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Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR
associated (Cas) effector proteins enable the targeting of DNA double-strand breaks (DSBs) to
defined loci based on a variable length RNA guide specific to each effector. The guide RNAs
are generally similar in size and form, consisting of a ~20 nucleotide sequence complementary
to the DNA target and an RNA secondary structure recognized by the effector. However, the
effector proteins vary in Protospacer Adjacent Motif (PAM) requirements, nuclease activities,
and DNA binding kinetics. Recently, ErCas12a, a new member of the Cas12a family, was
identified in Eubacterium rectale. Here, we report the first characterization of ErCas12a activity
in zebrafish and human cells. Using a fluorescent reporter system, we show that
CRISPR/ErCas12a elicits strand annealing mediated DNA repair more efficiently than
CRISPR/Cas9. Further, using our previously reported gene targeting method that utilizes short
homology, GeneWeld, we demonstrate the use of CRISPR/ErCas12a to integrate reporter
alleles into the genomes of both zebrafish and human cells. Together, this work provides
methods for deploying an additional CRISPR/Cas system, thus increasing the flexibility

researchers have in applying genome engineering technologies.
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Introduction

CRISPR systems have been widely adopted in zebrafish research due to their efficacy
and ease of reprogramming DNA binding activity, which is mediated by a single chimeric short
guide RNA (sgRNA) molecule ' 2. The CRISPR toolbox continues to expand with the
identification of systems that display varying PAM requirements and produce a different DSB
architecture *. While Cas9 proteins often hydrolyze DNA leaving a blunt-ended cut three base
pairs (bps) upstream from the 5’ end of the PAM sequence, Cas12a proteins from
Acidaminococcus and Lachnospiraceae spp. hydrolyze DNA in a staggered fashion, cutting on
the 3’ side of the PAM and leaving 5’ single-stranded overhands of 4 nucleotides °. The
architecture of the DSB and end resection products are critical determinants of DNA repair
pathway activation. . For example, inducing DNA overhangs with staggered CRISPR/Cas9
nickases targeted to opposite strands can stimulate precision genome engineering using
oligonucleotides ’. Thus, there is demand for CRISPR variants that generate different DSB

architectures and elicit more predictable repair outcomes for precision genome engineering.

CRISPR/Cas12a activity has been reported in zebrafish by injection of sgRNA/Cas12a
protein ribonucleoprotein (RNP) complexes 2 °. In these studies it was shown that Cas12a -
mediated DNA cleavage could be further enhanced by a 34°C heat shock or by co-targeting of
nuclease dead Cas9 (dCas9) to the Cas12a target site, indicating that DNA melting is a
potential rate limiting step for Cas12a. Cas12a resulted in increased efficiency of oligonucleotide
incorporation as compared to Cas9 into genomic cut sites by homology-directed repair,
suggesting the two enzymes may employ distinct mechanisms and result in different genomic
DNA end resection products 8. A CRISPR/Cas12a system was identified in Eubacterium rectale,
and found to be ancestrally related to the type V class Il family of CRISPR proteins sharing the
greatest similarity with Cas12a from Acidaminococcus sp. (AsCas12a) (Figure 1a). Eubacterium
rectale Cas12a (ErCas12a) is a 1262 amino acid protein that recognizes a 5’-YTTN PAM and
uses a 42 or 56 base guide RNA to recognize and catalyze site-specific DNA cleavage'®.
CRISPR/ErCas12a is active in human cells '°, but its application for gene targeting in vivo and

in vitro has yet to be described.

Microhomology mediated end joining (MMEJ) is a DNA repair pathway that uses short
regions of homology between resected DNA ends to drive repair, leading to predictable

outcomes after nuclease targeting "' > 3. MMEJ-based gene editing and targeted integration
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using MMEJ has been described in zebrafish and mammalian cells, although the length of the
homology arms appear to be more similar in length to those employed in single strand
annealing (SSA) ™ ° 617 To use MMEJ/SSA for gene targeting, nuclease targeting of a donor
plasmid in vivo liberates a donor cassette, exposing homology arms that are complementary to
the nuclease cut site in the genome, and thereby directs integration into genomic DNA. A more
general term for using this strategy for gene targeting is Homology-Mediated End Joining
(HMEJ) 8. We recently reported high efficiency gene targeting by HMEJ with short homology
arms called GeneWeld '°. GeneWeld involves the simultaneous cleavage of a donor plasmid
and a genomic target with designer nucleases to reveal 24 or 48 bp homology arms that can be
used by the cellular MMEJ or SSA machinery for homology directed repair leading to donor
integration. GeneWeld works with genomic DSBs generated by either TALENSs or

CRISPR/Cas9, but other nucleases have not yet been tested.

Here, we report the successful application of ErCas12a for gene targeting in zebrafish,
widely used to model development and disease, and in human cells. Consistent with its
similarity to other Cas12a proteins, high ErCas12a activity requires a 34°C heat shock treatment
in zebrafish. However, injection of mMRNA encoding for ErCas12a is sufficient to induce DSB
activity, and pre-crRNA can serve as an effective RNA guide for ErCas12a, in contrast to
reports using previously described Cas12a and related systems ®2°. We developed a Universal
pre-crRNA (U-pre-crRNA) for ErCas12a which can be used in both zebrafish and human cells
for donor DNA cleavage and show that CRISPR/ErCas12a potently induces strand annealing
mediated repair (SAMR) in a genomic reporter locus at efficiencies greater than CRISPR/Cas9.
Additionally, CRISPR/ErCas12a promotes GeneWeld activity at rates similar to CRISPR/Cas9.
Finally, we apply GeneWeld with ErCas12a in human cells, and demonstrate ErCas12a
mediated targeted integration activity at several human loci, including the safe harbor locus
AAVST.

Results

ErCas12a induces indels in zebrafish embryos

We used informatic analyses to categorize a new potential gene editor (GenBank
Accession MH347339.1) that aligns as a novel Cas12a protein, ErCas12a (Figure 1a,
Supplemental Figure 1). To assess the activity of ErCas12a, we first synthesized a codon

optimized version for expression in eukaryotes and added dual SV40 nuclear localization
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signals at the N- and C-termini, as dual NLS was shown to increase efficacy of Cas9 in
zebrafish *. To test ErCas12a gene editing activity in vivo, ErCas12a mRNA was co-injected
with a pre-crRNA into single cell zebrafish embryos followed immediately by heat shock at 34°C
for 4 hours (Figure 1b). Three pre-crRNAs and one crRNA were designed to target exon 1 of the
zebrafish noto gene (Figure 1¢). Co-injection of ErCas12a mRNA with noto-pre-crRNA1 and
incubation at 28°C did not result in gene editing activity, similar to previous reports using
Cas12a (Moreno-Mateos et al., 20172 and data not shown). However, injection of ErCas12a
MRNA with noto-pre-crRNA1 or noto-pre-crRNAS3 followed by a 4-hour 34°C heat shock
resulted in phenotypes characteristic of biallelic loss of noto, including loss of the notochord and

a shortened tail %'

, at efficiencies ranging from 7-61% (Supplemental Figure 2a). PCR across
these individual target sites and subsequent heteroduplex mobility shift assays revealed the
presence of indels characteristic of repair by NHEJ activity (Supplemental Figure 2b). noto-pre-
crRNA2 and noto-crRNA1 did not elicit a phenotype, and heteroduplex mobility shift assays
across those targets indicate they are inactive sgRNAs (data not shown). Efficiencies of biallelic
noto inactivation at the same target varied considerably from injection to injection (Supplemental
Figure 2), consistent with previous reports in human cells and zebrafish using
CRISPR/Cas12a?*#82° To confirm that our results were not specific to a single locus, we
injected ErCas12a mRNA and pre-crRNA to target two sites in the cx43.4 gene (Figure 1d).
PCR across the individual target sites and subsequent RFLP analysis demonstrated that
cx43.4-pre-crRNA2 was active (Supplemental Figure 2d), while cx43.4-pre-crRNA1 was inactive

(data not shown).

To gain a better understanding of the frequency of ErCas12a insertion/deletion (indel)
events, we used lllumina next generation sequencing (NGS) to analyze the efficiencies of
mutation at the active noto and cx43.4 target sites. DNA amplicons from 5 nofo mutant embryos
injected with ErCas12a mRNA and noto-pre-crRNA1 or noto-pre-crRNA3 and 5 ¢x43.4 pre-
crRNA1 injected embryos were selected randomly for next generation sequencing. As expected
for biallelic inactivation at noto, ~61% of alleles at noto-pre-crRNA1 showed indels,
characteristic of NHEJ and/or MMEJ after nuclease targeting (Figure 1e). The more efficient
noto-pre-crRNA3 showed ~90% of alleles containing indels (Figure 1e). However, in agreement
with the RFLP analysis, the majority (~74%) of alleles sequenced at cx43.4 had the wild type
sequence, indicating that not all targeting events with ErCas12a are efficient enough to produce
biallelic mutation of the target locus (Figure 1e). Taken together, these data indicate
CRISPR/ErCas12a introduced as an RNA system can be active in zebrafish with a 34°C heat
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shock, and that pre-crRNA can serve as an active RNA guide for directing ErCas12a activity to

genomic target sites.

ErCas12a elicits strand annealing mediated DNA repair more efficiently than SpCas9 in a
genomic reporter system in zebrafish

We next employed a stably integrated red fluorescent protein (RFP) reporter system to
visually compare the efficiencies with which CRISPR/Cas9 and CRISPR/ErCas12a differentially
elicit DNA repair using strand-annealing mediated repair (SAMR). We used GeneWeld to create
a transgenic line of zebrafish that contain a single copy of an SAMR reporter, noto:RFP-DR48
(Figure 2a; Supplemental Figure 3). The RFP coding sequence is disrupted by a target cassette
engineered with Cas9 and ErCas12a sites that is flanked by 48 bp of direct repeat sequence. A
double strand break and end resection in the target liberates the 48 nucleotide direct repeats
which can restore the RFP reading frame after SAMR, leading to a semi-quantitative read-out of
repair efficiencies. Injection of single-cell noto:RFP-DR48 transgenic embryos with Cas9 mRNA
and UgRNA results in RFP expression in the notochord, indicative of SAMR after CRISPR/Cas9
targeting (Figure 2b).

We then tested whether CRISPR/ErCas12a promotes SAMR in the noto:RFP-
DR48 assay. We designed a universal pre-crRNA (U-pre-crRNA), with no predicted off target
sites in zebrafish or human cells, to direct ErCas12a activity to noto:RFP-DR48. Injection of
ErCas12a mRNA and U-pre-crRNA resulted in RFP expression in the notochord (Figure 2b).
Based on the percentage of injected animals with RFP+ notochords, ErCas12a elicited SAMR
at a higher frequency than SpCas9 (Figure 2b). Injected embryos were highly mosaic and
qualitatively sorted into 3 classes of notochord RFP expression pattern: broad, intermediate,
and narrow (Figure 2e-i). While ~70% of ErCas12a-injected animals showed RFP+ cells in the
notochord as opposed to ~40% in SpCas9-injected embryos, ErCas12a repair events are
equally mosaic (Figure 2f). These results indicate that noto:RFP-DRA48 is a viable assay for
screening the propensity of designer nucleases to elicit SAMR and that the enzymatic activity of

ErCas12a enhances activation of SAMR over Cas9 in vivo.

Using ErCas12a for precise integrations in zebrafish

We leveraged the activity of the U-pre-crRNA to determine whether CRISPR/ErCas12a

can catalyze targeted integration of fluorescent reporters using GeneWeld '°. First, we injected


https://doi.org/10.1101/650515

bioRxiv preprint doi: https://doi.org/10.1101/650515; this version posted June 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Wierson et al, ErCas12a in Zebrafish and Human cells

nErCas12an, noto-pre-crRNA1, U-pre-crRNA, and a GFP reporter plasmid programmed with
the U-pre-crRNA target site and 24 bp of homology 5’ to the noto-crRNA1 genomic site to
promote gene targeting at noto (Supplemental Figure 4a, Supplemental Table 4). Fluorescent
positive notochord cells were observed at the 18-somite stage, indicating in frame integration of
the GFP cassette at noto (Supplemental Figure 4b, b’). On average, 24% of embryos injected
display targeted noto integrations (Supplemental Figure 4c¢). However, notochords were highly
mosaic, indicating a low efficiency of somatic integration activity in tissue types that form the
notochord (Supplemental Figure 4b, b’). GFP was often observed outside of the notochord, yet
in the mesoderm, as expected with biallelic disruption of noto and transfating of notochord cells
21 Junction fragment PCR was conducted on GFP+ embryos to confirm that integration was
directed by the programmed homology. The expected PCR band was recovered in GFP+
embryos, while no PCR band was detected in the control experiment performed without the
genomic pre-crRNA (Supplemental Figure 4d, 4e). DNA sequencing confirmed precise junctions

at the 5’ end of the integration (Supplemental Figure 4f).

We next designed a GeneWeld donor with both 5’ and 3’ homology domains flanking the
GFP cassette to promote precise repair at both sides of the integration site (Figure 3a) ™.
Targeting noto using pre-crRNA3 with GeneWeld resulted in an average of 31% of embryos
with GFP+ notochords (Figure 3b, 3b’, 3¢; Supplemental Table 4). Most notochords were highly
mosaic and displayed GFP expression indicative of lost cell fate, as in noto target 1 targeting
(Supplemental Figure 4b), although some events were recovered in which >90% of the
notochord expressed GFP (Figure 3b). Predicted 5’ and 3’ junction fragments were recovered
by PCR in GFP+ embryos (Figure 3d, 3e), and junction fragment sequencing from a single
embryo demonstrated precise integration at both ends of the cassette (Figure 3f). These data
indicate that ErCas12a can be an effective nuclease for catalyzing integration in zebrafish using
GeneWeld, but that optimization is needed to enhance somatic integration efficiency to levels

comparable to those obtained using Cas9.

ErCas12a induces double-strand breaks in human cells

We developed an all-in-one vector for expression of the dual nuclear localization signal
ErCas12a and a pre-crRNA in vitro (Figure 4a). We targeted two therapeutically relevant “safe
harbor” loci, AAVST and CCR5 % (Figure 4b, d). We additionally targeted the TRAC locus due

to its reported significance in generating Chimeric Antigen Receptor T cells (Figure 4e) %°. in
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vitro cleavage activity of ErCas12a with our expression system was assessed using a T7
endonuclease (T7EI) assay to determine whether a DSB and subsequent indels were induced
at the AAVST locus after transfection into HEK293 cells. The expected banding pattern was
apparent in DNA amplified from pErCas12a-AAVS1-pre-crRNA1 transfected cells but not control
cell DNA, indicating that ErCas12a was active at the AAVS1 target site (Figure 4c). No indel
activity was detected at the AAVST pre-crRNAZ2 site by T7E1 assay (data not shown). These

data suggest that the all-in-one expression system is functional in vitro.

To gain a quantitative understanding of the cleavage activity of ErCas12a at the AAVST,
CCR5, TRAC target sites, PCR amplicons were submitted for Sanger sequencing and analyzed
using ICE software, which infers CRISPR activity from sequencing trace reads . ICE analysis
showed targeting AAVS 1 with ErCas12a, and pre-crRNA1 created indels in 58% of sequenced
amplicons (Figure 4f, Supplementary Table 6). Targeting CCR5 with ErCas12a at four sites
resulted in a range of mutagenesis efficiency from 20-60% (Figure 4f, Supplementary Table 6).
Similarly, we tested 4 pre-crRNAs targeting TRAC and found the most efficient resulted in 60%
of sequenced amplicons contained indels (Figure 4f, Supplementary Table 6). Because ICE is
based on Sanger sequencing data, which considers fewer reads than NGS, it is likely to
underestimate the true percentage of indels. We therefore measured indel activity at the
AAVS1-pre-crRNA1 target site using lllumina sequencing, which showed that ~74% of
recovered alleles were edited (Figure 4g). Taken together, these data demonstrate that

ErCas12a is active in human cells at clinically relevant genomic loci.

ErCas12a elicits strand annealing mediated DNA repair more efficiently than SpCas9 in
an episomal reporter system in human cells

Episomal reporters have been used routinely in cell culture systems to assay DNA repair
pathways and identify the proteins involved 2’ 2 2° *_We modified the noto:RFP-DR48 cassette
for use as a reporter in mammalian cell culture, creating pMiniCAAGs:RFP-DR48 (Figure 5a).
As observed in zebrafish, transfection of pMiniCAAGs:RFP-DR48 with a nuclease and requisite
sgRNA into human cells is expected promote a double-strand DNA break at the nuclease target
site, resulting in a fluorescent readout of nuclease activity if SAMR is used to repair the double
strand break. Transfection of HEK293 cells with pMiniCAAGs:RFP-DR48 and pErCas12a-U-pre-
crRNA or pCas9-UgRNA resulted in RFP+ cells, demonstrating efficient SAMR with both
ErCas12a and Cas9 nucleases (Figure 5a). Quantification of RFP+ cells by flow cytometry

indicated SAMR induction was significantly greater (p < 0.0044) with ErCas12a compared to
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SpCas9 (Figure 5b, Supplemental Figure 5). Together, these results show ErCas12a nuclease
has similar cleavage activity in human cells and zebrafish, and is more efficient than Cas9 in

mediating SAMR in vivo and in vitro.

ErCas12a promotes precise integration in human cells

Because of AAVST’s utility in therapeutic expression of transgenes, we next wanted to
determine whether ErCas12a could mediate precise transgene insertion at the pre-crRNA1 site
in AAVS1 ¥ 323 To test this, we used the GeneWeld strategy to mediate integration of a
pCMV:GFP::Zeo reporter containing 48 bp 5’ and 3° arms homologous to the AAVS1 pre-
crRNA1 site (Figure 6a, b). HEK293 cells were transfected with the pCMV:GFP:Zeo donor
plasmid and the all-in-one pErCas12a-AAVS1-U plasmid that expresses ErCas12a, AAVS1 pre-
crRNA1, and U-pre-crRNA (pErCas12a-AAVS1-U). Transfections were also done with the
pCMV:GFP:Zeo-48 donor plasmid and pErCas12a-AAVS1 pre-crRNA1 without the U-pre-
crRNA, or pCMV:GFP:Zeo0-48 donor plasmid alone. GFP+ cells were isolated by fluorescence
activated cell sorting (FACS) one day post electroporation to control for plasmid delivery, and
then screened for stable integration by flow cytometry 2 weeks post transfection to measure
dropout of GFP+ cells (Figure 6¢, Supplemental Figure 6). The data revealed a significant 2.5
fold increase (p<0.0003) in the number of cells that remained GFP+ when transfected with
donor molecule, ErCas12a and the pre-crRNA, as compared to donor alone control (Figure 6d,
Supplemental Figure 6b-6¢”). GFP+ cell populations were screened for targeted integration at
the AAVS1 pre-crRNA1 site by junction fragment PCR and sequencing. The 5’ junction analysis
showed precise repair at the integration site in the cell population transfected with pErCas12a-
AAVS1-U and the donor (Figure 6e, f) but was absent in the donor alone population. These data
suggest ErCas12a is a tractable nuclease for GeneWeld-mediated precision integration at the

AAVS1 safe harbor locus in human cells.

Discussion

In this report, we establish that CRISPR/ErCas12a is an active nuclease in both
zebrafish and human cells and can serve as an efficient alternative to CRISPR/Cas9 for
generating HMEJ-mediated gene targeting events in vivo. Targeting in zebrafish embryos, we
created frame shift indel alleles in the noto and cx43.4 at up to ~90% and ~24%, respectively.
ErCas12a activity is temperature-dependent in zebrafish and requires a 34°C heat shock for
activity. In a genomic reporter assay, ErCas12a elicits SAMR in a reporter assay at levels nearly

2-fold greater than Cas9 in both zebrafish and human cells. ErCas12a is also a viable nuclease
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for mediating gene targeting using the GeneWeld strategy in zebrafish and human cells. We

detected robust double-strand break induction at three therapeutically relevant human loci and
demonstrated ErCas12a is effective for directing GeneWeld integrations at the AAVST locus in
human cells. These results suggest that ErCas12a could be employed as a tractable nuclease

for gene editing across multiple species for both basic research and clinical applications.

In prior reports of CRISPR/Cas12a activity in zebrafish, appreciable nuclease activity
was only observed after RNP delivery and heat shock, “proxy-CRISPR” to relax chromatin
structure, or targeting a gene with multiple crRNAs simultaneously ® %°. Cas12a activity was
shown to be dependent on the stability of the bound pre-crRNA or crRNA and although pre-
crRNA was ineffective for Cas12a nuclease activity under standard conditions, longer heat
shocks rescued activity, indicating a likely kinetics issue with the use of pre-crRNA. In our
experiments, pre-crRNA injection with ErCas12a mRNA permitted nuclease activity, highlighting
a difference between other Cas12a related proteins and ErCas12a, either in their ability to
stably bind the RNA guide and access DNA, or in the stability of their respective pre-crRNA
structures. Because the use of multiple crRNAs per target gene in tandem dramatically
increases the possibility of off target effects, it is notable that in this study, ErCas12a displays

efficient nuclease activity with only a single pre-crRNA per target gene.

While ErCas12a showed enhanced activation of SAMR in comparison with Cas9 in our
noto:RFP-DR48 assay, targeted integration via GeneWeld using ErCas12a in zebrafish
displayed no substantive difference compared to our previous report using Cas9 '°. The
increases SAMR frequency detected using the reporter assay may be because repair of DNA in
cis is more efficient than in trans, and thus the outcome of strand annealing in a genomic

reporter will not translate to targeted integrations.

Reported levels of mosaicism in gene targeting using HMEJ in zebrafish vary greatly in
the literature '° '°. Although ErCas12a is an effective catalyst for GeneWeld integrations,
mosaicism of expression is qualitatively higher than when using Cas9 as the GeneWeld
nuclease '°. Consistent with the observation that SAMR in noto:RFP-DR48 is mosaic, it was
reported recently that translation of Cas9 mRNA and subsequent gene editing after one-cell
stage injection is not complete until the 16 or 32 cell stage, while RNP injections result in
appreciable nuclease activity by the 2-4 cell stage **. Thus, noto:RFP-DR48 is an assay system

where injection conditions can be optimized to enhance somatic gene targeting and decrease
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mosaicism in cell types that arise from the mesoderm. Also, noto:RFP-DR48 represents a novel
reporter in zebrafish for determining strategies for altering DSB repair pathway choice, such as

using small molecules or dominant-negative proteins.

Previously reported Cas12a orthologs have displayed relatively poor editing efficiency in
mammalian systems 3° 22 % 2 AgCas12a and LbCas12a are among the best characterized
Cas12a systems but have very modest activity in human cells ?* ¢, To address this issue,
additional Cas12a systems with enhanced activity and differential targeting ability such as
FnCas12a were engineered and characterized. Although FnCas12a uses a more common TTN
PAM sequence, its cleavage activity is still modest *°. Editing efficiency of the Cas12a systems
has since been enhanced by engineering the crRNA to increase activity without a loss of
specificity *’. Additionally, recent work has identified particular point mutations in Cas12a
variants that enhance the targeting range, activity, and fidelity of the nuclease . This suggests
the possibility of a future ErCas12a variant in which cleavage kinetics could be leveraged with
broadened PAM targeting to target regions typically restricted to SpCas9. Going forward, it will
be interesting to evaluate the effects of various modifications of crRNAs and the protein itself to

optimize mutagenesis and gene targeting.

The 5 base thymidine stretch in the secondary structure of the ErCas12a crRNA could
cause cryptic termination of guide expression * and lead to decreased expression of the guide
RNA, potentially decreasing nuclease activity. Testing crRNA designs that remove this
thymidine stretch may increase crRNA expression and nuclease efficiency. It has been shown
previously that a single U6 promoter is sufficient to express multiple crRNAs with Cas12a for
multiplex gene editing due to the intrinsic self-processing activity of the nuclease 2. It is of
interest for future investigations to determine if ErCas12a has similar properties in order to

leverage it for multiplex gene editing.

Interestingly, the RuvC domain in Cas12a family members is sufficient to elicit
indiscriminate ssDNA and ssRNA cleavage “°. Though ErCas12a shares only 31% sequence
homology with Cas12a orthologue AsCas12a (Supplemental Figure 1) and the RuvC domain is
conserved among Cas12a orthologues and ErCas12a, it is possible that long range interactions
at the catalytic pocket differ in ErCas12a due to the relatively low amino acid similarity.
Therefore, further studies are needed to elucidate if ErCas12a shares similar nonspecific

nuclease activity.

10
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Though Cas12a systems has been shown to be amendable to HDR-mediated
integration, these transgene integration events have been shown to be highly dependent on
using RNP complexes in concert with modified crRNAs to show appreciable activity 2°. Here, we
demonstrate ErCas12a’s utility in generating robust editing efficiency without chemically
modified crRNAs, showing its utility in streamlined and accessible gene editing for most
research applications. Further, we show ErCas12a mediates precise integration without

engineering of the nuclease or the corresponding guide RNA with mRNA and plasmid DNA.

While we show that ErCas12a is compatible with GeneWeld. We also demonstrated that
in the absence of the UgRNA liberating the donor there is still integration of the transgene at
AAVS1. When GeneWeld is used with Cas9, the donor homology arms can include a portion of
the genomic target but exclude the 3’ PAM sequence and prevent nuclease targeting at the
homology arms. However, because ErCas12a utilizes a 5° PAM and induces a distal DSB, it is
likely that the homology arm is being targeted by ErCas12a and linearizing the donor at the 5’
end. In our design the homology arms contain up to 17bp of target region that may be sufficient
for a Cas12a-like seed region for the crRNA and facilitate a DSB *° *'. With further optimization
of both the crRNA and donor constructs, ErCas12a can readily be adapted for precise

integration in mammalian systems.

Conclusion

Alternative nuclease systems beyond canonical CRISPR/Cas9 are of interest in the
precision therapeutics field as they expand the available toolbox for precision gene editing.
Here, we demonstrate effective genome editing in both zebrafish and human cells using the
newly described CRISPR/ErCas12a system, which increases the number of accessible regions
in the genome due to its AT-rich PAM sequence. In zebrafish, CRISPR/ErCas12a promotes
efficient somatic mutation and HMEJ-mediated precise integration of donor cassettes. In human
cells, CRISPR/ErCas12a efficiently targeted therapeutically relevant loci, including the safe
harbor loci AAVS1 and CCRS5, and facilitated transgene integration. Our data suggest that, with
further optimization, ErCas12a may be an invaluable tool for gene editing in both basic research

and future clinical gene therapy applications.
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Materials and methods
Zebrafish husbandry

Zebrafish were maintained in Aquatic Habitats (Pentair) housing on a 14 hour light/10
hour dark cycle. Wild-type WIK were obtained from the Zebrafish International Resource Center.

All experiments were carried out under approved protocols from lowa State University IACUC.

nErCas12an cDNA cloning

gBlocks were ordered from IDT with zebrafish codon optimized ErCas12A cDNA
sequences based on Inscripta public disclosure and the addition of dual NLS sequences at the

5" and 3’ end of the cDNA (Supplemental Table 1). Three gBlock dsDNA templates were
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amplified with KOD HotStart DNA polymerase (EMD Millipore) using primers
ErCas12af1/ErCas12aAr1, ErCas12af2/ErCas12ar2, ErCas12af3/ErCas12ar3, cut with
respective restriction enzymes, and four-part restriction cloning into Ncol/Sacll cut pT3TS vector
backbone was performed (Plasmid #46757 Addgene). Sequence of ERCAS12A using primer

walking and a full annotation was confirmed.

Injection protocol

Linear, purified pT3TS-nCas9n or pT3TS-nErCas12an was used as template for in vitro
transcription of capped, polyadenylated mRNA with the Ambion T3TS mMessage mMachine Kit.
mRNA was purified using Qiagen miRNeasy Kit. The Cas9 universal sgRNAs were generated
using cloning free sgRNA synthesis as described in Varshney et al., 2015 and purified using
Qiagen miRNeasy Kit. All ERCAS12A pre-crRNA and crRNA was ordered as custom RNA

oligos from Synthego with sequences described in Figure 1a.

Heat shock protocol
Immediately after injection, embryos were placed in a 34°C incubator for 4 hours. At 4
hours, embryos were sorted for fertilization and fertilized embryos were moved to 28°C

incubator as normal.

DNA isolation and PCR genotyping

Genomic DNA for PCR was extracted by digestion of single embryos in 50mM NaOH at
95°C for 30 minutes and neutralized by addition of 1/10™ volume 1M Tris-HCI pH 8.0. GoTaq
Green was used as DNA polymerase master mix with the primers listed in Supplemental Table
2. AmpliconEZ from GeneWiz was used for NGS sequencing (see below) using primers
ErCas12anoto1fEZ and ErCas12anoto1rEZ for noto target 1, ErCas12anoto3fEZ and
ErCas12anoto3rEZ for noto target 3, and cxm7gRNA2fEZ, cxm7gRNA2rEZ for cx43.4 listed in
Supplemental Table 2. GFP+ embryo 5’ junction fragments for noto target 1 and target 3
were PCR-amplified with primer notojxnf and gfp5’r listed in Supplemental Table 2. GFP+
embryo 3’ junction fragments for noto target 3 were PCR-amplified with primer GFP3’F and
notojxnr listed in Supplemental Table 2. All junction fragment products were cloned into pCR4-

TOPO vector and sequenced (Invitrogen).

Donor vector preparation
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Donor vectors were prepared and purified as described previously (Wierson et al.,
2018). Homology arms are built as follows: One arm begins 13 bp 3’ of the PAM while the other
arm begins immediately outside of the 3’ end of the crRNA target site. See Figure 3 and Figure
4 for homology arm design, and Supplemental Table 3 for GeneWeld homology arm oligos used
for Golden Gate cloning. Gene targeting oligos and donor vector sequences are listed in

Supplemental Tables 2 and 3.

Generating noto:RFP-DR48

Zebrafish RFP assay generation, injection, and line isolation

pPRISM-V3 was PCR amplified with v3f and v3r to remove the ocean-POUT terminator and add
SgrAl and Spel cloning sites (Supplemental Table 2). Bactin 3’ UTR was PCR amplified using
KOD polymerase with primers bactinf and bactinr to add SgrAl and Spel enzyme sites for sticky
end cloning. pPRISM-V3(pout negative) amplicon and bactin 3' UTR were cut with SgrAl and
Spel. After ligation with Fisher Optizyme T4 Ligase and sequence verification to create
pPRISM-V3-bactin, pPRISM-V3-bactin-SSA-DR48 was created by simultaneously adding the
NBM and creating a direct repeat with phosphorylated primers DRf and DRr using pPRISM-V3-
bactin with KOD polymerase followed by Fisher Optizyme T4 Ligation and sequence
verification. To target these constructs to noto, homology domains up and downstream of a
genomic CRISPR/Cas9 target site were chosen as described in Wierson et al., 2018. Oligos
flhv35aflh, flnv35bflh, flhv33aflh, flhv33bflh, containing the gene targeting information, were
added to pPRISM-V3-bactin RFP-DR48 using Golden Gate cloning as described in Wierson et
al., 2018. The RFP cassette was liberated from the donor using the same noto sgRNA used to
cut the genome. Gamma-crystalin:eGFP positive embryos were sorted and raised to adulthood,

outcrossed to generate the F1 generation, and outcrossed again to generate lines of F2s.

Southern blot analysis

Genomic Southern blot and copy number analysis was performed as described
previously*?. PCR primers used for genomic and donor specific probes are listed in

Supplemental Table 2.
Cell culture

HEK293 cells were obtained from ATCC (CRL-3216). Cells were maintained in
Dulbecco’s Modified Eagle Medium (Gibco #11995-040) supplemented with 10% fetal bovine
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serum (Gibco #26140079) and 1% Penicillin Streptomycin (Gibco #15140-122). Media was
changed every 2-3 days and replated at final dilution of 1:10 maintained at about 750,000

cells/ml.

DNA isolation and Sequence analysis

DNA from whole cell populations was purified using Qiagen DNeasy Blood & Tissue Kit
(Qiagen 69504). PCR amplification was performed with MyTag DNA Polymerase (Bioline BIO-
21108) and purified with Qiagen QIAquick PCR Purification kit (Qiagen 28104). Samples used

for ICE analysis were submitted to GeneWiz Sanger Sequencing service.
Cloning in vitro ErCas12a construct targeting AAVS1 (pErCas12aErCas12a-AAVS1)

Due to redundant restriction sites in the guide scaffold and ErCas12a protein, the
pX601-AAV-CMV::NLS-SaCas9-NLS-3xHA-bGHpA;U6::Bsal-sgRNA plasmid (Addgene
#61591) was digested with Bsal and Notl to first insert the ErCas12a secondary structure and
sgRNA targeting AAVS1 with ErCas12a sgRNA AAVS1 top and ErCas12a sgRNA AAVS1
bottom (termed AAV: ErCas12a AAVS1 sgRNA) (Table 3). Following this ErCas12a as well as
the Xenopus globin 5 UTR and both N and C termini SV40 NLS signals were amplified from
“T3TS nErCas12an” using PCR primers ErCas12a Agel forward and ErCas12a BamHI reverse
(Supplemental Table 1). The resulting 3.9kbp PCR fragment was cloned into an Agilent pSC
Strataclone PCR cloning vector (termed ErCas12a Strataclone) to amplify the fragment with the
desired restriction sites. ErCas12a Strataclone was digested with Agel and BamHI to isolate
ErCas12a with ends compatible with the AAV:ErCas12a AAVS1 sgRNA construct. The px601
plasmid was likewise digested with Agel and BamHI to remove SaCas9 and replace it with
ErCas12a. Plasmids were screened for insertion of both ErCas12a as well as the AAVS1
targeting sgRNA (pErCas12a-AAVS1) and amplified with Qiagen Endotoxin Free Maxiprep kit
(Qiagen 12362).

pErCas12a-AAVS1-U

pErCas12a-AAVS1-U was generated by inserting ErCas12a pre-U-crRNA into AAV 601
by digesting AAV601 with Bsal+ Notl and inserting annealed oligos ErCas12a UgRNA+Scaffold
Top and ErCas12a UgRNA+Scaffold Bottom. The U6 promoter, the cr-RNA scaffold and the U-
pre-crRNA were PCR amplified from AAV 601 using ErCas12a U6+ugRNA Primer Pfol Fw and
ErCas12a U6+ugRNA Primer Pfol Rev. This PCR amplicon as well as pErCas12a-AAVS1 were
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digested with Pfol and ligated with T4 DNA ligase to generate pErCas12a-AAVS1-pre-crRNA1-
U-pre-crRNA.

Generating knock-in cassette for AAVS1

The 24 and 48bp homology arm CMV/GFP/Zeocin resistance knock-in cassettes were
generated by designing PCR primers complementary to the psiRNA-SV40 Early PolyA GFPzeo
plasmid (Invivogen) flanked by the 48 base pairs of homology and the UgRNA sequence
separated by a 3bp spacer. The left 48HA forward primer AAVSI T1 L48HA and the right 48HA
reverse primer AAVS1 T1 R48HA ** were used to amplify the CMV/GFP/Zeocin resistance
cassette containing the homology arms and the UgRNA target sequence (Supplemental Table
2, Supplemental Table 3). This 2.6kbp PCR fragment was subsequently cloned into a
Strataclone PCR cloning vector and screened for the insert. Sequence confirmed knock in

constructs were amplified with Qiagen Maxiprep Kit and termed “pGFP::Zeo-48".

Generating ErCas12a EZ Clone

nErCas12an was PCR amplified from pT3TSnErCas12an with Platinium Tag DNA
polymerase HiFi (Thermo Fisher #11304011) with ErCas12a Agel Fw and ErCas12a BamHI
Rev and PCR cloned into the Agilent Strataclone vector (Agilent #240205) to generate
ErCas12a Strataclone. ErCas12a Strataclone was subjected to site directed mutagenesis with
ErCas12a SDM remove Bsal Top and ErCas12a SDM remove Bsal bottom with the Q5 SDM kit
(New England Biolabs #E0554S) to generate ErCas12a Strataclone no Bsal. The nErCas12an
fragment lacking the Bsal site was removed from the ErCas12a Strataclone no Bsal backbone
by digesting with Agel and BamHI. Likewise, the pX601-AAV-CMV::NLS-SaCas9-NLS-3xHA-
bGHpA;U6::Bsal-sgRNA plasmid (Addgene #61591) was digested with Agel and BamHI and
had nErCas12an inserted into it to generate p601nErCas12an no Bsal. The cr-RNA scaffold
was inserted into the p601nErCas12an no Bsal by digesting with Bsal and Notl and inserted the
annealed oligos ErCas12a EZ clone scaffold top and ErCas12a EZ clone scaffold bottom to

generate ErCas12a EZ Clone.

Cloning in vitro ErCas12a construct targeting CCR5 and TRAC
Cr-RNA oligos corresponding to the genomic target site (e.g. CCR5 sgRNA 1 Top+
CCR5 sgRNA 1 Bottom) were annealed in a thermocycler according to Zhang lab protocol.

Briefly, oligos are annealed by incubating at 37°C for 30 minutes followed by 95°C for 5 minutes
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and then ramped down to 25°C at 5°C/min. The annealed oligo duplex was cloned into
ErCas12a EZ clone Digested with Bsal and ligated by T4 DNA ligase.

pMiniCAAGs:RFP-DR48 RFP assay generation, transfection, and analysis

pPRISM-V3-bactin SSA-DR48 was PCR amplified with Platinum Taq DNA polymerase
HiFi (Thermo Fisher #11304011) with Broken RFP Transfer to Tol2 Xhol Fw and Broken RFP
Transfer to Tol2 Bglll Rev to add Xhol and Bglll restriction sites to the RFP cassette. pkTol2C-
EGFP as well as the RFP amplicon were digested with Xhol and Bglll to create compatible
cohesive ends and ligated with T4 DNA ligase to generate pkTol2CBrokenRFP. In order to for
the construct to express episomally in cell culture systems a Kozak sequence was added by
digesting pkTol2CBrokenRFP with EcoRI and Xhol and restriction cloning the annealed oligos
Kozak Seq Top and Kozak Seq Bottom to generate pMiniCAAGs:RFP-DR48.

ErCas12a constructs targeting the UgRNA were generated by digesting ErCas12a EZ
clone with Bsal and cloning in the annealed oligos ErCas12a UgRNA Bsal Top and ErCas12a
UgRNA Bsal bottom to generate pErCas12a-U-pre-crRNA. Cas9 constructs targeting the
UgRNA were generated by digesting lentiCRISPR v2 (Addgene #52961) with BsmBI and
cloning in the annealed oligos Cas9 UgRNA BsmBI Top and Cas9 UgRNA BsmBI Bottom to
generate pCas9-UgRNA. To control for promoter expression between ErCas12a and Cas9, the
CMV promoter was added to pCas9-UgRNA by digesting ErCas12a EZ clone with Xbal and
Agel to remove the CMV promoter and pCas9-UgRNA with Nhel and Agel to replace the native
EF1 alpha promoter.

HEK 293T cells were transfected with 5ug pMiniCAAGs:RFP-DR48 and 5ug of either
pErCas12a-U-pre-crRNA or pCas9-UgRNA with the Etta H1 electroporator as described above.
Cells were assessed for RFP expression 48 hours later by flow cytometry with 584nm emission

and 607nm detection.

Transfection

HEK293 cells used for indel acquisition assays were transfected with Liopofectamine
3000 (Thermo Fisher #L3000008) according to manufacturer’s protocol with 5ug of ErCas12a
plasmid targeting each site. Cells used for targeted integration assays were transfected with
Etta H1 electroporator with the following parameters: 200V, 784ms interval, 6 pulses, 1000us

pulse duration, at a concentration of 20E6 cells/ml at the volume of 100ul in Etta EB
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electroporation buffer. Cells are recovered post electroporation by incubating at 37°C for 5-10

minutes before being plated in a 6-well tissue culture plate at a density of about 1.5E6cells/ml.

GeneWiz AmpliconEZ
DNA Library Preparation and lllumina Sequencing

DNA library preparations, sequencing reactions, and initial bioinformatics analysis were
conducted at GENEWIZ, Inc. (South Plainfield, NJ, USA). DNA Library Preparation, clustering,
and sequencing reagents were used throughout the process using NEBNext Ultra DNA Library
Prep kit following the manufacturer's recommendations (lllumina, San Diego, CA, USA). End
repaired adapters were ligated after adenylation of the 3’ends followed by enrichment by limited
cycle PCR. DNA libraries were validated on the Agilent TapeStation (Agilent Technologies, Palo
Alto, CA, USA), and were quantified using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA) and
multiplexed in equal molar mass. The pooled DNA libraries were loaded on the Illlumina
instrument according to manufacturer’s instructions. The samples were sequenced using a 2x
250 paired-end (PE) configuration. Image analysis and base calling were conducted by the

lllumina Control Software on the lllumina instrument.

Data analysis

The raw lllumina reads were checked for adapters and quality via FastQC. The raw
lllumina sequence reads were trimmed of their adapters and nucleotides with poor quality using
Trimmomatic v. 0.36. Paired sequence reads were then merged to form a single sequence if the
forward and reverse reads were able to overlap. The merged reads were aligned to the
reference sequence and variant detection was performed using GENEWIZ proprietary

Amplicon-EZ program.

Phylogeny and homology analysis
The amino acid sequence (ErCas12a) was used for homology search by Blastp tool

(https://blast.ncbi.nim.nih.gov/Blast.cgi) against the non-redundant (nr) database. The

homologous sequences were then retrieved from NCBI database. Multiple sequence alignment

was done using CLUSTAL Omega webserver (http://www.ebi.ac.uk/Tools/msa/clustalo/) The

phylogenetic tree was constructed by using Maximum likelihood method based on JTT matrix-
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based model in MEGA 7.0.18 (Kumar, Stecher, and Tamura, 2016). Evaluation of branching

was ensured by bootstrap statistical analysis (1000 replications).

Phylogenetic analysis

Phylogenetic tree relationship of ErCas12a from Eubacterium rectale and other related
Cas proteins available in NCBI database was constructed by maximum likelihood method using
MEGAY. The numbers above and below the branch points specify the confidence levels meant
for the relationship of the paired sequences as estimated by the bootstrap analysis. Branch
lengths are measured as the number of substitutions per site. Cas protein sequences used for
phylogenetic analysis are CRISPR-associated endonuclease Cas12b from Alicyclobacillus
acidoterrestris, CRISPR-associated Endonuclease Cas9 from Streptococcus pyogens,
CRISPR-associated Endonuclease Cpf1 from Acidaminococcus sp. BV3L6, type V CRISPR-
associated protein Cpf1 from Lachnospiraceae bacterium ND2006 and type V CRISPR-

associated protein Cpf1 from Francisella tularensis.

Cas variant homology alignments

Multiple sequence alignment of ErCa12a with homologous Cas proteins like CRISPR-
associated endonuclease Cas12b from Alicyclobacillus acidoterrestris, CRISPR-associated
Endonuclease Cas9 from Streptococcus pyogens, Crispr-associated Endonuclease Cpf1 from
Acidaminococcus sp. BV3L6, type V CRISPR-associated protein Cpf1 from Lachnospiraceae
bacterium ND2006 and type V CRISPR-associated protein Cpf1 from Francisella tularensis. Six

representative sequences were used for alignments with Clustal Omega webserver.
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Figure 1 — Characterization and activity of CRISPR/ErCas12a in zebrafish. (a) Phylogenetic
relationship between known CRISPR associated proteins and ErCas12a. Evaluation of
branching was ensured by bootstrap statistical analysis (1000 replications). (b) Workflow
showing dual NLS ErCas12a mRNA and pre-crRNA injection into single cell animals. Animals
are heat shocked for 4 hours and then allowed to develop normally until DNA is isolated and
analyzed. (c) Schematic and sequences of pre-crRNA used to target noto. (d) Schematic and
sequences of pre-crRNA used to target cx43.4. (e) Results displaying the wildtype and top 5

mutated alleles after AmpliconEZ analysis of two noto pre-crRNAs and one ¢cx43.4 pre-crRNA.

Figure 2 — Using noto:RFP-DR48 to assay the propensity of ErCas12a and SpCas9 to
elicit strand annealing in zebrafish. (a) Schematic of noto:RFP-DR48 showing the location of
the 48 bp direct repeats flanking both the SpCas9 and ErCas12a universal RNA cursor sites
(underline) and PAM sites (red text). (b) Data plot showing the ratio of injected animals
displaying RFP in the notochord out of total carrying the transgene. Data plot represents
represent mean +/- s.d. p values calculated with one-tailed Student’s t-test. (c) Qualitatively
scored ratios of notochord converted to RFP+ after SpCas9 induced SAMR. (d) Qualitatively
scored ratios of notochord converted to RFP+ after ErCas12a induced SAMR. (e-g)
Representative embryos for broad, intermediate, and narrow conversion of RFP in the

notochord.

Figure 3 — Targeting noto with GeneWeld. (a) Schematic of nofo showing designed homology
for precise integration using ErCas12a and the U-pre-crRNA. Green is designed 5’ homology.
Blue is designed 3’ homology. The PAM for ErCas12a targeting in the genome and donor is
underlined. (b, b’) Confocal Z-stack image showing broad GFP expression in the embryo. Scale
bar is 100 um. (c) Data plot showing the ratio of embryos with GFP expression in the notochord
out of total injected embryos. Data plot represents mean +/- s.d. (d) Gel showing 5’ junction
fragment expected after precise integration using GeneWeld. (e) Gel showing 3’ junction
fragment expected after precise integration using GeneWeld. (f) DNA sequencing of lane 5 in

(d) and (e) showing a precise integration using the programmed homology.

Figure 4 — ErCas12a activity in human HEK293 cells. (a) Schematic showing the workflow for
ErCas12a and pre-crRNA expression in human cells from a cis expression plasmid. After
transfection, cells are recovered and then analyzed. (b) Schematic of two pre-crRNAs designed
to target AAVST. (c) T7E1 assay showing AAVS7-pre-crRNA1 is active. Arrowheads are

cleaved bands, indicating nuclease activity. (d) Schematic of four pre-crRNAs designed to target
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CCRS5. (e) Schematic of 4 pre-crRNAs designed to target TRAC. (f) Graph showing percentage
of indels after using pre-crRNAs to target AAVS1, CCR5, and TRAC in HEK293 cells as
determined by ICE analysis. Data plot represents mean +/- s.d. (f) Results displaying the

wildtype and top 5 mutated alleles after AmpliconEZ analysis of AAVS1 targeted DNA.

Figure 5 - Using pMini-CAAGs::RFP-DR48 to assay the propensity of ErCas12a and
SpCas9 to elicit strand annealing in HEK293 cells. (a) Schematic showing the workflow for
determining strand annealing mediated repair in human cells. An all in one expression plasmid
for ErCas12a or SpCas9 is transfected along with pMini-CAAGs::RFP-DR48. Cells are allowed
to recover and then FACS sorted for RFP+ cells. (b) Quantification of RFP+ cells per total cells
analyzed by flow cytometry. Data plots represent mean +/- s.d. p values calculated with one-
tailed Student’s t-test.

Figure 6 — Using ErCas12a for targeted integration in human cells. (a) Schematic showing
the workflow for targeted integration at AAVST in HEK293 cells. (b) Schematic of AAVS1
showing designed homology for precise integration using ErCas12a and the U-pre-crRNA to
liberate the cassette. Green block, 5’ homology; Blue block, 3' homology. The PAM for
ErCas12a targeting in the genome and donor is underlined. (¢) Schematic for flow analysis after
transfection of GeneWeld reagents for targeting AAVS1. (d) Bar graph showing the ratio of cells
with GFP expression as determined by flow cytometry. Graph represents mean +/- s.d. p values
calculated with one-tailed Student’s t-test. (e) Junction fragment gel showing the expected 5’
integration amplicon. No amplicon is seen when transfecting donor alone. (f) DNA sequencing

of lanes in (e) showing a precise integration using the programmed homology.

Supplemental Figure 1 — Amino acid alignment of Cas12a family members with SpCas9.
Multiple sequence alignment of ErCa12a with homologous Cas proteins including CRISPR-
associated endonuclease Cas12b from Alicyclobacillus acidoterrestris, CRISPR-associated
Endonuclease Cas9 from Streptococcus pyogens, Crispr-associated Endonuclease Cpf1 from
Acidaminococcus sp. BV3L6, type V CRISPR-associated protein Cpf1 from Lachnospiraceae
bacterium ND2006 and type V CRISPR-associated protein Cpf1 from Francisella tularensis. Six

representative sequences were used for alignments with Clustal Omega webserver.

Supplemental Figure 2 — Qualitative representation of ErCas12a activity in zebrafish

embryos. (a) Data plots showing ratio of injected animals displaying somatic noto phenotype.
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Data plots represent mean +/- s.d. p values calculated with one-tailed Student’s t-test. (b, c) Gel
showing heteroduplex mobility shift of injected animals vs wild type (WIK) for pre-crRNA1 and
pre-crRNA3 at noto. (d) RFLP analysis showing pre-crRNA2 is active at cx43.4.

Supplemental Figure 3 — Engineering noto:RFP-DR48. (a) Schematic showing RFP-DR48
integrated at nofo. The NBM (yellow) contains both SpCas9 and ErCas12a PAMs for universal
targeting using the underlined RNA cursor target site. Red is the engineered stop codon. (b)
Southern blot of three noto:RFP-DRA48 lines. Band intensity is roughly single copy based on the
copy number controls in the noto probed blot (top). Gel shifts are present indicating precise (line
1) and linear vector integration (lines 2 and 3). (¢) Junction fragment analysis of integrations
showing precision at the 5’ junction. Line 1 contains a precise 3’ integration, while line 2 and line
3 contain differing NHEJ events. (d) Schematic of integrations events as determined by

Southern blot and DNA sequencing analysis.

Supplemental Figure 4 — Targeting noto with a single homology domain. (a) Schematic
showing designed homology for precise 5’ integration using ErCas12a. Green is designed
homology. The PAM for ErCas12a targeting in the genome and donor is underlined. (b, b’)
Representative confocal Z-stack image showing mosaic GFP expression in the notochord of an
injected animal. Scale bar is 100 um. (c) Data plot showing the ratio of embryos with GFP
expression in the notochord out of total injected embryos. Data plot represents mean +/- s.d. (d)
Gel showing junction fragment expected after precise integration using the homology domain.
(e) Gel showing no junction, indicating there is no integration without the genomic pre-crRNA. (f)

DNA sequencing 5’ junctions showing precise integration using the programmed homology.

Supplemental Figure 5 — Raw data for flow cytometry of RFP-DR48 in HEK293 cells. (a)
Untransfected HEK 293 cells (b) HEK 293 cells transfected with pMini-CAAGs::RFP-DR48 (c)
HEK 293 cells transfected with SpCas9-UgRNA and pMini-CAAGs::RFP-DR48 (d) HEK 293
cells transfected with ErCas12a-pre-U-crRNA. The RFP plots shown were gated on the singlet

cell population. All measurements taken using excitation of 584nm and emission of 607nm.

Supplemental Figure 6 — Raw data for flow cytometry of GeneWeld in HEK293 cells. (a)
Untransfected HEK 293 cells (b-b”) HEK 293 cells transfected only with the GFP GeneWeld
donor (c-c”’) HEK 293 cells transfected with the GFP GeneWeld donor and pErCas12a-AAVS1
(d-d”) HEK 293 cells transfected with the GFP GeneWeld donor and P-ErCas12a-U-AAVS1.
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The GFP plots shown were gated on the singlet cell population. All measurements taken using

the FITC channel and excitation of 488nm and emission of 510nm.
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Supplemental Figure 2
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Supplemental Figure 3
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Supplemental Figure 4
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Supplemental Figure 5
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Supplemental Figure 6
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