at an incidence of 1008/100,000. However, 

with a duration of 1 year (grey line) the minimum NNT occurs at a much higher incidence of 

3685/100,000.  
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Figure 6. Predicted impact of preventive therapy in model 1 with different durations of “fast” 

latency. Top left: Percentage reduction in TB incidence from steady state equilibrium; top right: 

cumulative number given preventive therapy (assuming a constant population size of 10,000); bottom 

left: cumulative number of TB cases averted; bottom right: average number needed to treat with 

preventive therapy to avert one case of TB. Colours indicate the different durations of the “fast” latent 

state. 
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Discussion 

Our results show that both the model structure and parameter values used to represent progression 

from infection to disease can affect model predictions of the impact of preventive therapy on TB 

incidence. This highlights the importance of including both parametric and structural uncertainty in 

TB modelling studies. Failure to do so may result in inaccurate predictions of the potential impact of 

interventions.   

Our analysis extends the findings of [5, 6] and shows that, in addition to producing a worse fit to data 

on the cumulative incidence of TB following infection, model 3 also predicts very different effects of 

preventive therapy when compared to models 1 and 2. Depending on the parameterisation of this 

model, it can both over or under estimate the impact compared to models 1 and 2. Our findings also 

show that models 1 and 2 (which fit the data equally well) can give different predictions of intervention 

impact.  

We found that the relative importance of the model structure and the choice of parameters depends 

on the baseline incidence with the choice of structure becoming more important at higher incidence. 

This again highlights the need to consider both forms of uncertainty in modelling studies. 

This work also suggests that the “optimum” incidence for use of preventive therapy found in [12] 

depends strongly on the model structure and parameterisation. Using the same model structure as in 

[12] we found that the NNT does not display non-monotonic behaviour within a plausible range of 

incidence unless the duration of the fast latent state is assumed to be much longer than estimated in 

[5, 6].  

To allow us to explore a number of different model structures for the progression from infection to 

latency the rest of the model was kept as simple as possible. These simplifications may affect our 

findings. We used a very simple representation of demography, assuming a constant population size 

and a constant life expectancy. Previous work [13] has shown the importance of considering realistic 

age structure in models of TB transmission.  

We assumed TB was in equilibrium before the introduction of preventive therapy, but trends in 

disease may affect the prevalence of infection and the contribution of ongoing transmission and 

reactivation to TB incidence. These factors are likely to influence the model predictions of intervention 

impact and may also affect the interaction between structure, parameters and the model outputs.  

The representation of the preventive therapy intervention was greatly simplified to explore the impact 

of model structure on the results and the findings should not be interpreted as predictions of the likely 

impact of preventive therapy. As such we did not consider uncertainty in other parameters or 

assumptions describing the intervention. These are also likely to result in uncertainty in model 

predictions.  

This work has focussed on the effect of progression model structure and parameters on the impact of 

preventive therapy. These features of TB models may also affect the predicted impact of other 

interventions. They may be particularly relevant in models used to study the impact of other 

preventive strategies such as vaccines but are likely to be important when considering a wide range 

of interventions.  
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Conclusion 

Uncertainty in model structure is often ignored in TB modelling studies. Future studies should aim to 

compare different structures when predicting impact of interventions to ensure the uncertainty in 

model predictions is captured more accurately. 

To ensure both structural and parametric uncertainty can be explored in a systematic way, 

standardised methods for incorporating model structure are needed. Approaches such as Bayesian 

model averaging may be of value, but more work is required to increase their use in infectious disease 

modelling.  

In addition to incorporating uncertainty in model predictions it is also important to understand how 

different sources of input uncertainty contribute to the variability in outputs. Methods to conduct 

quantitative sensitivity analysis of both model structure and parameters are needed. These would 

allow the key drivers of uncertainty to be identified and focus efforts on collecting data which will 

reduce uncertainty in future model predictions.  
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Appendix 

The appendix provides further details of the model equations and steady state solutions. 

Model Equations 

Variable Description 
S Susceptible. Never exposed to M.tb. 
LF Latently infected with M.tb. At risk of “fast” progression to active TB 
LS Latently infected with M.tb. At risk of “slow” progression to active TB 
I Active TB disease 
P Post-preventive therapy 
T Total population  

Table A1. Model variables 

Parameter Description 
a Proportion progressing directly to disease after infection (model 3) 
b Proportion entering fast latent state after infection (model 2) 
c Rate of progression to disease from slow latent state (per year) (all models) 
e Rate of movement from fast latent state to slow latent state (per year) (model 1) 
k Rate of progression to disease from fast latent state (per year) (models 1 and 2) 
m Excess mortality rate due to active TB (per year) 
q Relative susceptibility to reinfection if previously infected 
u Background mortality rate (per year) 
λ= βI Force of infection 
β Effective contact rate (per year) 
θ Rate of starting preventive therapy (per year) 

Table A2. Model parameters 

 

Model 1 

𝑑𝑆

𝑑𝑡
= −(𝑢 + 𝜆)𝑆 + 𝑢𝑇 +𝑚𝐼         (1) 

𝑑𝐿𝐹

𝑑𝑡
= 𝜆(𝑆 + 𝑞(𝐿𝑆 + 𝑃)) − (𝑘 + 𝑒 + 𝑢 + 𝜃)𝐿𝐹           (2) 

𝑑𝐿𝑆

𝑑𝑡
= 𝑒𝐿𝐹 − (𝑞𝜆 + 𝑐 + 𝑢 + 𝜃)𝐿𝑆 + 𝜏𝐼        (3) 

𝑑𝐼

𝑑𝑡
= 𝑘𝐿𝐹 + 𝑐𝐿𝑆 − (𝜏 + 𝑢 +𝑚)𝐼        (4) 

𝑑𝑃

𝑑𝑡
= 𝜃(𝐿𝐹 + 𝐿𝑆) − (𝑞𝜆 + 𝑢)𝑃         (5) 

 

Model 2 

𝑑𝑆

𝑑𝑡
= −(𝑢 + 𝜆)𝑆 + 𝑢𝑇 +𝑚𝐼         (6) 

𝑑𝐿𝐹

𝑑𝑡
= 𝜆𝑏(𝑆 + 𝑞(𝐿𝑆 + 𝑃)) − (𝑘 + 𝑢 + 𝜃)𝐿𝐹       (7) 

𝑑𝐿𝑆

𝑑𝑡
= 𝜆(1 − 𝑏)(𝑆 + 𝑞𝑃) − (𝑞𝜆𝑏 + 𝑐 + 𝑢 + 𝜃)𝐿𝑆 + 𝜏𝐼      (8) 
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𝑑𝐼

𝑑𝑡
= 𝑘𝐿𝐹 + 𝑐𝐿𝑆 − (𝜏 + 𝑢 +𝑚)𝐼        (9) 

𝑑𝑃

𝑑𝑡
= 𝜃(𝐿𝐹 + 𝐿𝑆) − (𝑞𝜆 + 𝑢)𝑃         (10) 

 

Model 3 

𝑑𝑆

𝑑𝑡
= −(𝑢 + 𝜆)𝑆 + 𝑢𝑇 +𝑚𝐼         (11) 

𝑑𝐿𝑆

𝑑𝑡
= 𝜆(1 − 𝑎)(𝑆 + 𝑞𝑃) − (𝑞𝜆𝑎 + 𝑐 + 𝑢 + 𝜃)𝐿𝑆 + 𝜏𝐼      (12) 

𝑑𝐼

𝑑𝑡
= 𝜆𝑎(𝑆 + 𝑞(𝐿𝑆 + 𝑃)) + 𝑐𝐿𝑆 − (𝜏 + 𝑢 +𝑚)𝐼       (13) 

𝑑𝑃

𝑑𝑡
= 𝜃𝐿𝑆 − (𝑞𝜆 + 𝑢)𝑃          (14) 

 

Steady state solutions 

For each model we can show that with reinfection (q > 0) but in the absence of preventive therapy (θ 

= 0) the steady state value of I is given by the solution to a quadratic equation of the form: 

 𝑝1𝐼
2 + 𝑝2𝐼 + 𝑝3 = 0 

 

Model 1 

𝑝1 = 𝑞𝛽2((𝑍𝑌 −𝑚𝑘)(𝑍 − 𝑒) − 𝑘(𝑒𝑚 + 𝜏𝑍))       (15) 

𝑝2 = 𝛽𝑍((𝑍𝑌 −𝑚𝑘)(𝑐 + 𝑢) − 𝑐(𝑒𝑚 + 𝜏𝑍)) + 𝑢𝛽𝑞((𝑍𝑌 − 𝛽𝑘)(𝑍 − 𝑒) − 𝑘(𝑒𝛽 + 𝑍𝜏))  (16) 

𝑝3 = 𝑢𝑍((𝑍𝑌 − 𝛽𝑘)(𝑐 + 𝑢) − 𝑐(𝑒𝛽 + 𝑍𝜏))       (17)

       

where  

𝑍 = 𝑘 + 𝑒 + 𝑢           (18) 

𝑌 = 𝜏 + 𝑢 +𝑚           (19) 

The other state variables are given by: 

𝑆 =
𝑢+𝑚𝐼

𝑢+𝛽𝐼
           (20) 

𝐿𝑆 =
𝑒𝛽𝐼𝑆+𝑍𝜏𝐼

𝑍(𝑞𝛽𝐼+𝑐+𝑢)−𝑒𝑞𝛽𝐼
          (21) 

𝐿𝐹 =
𝛽𝐼(𝑆+𝑞𝐿𝑆)

𝑍
           (22) 
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Model 2 

𝑝1 = −𝑢𝑞𝑏𝛽2(𝑌 + 𝑘)           (23) 

𝑝2 = 𝑘𝛽𝑏(𝑚(𝑐 + 𝑢) + 𝑞𝑢(𝜏 + 𝛽)) + 𝛽(𝑘 + 𝑢)(𝑐(𝑚(1 − 𝑏) + 𝜏) − 𝑌(𝑞𝑏𝑢 + 𝑐 + 𝑢))  (24) 

𝑝3 = 𝛽𝑢(𝑘(𝑏𝑢 + 𝑐) + 𝑐𝑢(1 − 𝑏)) + 𝑢(𝑘 + 𝑢)(𝑐𝜏 − 𝑌(𝑐 + 𝑢))     (25) 

where 

𝑌 = 𝜏 + 𝑢 +𝑚           (26) 

The other state variables are given by: 

𝑆 =
𝑢+𝑚𝐼

𝑢+𝛽𝐼
           (27) 

𝐿𝑆 =
(1−𝑏)𝛽𝐼𝑆+𝜏𝐼

𝑞𝛽𝐼𝑏+𝑐+𝑢
          (28) 

𝐿𝐹 =
𝛽𝐼𝑏(𝑆+𝑞𝐿𝑆)

𝑘+𝑢
           (29) 

 

Model 3 

𝑝1 = 𝑎𝑞𝛽2(𝑌 − 𝑚 − 𝜏)          (30) 

𝑝2 = 𝑌𝛽(𝑞𝑎𝑢 + 𝑐 + 𝑢) − 𝑎𝛽𝑢(𝑚 + 𝑞(𝛽 + 𝜏)) − 𝑐𝛽(𝑚 + 𝜏)     (31) 

𝑝3 = 𝑢2(𝑌 − 𝑎𝛽) + 𝑐𝑢(𝑌 − 𝛽 − 𝜏)        (32) 

where 

𝑌 = 𝜏 + 𝑢 +𝑚           (33) 

The other state variables are given by: 

𝑆 =
𝑢+𝑚𝐼

𝑢+𝛽𝐼
           (34) 

𝐿 =
(1−𝑎)𝛽𝐼𝑆+𝜏𝐼

𝑞𝑎𝛽𝐼+𝑐+𝑢
           (35) 
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Cumulative incidence of TB 

The final proportion of infected individuals who will develop disease in model i, Pi is given by: 

𝑃1 =
𝑘(𝑐+𝑢)+𝑒𝑐

(𝑘+𝑒+𝑢)∗(𝑐+𝑢)
          (36) 

𝑃2 = 𝑏
𝑘

𝑘+𝑢
+ (1 − 𝑏)

𝑐

𝑐+𝑢
         (37) 

𝑃3 = 𝑎 + (1 − 𝑎)
𝑐

𝑐+𝑢
          (38) 

Rearranging equation (38) we can obtain an expression for the value of a, the proportion progressing 

directly to disease in model 3: 

𝑎 =
𝑃1−

𝑐

𝑐+𝑢

1−
𝑐

𝑐+𝑢

           (39) 
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