












occurring was calculated as well as the 95% confidence interval for the median via 
bootstrapping (​n​ = 1000). 
 
Identifying ROIs with monosynaptic connections to a patched neuron 
A criterion for including cell responses to rate and temporally coded signals was passing a test 
for reliable monosynaptic connections. Evidence for a mono-synaptic connection was defined as 
'a positive deflection in membrane potential 0.5-2.0 ms after the onset of optogenetic 
stimulation'. This was characterized by fitting a piecewise linear function of the form: 

 

 

corresponding to the sum of N linear functions with slopes ​w​ with N different latencies ​θ​ with a 
constant baseline V​base​. Functions with order 0 ≤ N ≤ 6 were fit. Functions of order N = 0 
correspond to a constant baseline, i.e., no mono-synaptic connection. Likewise, functions of 
order N=1 correspond to a drifting baseline, i.e., no mono-synaptic connection. These models 
were compared to form a null model of order N​null ​ with a chi-squared goodness of fit test: 

 
where  Γ(​x​) corresponds to the gamma function, and γ(​x,y​) corresponds to the lower incomplete 
gamma function. Functions of order N​ ​≥ 2 correspond to models with a mono-synaptic 
connection. The model with the lowest Bayesian information criterion is our alternative model 
with order N​alt​ i.e., 
��

��
��

Subsequently, the alternative model  of order N​alt​ and the null model  of order N​null 
are compared with a chi-squared goodness of fit test: 
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if ​p ​alt ​ ≥  0.99, this is taken as evidence for a mono-synaptic connection in a given trial. Each of 
the 10 optogenetically targeted inputs underwent 5 trials for a total of 50 trials. From this, if 
45/50 (90%) trials demonstrated mono-synaptic input, the monosynaptic reliability test was 
passed. This allows for a degree of flexibility in the reliability of inputs, e.g., half of the 
optogenetically stimulated inputs could fail one trial, or one input could fail all trials. 
 
Encoding a 1-bit random signal with synchrony or rate of ROI activation 
To examine the responses of different neuron types to synchrony and rate of inputs we 
developed protocols for optically encoding a random 1-bit signal (0 versus 1) in a brain slice. 
Our protocols relied on monosynaptic inputs from 10 ROIs, so during a recording session, we 
first sought to find 10 ROIs that contained monosynaptically connected neurons with the cell 
that was being recorded. To do this, we drew 10 discs of illumination centred on mCherry+ 
neurons, that were in close proximity to the mCherry− patched cell. In order to mitigate 
unintended cross-stimulation of ROIs, we tried to space out the spots from each other by at 
least 50 μm, as we had previously observed that the probability of spiking dropped significantly 
if a spot was placed at least 50 μm from a cell (​Fig. S1​). To determine ROIs with monosynaptic 
connections to the recorded neuron, we stimulated each ROI five times for 50 ms. If activation 
of the ROI elicited a depolarization in the recorded cell 0.5-5 ms after the onset of illumination at 
least 90% of the time, cell 100% of the time. Once the synaptic pairs were found, we excited the 
10 presynaptic mCherry+ cells using the artificial synchrony and rate optogenetic protocols we 
developed 

A one-bit signal s(​t​) was encoded in the optogenetically-driven activity of 10 presynaptic 
L2/3 pyramidal cells using either a rate or temporal code. Under a rate code, presynaptic 
neurons were driven by pulses  sampled from N independent inhomogenous Poisson 
process with, depending on the value of s(​t​), a high or a low rate  i.e.,  

 

 
 
Under a synchrony code, presynaptic neurons were driven by pulses  sampled from N 
independent homogeneous Poisson processes or from a single homogeneous Poisson process, 
creating states of uncorrelated and perfectly correlated pulses: 
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The rate  was set to the mean rate for the rate-coded signal, i.e.,  
 
Data Analysis 
All data analysis code was written in python 2.7 using tools from the scientific computing 
ecosystem (numpy​29​, scipy​30​, matplotlib ​31​, scikit-learn ​32​, pandas​33​). All code will be made publicly 
available prior to publication. 

Electrophysiological characterization 
Electrophysiological characteristics for each neuron were estimated from 500ms current 
injection steps (I​inj ​) ranging from -80 pA to 400 pA in 40 pA increments. Eleven features were 
extracted in total including: Resting membrane potential (V​rest​, mV), Input resistance (R​in​, MΩ), 
Cell capacitance (C​mem ​pF), membrane time-constant (τ​mem,​ ms), Rheobase (I​θ​, nA), f-I slope (f′, 
Hz/nA), Spike adaptation ratio, Sag Amplitude (V​sag​, mV), Spike threshold (V​θ​, mV), Spike 
amplitude V​amp​, mV), and Spike half-width (T​half​, ms). Standard definitions for each of these 
features were used ​16,34,35​, but we will include them here for clarity. 

● Spike times were identified as times at which membrane potentials crossed -20 mV with 
a positive gradient. 

● Rheobase I​θ​ (current at which non-zero spike counts occur) and f-I slope f’ were 
estimated by fitting the non-linear function  to spike counts at 
each I​inj ​ step value. Many cell types display spike accommodation with non-linear 
above-rheobase f-I relationships. We define f-I slope to mean the initial slope above 
rheobase. Therefore, we fit this function to sub-rheobase and up to the first five 
above-rheobase spike counts inclusively. 

● Spike adaptation ratio was estimated as the ratio between the last and first spike-time 
intervals (the difference between spike times). This requires a minimum of three spikes 
to estimate. For spike-trains with ≥ 7 spikes, the last two and first two intervals were 
used to estimate the ratio to improve estimate quality. Only the spike train from the 
highest I​inj ​ was used to estimate this feature. 

● V​rest​ was estimated as the average membrane potential in the 10 ms prior to current 
injection. 

● V​sag ​was estimated as  at I​inj ​= -80 nA during current injection. 
● V​θ​ was estimated from all extracted spikes. A window around each identified spike time 

was used to extract action potential V(t) traces and the z-scored slope z(V'(t)) of each 
action potential was calculated. V​θ​ was estimated as the membrane potential at which 
z(V'(t)) ≥ 0.5 

● V​amp​ was estimated as  for each action potential 
● T​half​ is defined as the duration an action potential  and was 

averaged across all extracted action potentials. 
● R​in​ measurements were calculated and averaged across membrane potentials resulting 

from sub-rheobase, non-zero current injection. R​in​ was calculated using Ohm's law as 
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 where the steady-state membrane potential V​∞​ was estimated as the 
mean membrane potential in the last 10 ms of current injection. 

● τ​mem​ measurements were taken from membrane potential decay 100 ms after 
sub-rheobase non-zero current injection. Estimates were calculated by fitting a single 
order exponential function of the form  and averaged. 

● C​mem ​was calculated as τ​mem​/R​in 

 

Mutual Information 
Mutual information ​I​36​ between the response ​r(t)​ of the postsynaptic neuron and the one-bit 
signal ​s(t) ​was used to assess the performance of the postsynaptic neuron in encoding the 
temporally-coded signal. 
 

 
 
where ​H​(r), ​H ​(s), ​H ​(r, s) are the entropy of the response, signal, and joint entropy of the signal 
and response respectively. 
 
Since temporal correlations increase amongst inputs when rates increase, the mutual 
information ​I​ was conditioned on the number of presynaptic inputs  to discern 
how well the postsynaptic neuron encodes the rate-coded signal.  
 

 
 

where H(r, y), H(s, y), and H(r, s, y) are the joint entropy of the postsynaptic response and 
presynaptic count, the signal state and the presynaptic input count, and the response, signal 
state, and presynaptic input count respectively, whereas H(y) is the entropy of the presynaptic 
input count 
 
The entropy of discrete variables​36,37​ U (signal state, presynaptic input count, postsynaptic spike 
count) was estimated via 
 

 
 
The entropy of continuous variables (average membrane potential) was estimated by 
constructing histograms to approximate the probability density function of the variable, i.e.,  
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Along bin edges b, where the number of bins (​N​bins​ = B-1 ​) was chosen as the maximum of 
Sturges’ formula ​38​ and the Freedman-Diaconis rule ​39​: 
 

 
Where ​n​ is the size of data ​u​. 
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Supplemental Figures 
 

 
Supplemental Figure 1. L2/3 Pyramidal Neurons reliably spike when illuminated with 
15μm spots placed ​≤​50 μm away. 
A) Experimental procedure. B) Given that single-photon illumination produces a cone of 
illumination above and below cells being stimulated, we conducted the protocol shown in A), 
while also stimulating the recorded cell when the light was in focus and directly on top of the cell 
(z = 0), above it (z = 50 μm) or below it (z = -50 μm). C) Sample responses from ChR2+ neuron 
to spots placed at varying locations when the light was directly focused on the cell (z = 0) D) 
Median spiking probability of ChR2+ neurons (n= 15) to spots placed at varying locations within 
the microscope’s field of view with spot directly in focus of the cell (i.e. z = 0). D) Same analysis 
as D) except with cellular responses to spots illuminated when the focal point was above or 
below the cell of interest (i.e. z = 50 μm or z = -50 μm). 
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Supplemental Figure 2. Artificial rate and synchrony of optical inputs to Layer 2/3 
pyramidal neurons mimic ​in vivo ​-like responses in postsynaptic cells.  
A) Power spectral density (PSD) of neuronal recordings to either full field, rate or synchrony of 
optical inputs. F) Correlations of each spectrum to a pink noise line.  
  
 

 
Supplemental Figure 3. Prolonged polysynaptic activity was produced upon activation of 
our ROIs.  
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Supplemental Figure 4. Presynaptic spike count increases when higher rates of optical 
input were used. 
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