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ABSTRACT Inter-subjects’ variability in functional brain networks has been extensively investigated in the 
last few years. In this context, unveiling subject-specific characteristics of EEG features may play an 
important role for both clinical (e.g., biomarkers) and bio-engineering purposes (e.g., biometric systems and 
brain computer interfaces). Nevertheless, the effects induced by multi-sessions and task-switching are not 
completely understood and considered. In this work, we aimed to investigate how the variability due to 
subject, session and task affects EEG power, connectivity and network features estimated using source-
reconstructed EEG time-series. Our results point out a remarkable ability to identify subject-specific EEG 
traits within a given task together with striking independence from the session. The results also show a 
relevant effect of task-switching, which is comparable to individual variability. This study suggests that 
power and connectivity EEG features may be adequate to detect stable (over-time) individual properties 
within predefined and controlled tasks. 

Keywords: EEG, individuality, connectivity, task-switching

I. INTRODUCTION 
Despite most neuroimaging studies still tend to treat human 
brain features as stable and homogeneous characteristics 
within a group, it is important to highlight that, in contrast, 
individual variability may play a relevant role in this context 
[1], [2]. The way in which each brain is unique and could be 
distinguished amidst a myriad of other brains is fascinating, 
but unveiling the underlying subject-specific characteristics 
is crucial for both clinical (e.g., biomarkers) and bio-
engineering purposes (e.g., biometric systems and brain 
computer interfaces). Recent studies have already 
highlighted the implications of individual variation for 
personalized approaches to mental illness [3], ADHD [4] and 
in the developing brain [5]. It has been also reported that 
these functional traits are familial, heritable and stable over 
a long time interval [6], [7]. Electroencephalographic (EEG) 
time-frequency [8] and connectivity-based [9], [10] features 
have shown subject-specific characteristics comparable in 

terms of performance to other more common fingerprints. 
Nevertheless, the performance of EEG-based biometric 
systems seems to be not independent from the specific 
connectivity metric, scarcely investigated in terms of 
permanence  and tend to decrease in a between-tasks 
scenario [11]. From this new perspective, with the clear 
evidence that functional brain networks vary across 
individuals, few studies investigated to what extent these 
subject-specific traits are stable over time and over different 
states. Using functional Magnetic Resonance Imaging 
(fMRI), Gratton et al. [12] reported that functional networks 
are suited to detect stable individual characteristics with a 
limited contribution from task-state and day-to-day 
variability, thus suggesting their possible utility in the 
personalized medicine approach. Similarly, Cox et al. [13], 
using EEG scalp level analysis, have reported that, despite a 
shared structure is still discernible across individuals, well-
defined subject-specific and stable over-time network 
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profiles were clearly detectable. In this study we aim to 
investigate if these subject-specific traits are still detectable, 
stable over time and consistent among different tasks using 
an EEG source level approach. This approach should provide 
a more accurate description of the underlying network [14] 
since the connectivity estimates should be less prone to 
volume conduction and signal leakage problems. In order to 
investigate this question we analyzed source-reconstructed 
EEG time-series using three different and widely used 
analyses: Power Spectral Density (PSD), Phase Locking 
Value (PLV) [15] and nodal centrality network approaches, 
namely Eigenvector Centrality (EC). PSD has been shown to 
capture relevant subject-specific information [8] and 
represents one of the more simple and interpretable EEG 
features. PLV, in combination with weighted Minimum 
Norm Estimator (wMNE) [16], provides a good estimate of 
the functional brain organization in EEG [17] and, despite 
the PLV is not completely independent from the PSD [18], 
is known to be affected by volume conduction and signal 
leakage, it still performs better than other common 
connectivity metrics in terms of subject authentication [11]. 
Moreover, as previously stated, the PLV was recently used 
at scalp-level to investigate variability and stability of large-
scale cortical oscillation patterns [13]. Finally, it was 
reported that the EC, which captures more information about 
the network topology then straightforward measure such as 
the degree, represents a promising measure to design of 
EEG-based biometric systems [9]. The analysis was 
performed on a novel EEG dataset consisting of fourteen 
healthy subjects, recorded over two different sessions (after 
four weeks) and performing four different tasks. All the code 
is freely available in a Github repository at the following 
link: https://github.com/matteogithub/individuality. 
 

 
II. METHOD 

A.  EEG PREPROCESSING 
All the preprocessing steps were performed using the freely 
available toolbox EEGLAB (version 13_6_5b) [19]. The raw 
EEG signals were re-reference to common average reference 
and band-pass filtered (with fir1 filter type) between 1 and 
70 Hz and a notch filter set to 50 Hz was also applied. All the 
recordings were visually inspected and segments with clear 
artifacts were rejected and not further analyzed.  

 

B.  SOURCE RECONSTRUCTION 
In order to obtain the source-reconstructed time-series, the 
Brainstorm software (version 3.4) [20] was used to compute 
the head model with a symmetric boundary element method 
in Open-MEEG [21] based on the anatomy derived from the 
ICBM152 brain. EEG time-series at source level were 
reconstructed using whitened and depth-weighted linear L2 
minimum norm estimate (wMNE) [16], [22] and projected 
onto 68 regions of interest (ROIs) as defined by the Desikan-
Killiany atlas [23]. 

 

C.  FEATURES EXTRACTION 
After the EEG time-series were reconstructed at source level, 
in order to increase the quality of the analysis, for each subject, 
each task and each session, we selected the best (less 
contaminated) 10 EEG epochs (segments of 5 seconds) 
ordering all the available epochs on the basis of the three-
sigma rule (consequently discarding segments presenting 
values over than 3 standard deviations from the mean) [24]. 
Successively, for each selected epoch we have extracted three 
different features vectors, respectively for PSD, PLV and EC, 
representing the individual profiles or subject fingerprints. For 
the PSD analysis, the features vector, for each single epoch, 
was composed of the 272 entries representing the relative 
power (extracted using the Welch method) of four frequency 
bands (delta [1 - 4 Hz], theta [4 - 8 Hz], alpha [8 - 13 Hz] and 
beta [13 - 30 Hz]), separately for each of the 68 regions of 
interest. For the PLV analysis, the features vector, for each 
single epoch and for each frequency band, was composed of 
2.278 entries representing the connectivity profile (upper 
triangular of the connectivity matrix), where each entry was 
computed as: 
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where T is the epoch length and j is the instantaneous phase. 
For the network analysis, in order to keep a nodal resolution, 
we have computed the EC, a centrality measure based on the 
spectral decomposition of the weighted connectivity matrix 
[25]. In this latter case the features vector, for each single 
epoch and separately for each frequency band, was 
composed of 68 entries, each representing the centrality 
value of the corresponding ROI. As a final step, in order to 
estimate the similarity among each pairs of possible 
observations (between-epochs), we computed the Euclidian 
distance between features vectors (individual profiles) 
independently for PSD, PLV and EC analysis, thus 
obtaining, for each analysis, a square and symmetric matrix 
of distances, with the dimension equals to (number of 
subjects) * (number of sessions) * (number of tasks) * 
(number of epochs) as shown in Figure 1. From this distances 
matrix, we have computed the average distances across 
epochs for each of the following six scenarios: (i) within-
task, within-session and within-subject; (ii) between-tasks, 
within-session and within-subject; (iii) between-sessions, 
within-task and within-subject; (iv) between-sessions, 
between-tasks and within-subject; (v) within-task, within-
session and between-subjects; (vi) all-between. All the code, 
developed in Matlab, reporting the extraction of the profiles 
and their comparison, is freely available at the following link 
in Github: https://github.com/matteogithub/individuality. 
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D.  STATISTICAL ANALYSIS 
The statistical analysis was performed by using the non-
parametric Kruskal-Wallis test followed by two-stage linear 
step-up procedure of Benjamini, Krieger and Yekutieli [26] to 
account for the multiple comparison problem. 
 
 

 
FIGURE 1.  A schematic representation of the first block (one subject) 
of the matrix containing the distances. The main diagonal contains 
zeros. 
 
 

 
FIGURE 2.  Scatterplot of distances obtained by using the PSD 
approach. Bars represent median and interquartile range. T is for task, 
Ss for session and Sb for subject.  

 

 

 

TABLE I 
STATISTICAL RESULTS FOR PSD ANALYSIS 

 Mean rank diff. p-value 
w-T/Ss/Sb vs. b-T w-Ss/Sb -873.129 <0.0001 
w-T/Ss/Sb vs. b-Ss w-T/Sb 14.6023 0.9056 
w-T/Ss/Sb vs. b-Ss/T w-Sb -907.163 <0.0001 
w-T/Ss/Sb vs. w-T/Ss b-Sb -1033.61 <0.0001 
w-T/Ss/Sb vs. all-b -1209.25 <0.0001 
b-T w-Ss/Sb vs. b-Ss w-T/Sb 887.731 <0.0001 
b-T w-Ss/Sb vs. b-Ss/T w-Sb -34.0341 0.7350 
b-T w-Ss/Sb vs. w-T/Ss b-Sb -160.484 0.0153 
b-T w-Ss/Sb vs. all-b -336.122 <0.0001 
b-Ss w-T/Sb vs. b-Ss/T w-Sb -921.765 <0.0001 
b-Ss w-T/Sb vs. w-T/Ss b-Sb -1048.21 <0.0001 
b-Ss w-T/Sb vs. all-b -1223.85 <0.0001 
b-Ss/T w-Sb vs. w-T/Ss b-Sb -126.450 0.1509 
b-Ss/T w-Sb vs. all-b -302.088 0.0003 
w-T/Ss b-Sb vs. all-b -175.638 <0.0001 

Statistics refer to non-parametric multiple comparison tests (on mean 
rank) using the FDR correction approach, where w- and b- refers to within 
and between scenarios respectively. T, Ss and Sb refer to task, session and 
subject.   

 
 

III. DATASET 
Fifteen healthy volunteers (7 females, mean age 31.9 ± 3.1 
years, range 28 – 38) were enrolled in the present study. 
Informed consent was obtained prior to the recordings and the 
study was approved by the local ethics committee. EEG 
signals were recorded using a 61 channels EEG system (Brain 
QuickSystem, Micromed, Italy) during four different tasks 
and repeated over two different session (the second acquired 
four weeks later from the first). Recordings were acquired in a 
sitting position in a normal daylight room; a dimly lit and 
sound attenuated room and supine position were avoided to 
prevent drowsiness. Signals were digitized with a sampling 
frequency of 1024 Hz with the reference electrode placed in 
close approximation of the electrode POz. The four tasks 
consisted of: (i) five minutes eyes-closed resting-state, (ii) five 
minutes eyes-open resting-state, (iii) two minutes eyes-closed 
simple mathematical task and (iv) two minutes eyes-closed 
complex mathematical task. During the simple mathematical 
task, the subjects were asked to perform multiple subtractions, 
while during the complex mathematical task, subjects were 
asked to perform a series two digits multiplications. Three 
subjects were excluded from the analysis due to low quality of 
the EEG recordings and another one missed the second 
session.  
 
 
IV. RESULTS AND DISUSSIONS 

A.  PSD 
Results derived from PSD analysis are shown in Figure 2 and 
the corresponding statistics are summarized in Table 1. The 
lower distances were observed for the within-task, within-
session, within-subject scenario (0.95 ± 0.34) and for the 
between-sessions, within-task, within-subject scenario (0.87 ± 
0.30). The distances increased for the between-tasks scenarios, 
both for within-session (3.06 ± 1.20) and for between-sessions 
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(3.09 ± 1.19). The distances further increased for the between-
subjects’ scenarios, both for within-session, within-task (3.23 
± 1.00) and for all between (3.59 ± 1.18). 
 

 
FIGURE 3.  Scatterplot of beta band distances obtained by using the 
PLV connectivity approach. Bars represent median and interquartile 
range. T is for task, Ss for session and Sb for subject.  

 
TABLE II 

STATISTICAL RESULTS FOR PLV BETA BAND 

 Mean rank diff. p-value 
w-T/Ss/Sb vs. b-T w-Ss/Sb -317.8 0.0005 
w-T/Ss/Sb vs. b-Ss w-T/Sb 61.03 0.6202 
w-T/Ss/Sb vs. b-Ss/T w-Sb -382.5 0.0004 
w-T/Ss/Sb vs. w-T/Ss b-Sb -1104 <0.0001 
w-T/Ss/Sb vs. all-b -1217 <0.0001 
b-T w-Ss/Sb vs. b-Ss w-T/Sb 378.8 0.0011 
b-T w-Ss/Sb vs. b-Ss/T w-Sb -64.72 0.5198 
b-T w-Ss/Sb vs. w-T/Ss b-Sb -786.1 <0.0001 
b-T w-Ss/Sb vs. all-b -899.3 <0.0001 
b-Ss w-T/Sb vs. b-Ss/T w-Sb -443.6 0.0006 
b-Ss w-T/Sb vs. w-T/Ss b-Sb -1165 <0.0001 
b-Ss w-T/Sb vs. all-b -1278 <0.0001 
b-Ss/T w-Sb vs. w-T/Ss b-Sb -721.4 <0.0001 
b-Ss/T w-Sb vs. all-b -834.6 <0.0001 
w-T/Ss b-Sb vs. all-b -113.1 0.0017 

Statistics refer to non-parametric multiple comparison tests (on mean 
rank) using the FDR correction approach, where w- and b- refers to within 
and between scenarios respectively. T, Ss and Sb refer to task, session and 
subject.   

 
 

B.  CONNECTIVITY 
Results derived from PLV based analysis in the beta band are 
consistent with those obtained by PSD as shown in Figure 3 
and the corresponding statistics summarized in Table 2. 
Again, the lower distances were observed for the within-task, 
within-session, within within -subject scenario (4.82 ± 0.33) 
and for the between-sessions, within-task, within-subject 
scenario (4.40 ± 0.34). The distances increased for the 
between-tasks scenarios, both for within-session (5.74 ± 0.85) 

and for between-sessions (5.85 ± 0.96). Finally, the distances 
further increased for the between-subjects’ scenarios, both for 
within-session, within-task (7.07 ± 0.76) and for all between 
(7.25 ± 0.87).  
 

 
FIGURE 4.  Scatterplot of alpha band distances obtained by using the 
PLV connectivity approach. Bars represent median and interquartile 
range. T is for task, Ss for session and Sb for subject. 

 
TABLE III 

STATISTICAL RESULTS FOR PLV ALPHA BAND 

 Mean rank diff. p-value 
w-T/Ss/Sb vs. b-T w-Ss/Sb -356.220 0.0001 
w-T/Ss/Sb vs. b-Ss w-T/Sb 165.750 0.1783 
w-T/Ss/Sb vs. b-Ss/T w-Sb -402.515 0.0002 
w-T/Ss/Sb vs. w-T/Ss b-Sb -933.130 <0.0001 
w-T/Ss/Sb vs. all-b -974.344 <0.0001 
b-T w-Ss/Sb vs. b-Ss w-T/Sb 521.970 <0.0001 
b-T w-Ss/Sb vs. b-Ss/T w-Sb -46.2955 0.6452 
b-T w-Ss/Sb vs. w-T/Ss b-Sb -576.910 <0.0001 
b-T w-Ss/Sb vs. all-b -618.124 <0.0001 
b-Ss w-T/Sb vs. b-Ss/T w-Sb -568.265 <0.0001 
b-Ss w-T/Sb vs. w-T/Ss b-Sb -1098.88 <0.0001 
b-Ss w-T/Sb vs. all-b -1140.09 <0.0001 
b-Ss/T w-Sb vs. w-T/Ss b-Sb -530.614 <0.0001 
b-Ss/T w-Sb vs. all-b -571.828 <0.0001 
w-T/Ss b-Sb vs. all-b -41.2140 0.2530 

Statistics refer to non-parametric multiple comparison tests (on mean 
rank) using the FDR correction approach, where w- and b- refers to within 
and between scenarios respectively. T, Ss and Sb refer to task, session and 
subject.   

 
The results show a similar pattern, still slightly less marked, 
also for the alpha band as shown in Figure 4 and the 
corresponding statistics summarized in Table 3. In this case, 
again the lower distances were observed for the within-task, 
within-session, within-subject scenario (8.25 ± 0.86) and for 
the between-sessions, within-task, within-subject scenario 
(7.55 ± 0.83). The distances increased for between-tasks 
scenarios, both for within-session (9.21 ± 1.26) and for 
between-sessions (9.32 ± 1.27). Finally, the distances further 
increased for the between-subjects’ scenarios, both for within-
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session, within-task (10.86 ± 2.11) and for all between (11.01 
± 2.16). 
 

 
FIGURE 5.  Scatterplot of alpha band distances obtained by using the 
PLV connectivity approach and eigenvector centrality. Bars represent 
median and interquartile range. T is for task, Ss for session and Sb for 
subject.  

 

 
TABLE IV 

STATISTICAL RESULTS FOR EIGENVECTOR CENTRALITY 

 Mean rank diff. p-value 
w-T/Ss/Sb vs. b-T w-Ss/Sb -309.489 0.0007 
w-T/Ss/Sb vs. b-Ss w-T/Sb 93.5795 0.4473 
w-T/Ss/Sb vs. b-Ss/T w-Sb -307.186 0.0047 
w-T/Ss/Sb vs. w-T/Ss b-Sb -1084.05 <0.0001 
w-T/Ss/Sb vs. all-b -1134.76 <0.0001 
b-T w-Ss/Sb vs. b-Ss w-T/Sb 403.068 0.0005 
b-T w-Ss/Sb vs. b-Ss/T w-Sb 2.30303 0.9817 
b-T w-Ss/Sb vs. w-T/Ss b-Sb -774.561 <0.0001 
b-T w-Ss/Sb vs. all-b -825.269 <0.0001 
b-Ss w-T/Sb vs. b-Ss/T w-Sb -400.765 0.0020 
b-Ss w-T/Sb vs. w-T/Ss b-Sb -1177.63 <0.0001 
b-Ss w-T/Sb vs. all-b -1228.34 <0.0001 
b-Ss/T w-Sb vs. w-T/Ss b-Sb -776.864 <0.0001 
b-Ss/T w-Sb vs. all-b -827.573 <0.0001 
w-T/Ss b-Sb vs. all-b -50.7081 0.1596 

Statistics refer to non-parametric multiple comparison tests (on mean 
rank) using the FDR correction approach, where w- and b- refers to within 
and between scenarios respectively. T, Ss and Sb refer to task, session and 
subject.   
 

C.  NETWORK CENTRALITY 
Results derived from the application of EC on PLV based 
analysis (in the beta band) are still consistent with the 
previously reports, as shown in Figure 5 and the corresponding 
statistics summarized in Table 4. Again, the lower distances 
were observed for the within-task, within-session, within-
subject scenario (0.12 ± 0.01) and for the between-sessions, 
within-task, within-subject scenario (0.11 ± 0.01). The 
distances increased for the between-tasks scenarios, both for 
within-session (0.14 ± 0.02) and for between-sessions (0.14 ± 
0.02). Finally, the distances further increased for the between-

subjects’ scenarios, both for within-session, within-task (0.17 
± 0.03) and for all between (0.17 ± 0.03).  
 

D.  DISCUSSIONS 
In summary, in this work we aimed to investigate how the 
variability due to subject, session and task affects EEG power, 
connectivity and network features estimated using source-
reconstructed EEG time-series. Despite this question was 
extensively investigated using fMRI [2], [6], [12], high density 
EEG, which still represents a very important and useful 
clinical tool, have received less attention in this context. 
Although, numerous studies have investigated the possibility 
to use EEG signals to develop biometric systems, only 
recently more attention was devoted to the study of subject 
variability and stability over-time and states [13]. The results 
of this study show three main relevant points. First, as 
expected, for all the different analyses, PSD, PLV and EC 
based approaches, the lower distances were observed in the 
scenario corresponding to a simple between epochs scheme, 
within the same subject, the same session and the same task. It 
should be highlighted that this also represents the more 
common scenario in which studies do not consider the 
variance induced by subject-specific traits, multi-sessions 
and/or by multi-tasks setup. Second, probably the more 
interesting finding, the distances obtained using the between-
sessions, within-task, within-subject scenario are comparable 
with the previous one (namely, within-session scenario) for all 
the performed analyses. This finding clearly indicates that the 
variance due to the session is therefore negligible. Third, 
conversely, the effect due to the task (task-switching) is 
substantial, as also highlighted by the statistics and consistent 
for all the different analyses (i.e., PSD, PLV in beta and alpha 
bands and EC analysis). Moreover, the second point is further 
confirmed by the between-sessions and between-tasks 
scenario, where again it is still evident the low effect due to 
the session switching. Finally, as expected, the distances 
strongly increase in the between-subjects scenario, showing a 
clear effect due to specific subject, thus confirming the 
importance to address the issue related with the variance 
within a group. The reported results support, as recently 
reported using a scalp-level EEG analysis [13], the existence 
of well-defined subject-specific profiles and that these features 
may be considered stable over a defined and limited time 
range. These results are also in line with the fact that task-
invariant subject-specific features are stronger than task-
dependent group profiles. Finally, the reported findings also 
represent an important confirmation obtained at source level, 
of the results reported using scalp EEG based biometric 
systems [10], [11], never explored with this spatial resolution, 
further suggesting that these systems, other than show a very 
high uniqueness, may provide very good permanence 
properties. On the other hand, these results also confirm what 
is generally observable by designing a brain computer 
interface system. In fact, even though it is still remarkable a 
strong effect of task-switching, it is still evident that the 
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individual traits may strongly hinder the generalization of the 
approach (failing to keep a good performance across different 
subjects).  
 
V. CONCLUSION 
In conclusion, we have shown that source-level EEG analysis 
confirms that PSD, PLV and PLV derived functional brain 
network, as measured by nodal centrality (namely, eigenvector 
centrality), are stable over-time, dominated by individual 
properties but largely dependent from the specific task. These 
findings may have important implications for both clinical 
(e.g., biomarkers) and bio-engineering applications (e.g., 
biometric systems and brain computer interfaces).  
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