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Abstract 
 
Insertions and deletions (indels) make a critical contribution to human genetic variation. While 
indel calling has improved significantly, it lags dramatically in performance relative to 
single-nucleotide variant calling, something of particular concern for clinical genomics where 
larger scale disruption of the open reading frame can commonly cause disease. Here, we present 
a machine learning-based approach to the detection of indel breakpoints. Our novel approach 
improves sensitivity to larger variants dramatically by leveraging sequencing metrics and 
signatures of poor read alignment. We use new benchmark datasets and Sanger sequencing to 
compare our approach to current gold standard indel callers, achieving unprecedented levels of 
precision and recall. We demonstrate the impact of these calling improvements by applying this 
tool to a cohort of patients with undiagnosed disease, generating plausible novel candidates in 21 
out of 26 undiagnosed cases. We highlight the diagnosis of one patient with a 498-bp deletion in 
HNRNPA1 missed by traditional indel-detection tools.  
 
Introduction 
Insertions and deletions within the genome are well-established mechanisms of human disease1. 
While less common than single-nucleotide variants (proportions of incidence range from 1:7 to 
1:43, varying highly with genomic region), indels are an important component of genetic 
diversity, and are more likely to disrupt the open reading frame2,3. In the latest version of the 
Human Genome Mutation Database (HGMD 2018.4) indel mutations account for 31% of all 
entries, with deletions outnumbering insertions more than 2:14.  

While performance in identifying single-nucleotide variants (SNVs) is comparatively 
high, detecting indels with high sensitivity remains a challenge5. The current diagnosis rate 
through exome sequencing for patients with genetic disorders is around 30%6,7. By comparison 
with long-read sequencing, indel calling from short-read sequencing has been shown to miss 
variants, including clinically relevant ones8. Even with long-read sequencing, which remains 
relatively costly, indels are a persistent source of error9. One review of seven commonly used 
indel calling tools found that about 77% of indels across 78 human genomes from the 1000 
Genomes Project went undetected by all tools10. Further complicating identification of real 
variants, there is often low concordance among these tools11. 

 Evaluating the performance an indel caller involves comparing the variants it identifies 
against a “benchmark” or “truth” set of variants that we accept as fully characterizing the 
variation of the genome (possibly within certain genomic regions and/or categories of variation). 
This process produces scores of recall (sensitivity) and precision (positive predictive value), 
derived from the proportions of true positive, false negative, and false positive calls. These 
metrics capture how likely a genuine variant is to be called, and how likely a called variant is to 
be genuine. The ideal indel caller has high recall and high precision, reporting many genuine 
variants and few false ones; it moreover detects a variety of indels, including variants of different 
sizes, and those that lie in different types of genomic regions (e.g., homopolymer runs). 

Benchmark data derived from finding consensus between multiple orthogonal variant 
callers is often labeled “gold standard.” These variant callers may not individually detect all true 
positives in the genome; moreover, while the requirement of including only variants identified by 
multiple callers ensures that the variants in the benchmark set are of high confidence, it may 
leave out additional genuine variants. Incompleteness of benchmark datasets can warp 
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benchmarking metrics, flagging real calls made by callers outside the truth set as false positives 
(deflating estimates of precision). The decreased number of true positives may also inflate 
estimates of recall. Additionally, we note that machine-learning approaches trained on an 
incomplete benchmark dataset are limited, learning to classify real indels missing from the truth 
set as normal loci.  

There are currently several categories of indel callers that detect different types of indel 
signatures. Split-read tools, such as SV-M12, extract read pairs where only one mate can be 
confidently mapped to the reference, and align the unmapped mates. Paired-end tools, like 
BreakDancer13, examine the distribution of insert sizes between mate reads in a given region to 
determine whether sequence has been added or removed. Alignment-based tools like Stampy14 
examine how reads align to a reference. Some alignment-based tools, for example Platypus15, 
may conjecture alternate haplotypes to which reads are aligned. Others, such as Scalpel16, 
perform graph-based alignments. For sensitive detection of larger indels, there are fewer choices. 
The most popular tool may be Pindel17, which uses a pattern-growth algorithm to detect indels 
through split reads. Other tools, like IMSindel18 and ScanIndel19, use de novo assembly to 
identify large variants.  

Smaller indels (1 to 5 bp) make up a majority (77%) of indels by number, but they 
account for a very small proportion (6%) of all inserted and deleted bases in the human genome. 
By number of nucleotides, larger indels exert significantly more influence on the diversity of the 
genome. But, as indel size increases, the performance of most tools declines. In the narrow range 
of sizes of 1 to 10 bp, Hasan et al. found that the F-score (the harmonic mean of recall and 
precision) of seven popular indel-detection packages drops by nearly half10. Some callers appear 
axiomatically restricted in the size of indels they report. Applied to simulated variants of up to 50 
bp in length, popular callers such as GATK UnifiedGenotyper20, SAMTools 21, and VarScan22 
detected no indels greater than 37, 44, and 42 bp in length, respectively23.  

A distinct category of tools exists for detecting copy-number variants (CNVs) and 
structural variant (SVs), large-scale genetic abnormalities of a kilobase or more in length. But 
this leaves few options for sensitive detection of indels larger than a few bases and smaller than 
one kilobase. Insertions, which cannot be detected through changes in sequencing depth, can be 
particularly challenging. Our goal was to build on the capabilities of recent tools and leverage the 
availability of improved benchmark datasets to develop an indel caller with increased sensitivity 
to variants across the size spectrum.  

 
Results 
 
A benchmark genome of simulated indels facilitates evaluation 
One source of benchmark data is simulated variants. The primary advantage presented by this 
technique is that the truth set is known with maximal confidence, since variants are precisely 
“spiked in.” This improves the reliability of calling metrics. Additionally, the incidence of 
different kinds of indels can be manipulated to generate sufficient test data to characterize indel 
callers’ performance on a variety of variants. The primary drawback of simulated indels is that 
they may not perfectly recapitulate real genotypes.  

There exist several tools that can be precisely directed to spike variants into a starting 
genome. Using BAMSurgeon 24, we defined 3,885 non-overlapping indels, three with each 
possible size from 5 to 1000 bp—and then one indel for each 10 bp increment between 1000 and 
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10000 bp, on average. Half were deletions, and half were insertions for which the inserted 
sequence was generated randomly. The positions for these variants were selected randomly from 
mappable regions of chromosome 22 at least 10 bp away from known pre-existing indels in a 
starting genome (NA12878). When benchmarking variant callers’ performance on this dataset, 
we also excluded the known pre-existing true positives in NA12878 and calls made by callers 
within 10 bp of them. We note the benchmark-incompleteness issue still exists here: variants in 
NA12878 but missing from its truth set will be present in this dataset, and callers’ capture of 
them may incorrectly be flagged as false positives, deflating estimates of precision.  

A minority of these variants (n = 860) were rejected by BAMSurgeon because they could 
not be made to appear biologically realistic, usually because starting coverage was too low, or a 
sufficiently large contig into which to inject the variants could not be assembled. Above 8,000 bp 
in length, we found, it was increasingly unlikely that the indels could be introduced. We used 
this dataset—which is distinct from the simulated variants used to supplement the training data 
of our new tool—to benchmark the variant callers. 
 
Syndip offers a comprehensive set of variants for benchmarking 
“Gold standard” datasets available for benchmarking include public genomes such as NA1287825 
and Syndip26. NA12878 is the genome of a woman from Utah, whose variants are characterized 
by the Genome in a Bottle Consortium (GiaB) according to consensus calling across multiple 
sequencing and variant calling platforms. Syndip is a recently released synthetic diploid genome 
produced by combining two haploid human cell lines sequenced using single molecule real-time 
sequencing and identifying indels with FermiKit27, FreeBayes28, Platypus15, Samtools29, GATK 
HaplotypeCaller and GATK UnifiedGenotyper30 (Fig. 1).  

Relative to NA12878, Syndip offers a wider range of indels that provide for more 
comprehensive benchmarking. Syndip includes more indels than NA12878, and these variants 
span a greater range in size. While across NA12878, the mean and standard deviation of indel 
sizes is just 3 and 4 bp, in Syndip it is 22 and 209 bp. And while in NA12878, the largest variant 
is just 127 bp, in Syndip, it is 19 kb. Syndip was also developed with long-read sequencing, 
which incurs random errors that can generally be overcome by sequencing depth. Neither of the 
two machine learning-based callers evaluated here (DeepVariant and Scotch) were trained on 
Syndip. GATK HaplotypeCaller may have an advantage as it was one of the original tools used 
to develop the Syndip truth set.  

Both NA12878 and Syndip aim to describe human genomes, which should be nearly 
identical in terms of the number and range of sizes of indels detected. It is highly unlikely that 
Syndip contains significantly more indels, or significantly larger ones; instead, we believe the 
discrepancy in variant composition suggest that tools used to analyze NA12878 were likely less 
sensitive to larger variants. Both datasets also contain fewer indels as size increases toward their 
edge of detection capabilities. This may be a function of the attenuating performance of the 
chosen variants callers. In an analysis of short-read whole-genome sequencing data from 2,504 
individuals, the 1000 Genomes Project reported that—above 50 bp—the number of deletions of a 
given size varies little with that size—up to roughly 10 kb. Above 50 bp, moreover, the number 
of insertions of a given size, generally increases with that size, with a peak around 9 kb31. 
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Fig. 1: Log-scale distribution of indels by size by dataset.  
Despite both deriving from human genomes, NA12878 contains fewer indels than Syndip, and smaller 
ones. We also examine here CHM132, a haploid complete hydatidiform mole for which there exists a 
comprehensive list of indels larger than 30 bp detected by SMRT sequencing. Ostensibly, Syndip, which 
consists of two cell lines (CHM1 and CHM13), should contain more indels than CHM1 alone. But even 
within certain size ranges, CHM1 has more variants. While both datasets have a peak in the number of 
indels around 320 bp (representing SINEs, short interspersed nuclear elements), CHM1 alone has an 
additional peak around 170 bp33. These variants are either false positives in CHM1, or false negatives in 
Syndip.  
 
A machine-learning based caller designed for capturing large indels 
We present a machine learning-based tool focused on increasing the sensitivity of calling larger 
indels from whole-genome sequencing data (Scotch, Fig. 2). Machine learning techniques have 
been applied to variant calling with success before. DeepVariant34, which uses neural networks 
to analyze pileups, won highest “SNP Performance” in the precisionFDA Truth Challenge. 
Scotch examines designated portions of the genome, and analyzes each base individually. It 
creates a numerical profile of these positions, describing various features of the aligned 
sequencing data like depth, base quality, and alignment to the reference. A full explanation of the 
features selected is available in the Supplementary Note. 

Based on these predictors, a random forest model then classifies the position as non-indel 
or the site of a specific type of indel breakpoint. If the locus does not match the reference, Scotch 
classifies it as one of three types of indel breakpoints—the site of an insertion, the start of a 
deletion, or the end of a deletion—or as a 1-bp deletion, which requires a separate class since 
both deletion breakpoints fall on the same locus, considered in half-open notation. The Scotch 
standard model was trained on the NA12878 genome. We added to its training data larger 
simulated indels as a way of attempting to overcome the incompleteness of the benchmark 
dataset, which generally lacks larger indels.  
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Fig. 2: Scotch is a machine-learning based indel caller.  
Features are calculated from input sequencing data and from a reference genome. A random forest 
identifies positions that are the breakpoints of an insertion or deletion.  
 
We evaluated Scotch and five other callers: DeepVariant; GATK HaplotypeCaller30; VarScan222; 
and two versions of Pindel, the standard, which we refer to as “Pindel”, and the pipeline with the 
“-l” option for reporting long insertions, “Pindel-L”. These versions of Pindel call the same 
deletions; the “-l” version includes many additional insertions. We assess the performance of 
these six pipelines on three benchmark datasets: simulated variants, Syndip26, and NA12878 25. 
For ease of use, we subset chromosome 22 from each of these datasets. The full results of this 
benchmarking are available in Supplementary Tables 1 - 9. Below, we concentrate primarily on 
the simulated variant dataset that contains many large variants, and Syndip, which offers the 
most comprehensive set of variants.  
 
Protocol for indel benchmarking 
Given a truth set for a benchmark genome and the query set of variants reported by an indel 
caller in the same, we perform a breakpoint-based comparison to generate metrics describing the 
caller’s performance. We subdivide each list into separate registers of insertion, deletion start, 
and deletion end breakpoints. Corresponding truth-query pairs are input to an app developed by 
the Global Alliance for Genomics and Health (GA4GH Benchmarking) made available on 
precisionFDA 35. In a distance-based comparison, it categorizes calls as true positives, false 
positives, or false negatives, and uses this information to derive precision and recall scores. 
While not explicitly a part of the comparison, this method does credit or penalize tools for their 
estimate of the size of a deletion, which determines where the caller places its start and end 
breakpoints. It does not rely on alternate allele sequences, which Scotch, Pindel, and Pindel-L do 
not report for all variants.  

This process produces recall and precision scores for each class of breakpoint. For 
deletions, we report the mean metric across start and end breakpoints. For each tool, we also 
benchmarked the full set of all called indel breakpoints against all true positive breakpoints. This 
illustrates a caller’s performance on both insertions and deletions, with an emphasis on 
performance on deletions, since in aligned sequencing data each deletion comprises two 
breakpoints (start, end) while an insertion has only one. Combining all breakpoints also 
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expresses a tool’s ability to determine that an indel of some sort exists at a given locus, even if 
the type is not correctly identified. 

We separate recall into two metrics: recall by count, which considers the numbers of 
variants identified; and recall by base, which considers the numbers of bases belonging to the 
variants identified. The latter highlights a caller’s sensitivity to larger variants. GA4GH 
Benchmarking reports recall by count directly; we calculate recall by base by considering the 
number of bases belonging to true positive and false negative variant calls.  

 
Optimizing for high recall 
In general, we chose to value recall over precision. While low precision is addressed in clinical 
pipelines through filtering steps and manual curation that eliminate out false positives, low recall 
means losing variants that cannot be recovered. Estimates of precision, moreover, can mislead if 
the caller identifies true positives that are missing from the benchmark set. Even on simulated 
data, a tool may be penalized for identifying an undisclosed indel in the starting genome on 
which a variant simulation tool operates. Below, we motivate this rationale further through 
Sanger sequencing (which reveals that many calls flagged as false positive are in fact genuine 
variants). 
 
Scotch has high recall on simulated data, identifying indels of up to several kilobases 
Evaluated on the dataset of simulated indels, most callers perform well in identifying small 
variants. However, their performance generally declines markedly as indel size increases (Fig. 
3). In contrast, across all indel breakpoints, Scotch’s recall by count and recall by base (99%; 
99%) both exceed Pindel-L (79%; 74%), which itself surpasses all other tools. On deletions, 
Scotch (recall by count: 97.9%), is incrementally superior to Pindel (97.2%), and far exceeds 
other callers (which range in recall from 1% to 12%). On insertions, the differences are even 
more clear: Scotch (recall by count: 98%) surpasses Pindel-L (42%) and all other tools (0.3% - 
24%).  Scotch retains high recall across the size spectrum, successfully identifying insertions and 
deletions in the dataset larger than the largest variant on which it was trained (500 bp), and 
including the dataset’s largest insertion of 7810 bp and largest deletion of 7608 bp.  

Across this broad range of indel sizes, we note that the full relationship between a caller’s 
recall and indel size is complex. While, in general, as indel size increases, sensitivity decreases, 
there are important exceptions. Pindel-L registers a sharp decline, then increase in recall around 
1 kb. For most callers, the steepest drop in recall occurs near 150 bp, approximately the length of 
a short read. These variants may be particularly difficult to detect, because unlike smaller 
variants, they cannot be contained in a single short read. Beyond 150 bp, recall is still somewhat 
variable, and some callers continue to decline in performance while others rebound slightly.  
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Fig. 3: Recall by indel size on simulated variants. 
To examine how callers’ performance varies with indel size, we group together variants with sizes within 
a fixed range and assess the caller’s sensitivity to the group. For each group, represented here as a data 
point, we indicate above the number of variants in the group. The performance of many popular callers 
declines as indel size increases. Scotch’s performance, in contrast, is more consistent across the size 
spectrum. (Note: Since Pindel and Pindel-L call the same deletions, their recall curves on these variants 
are overlapping.) This data is also available in Supplementary Tables 13 - 15. 
 
Scotch identifies variants in Syndip with high recall 
Similar performance is seen when these tools are tested on Syndip (Supplementary Tables 1 - 3). 
Across all indel breakpoints, Scotch’s recall by count is the highest of any tool (93%), exceeding 
Pindel-L (91%), DeepVariant (87%), GATK HaplotypeCaller (87%), VarScan2 (73%), and 
Pindel (66%). The variants identified by DeepVariant, GATK HaplotypeCaller, and VarScan2 
account for, between 37% and 14% of all inserted and deleted sequence.  
 
Scotch has low precision on consensus benchmark data 
While Scotch has high recall, on consensus data sets, it exhibits low precision. By precision, 
Scotch (28%), Pindel (27%) and Pindel-L (6%), fall far behind VarScan2 (98%), DeepVariant 
(95%), and GATK HaplotypeCaller (91%). Estimates of Scotch’s precision, however, may be 
deflated by its identification of real variants missing from the truth set. As discussed below, 
Sanger sequencing of Scotch’s calls flagged in benchmarking as false positives reveals that many 
are bona fide  variants. Note also the differential metrics: Scotch’s insertion-specific precision is 
13%, while its deletion-specific precision is 72%.  

 
Metal: a meta-analytic indel caller sensitive to large variants 
Each of the benchmarked callers has its own strengths, and none outperforms all others in all 
circumstances. To produce an optimal variant calling tool, we merge their strengths36. 

Some tools achieve excellent performance in one dimension by sacrificing performance 
in another. VarScan2, for example, is very conservative, and thus attains extremely high 
precision by accepting low recall. Here, instead, we attempt to negotiate a “best compromise.” 
This approach, which we call Metal, retains the high precision of DeepVariant, GATK 
HaplotypeCaller, and VarScan2, while incorporating many of the larger variants that Scotch and 
Pindel-L identify. It achieves this by performing a “smart intersection.” Metal will report a call 
produced by a tool if it has a corresponding call within 3 bp identified by another tool. To 
counter the low insertion-specific precision of Scotch and Pindel-L, we require that insertions 
called by these tools have correlates in higher-precision DeepVariant, GATK HaplotypeCaller, 
or VarScan2. Metal does not consider the various quality scores that tools report with the 
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variants they call, which may not be directly comparable because tools use different scales, but 
integrating this evidence is a promising area for further improvement. An additional machine 
learning model, in fact, could arbitrate the calls made by each tool and collate them into a single 
set with maximal confidence.  

Across all indel breakpoints in Syndip, Metal’s recall by count (91%) surpasses all tools 
except Scotch (93%), while tripling precision (85%, cf. Scotch: 28%, Fig. 4). Metal identifies far 
more large variants than DeepVariant, GATK HaplotypeCaller, or VarScan2, with a recall by 
base of 57%. On deletions, the performance benefits are particularly clear. Metal identifies more 
variants by count than any individual tool (90%), and more by base (60%) than all tools except 
Pindel and Pindel-L, with greatly improved precision (81%).  
 

 
Fig. 4: Scotch and Metal offer high sensitivity to large variants and improved precision in Syndip. 
Performance of the selected indel callers, including Scotch and the meta caller Metal, on Syndip. Recent 
callers such as DeepVariant and GATK HaplotypeCaller have married high precision and high recall by 
count, but they are more likely to miss larger variants. Scotch and Pindel-L offer higher recall, especially 
on a per-base basis, but with lower precision. Metal, a combination of the other six pipelines (Scotch, 
GATK Haplotypecaller, DeepVariant, VarScan2, and the Pindel versions), captures some of the large 
variants Pindel-L and Scotch identify while sacrificing little in precision.  
 
F(n) metrics balance recall and precision for clinical variant calling 
An F-score balances considers recall, by base or by count, and precision. An F1-score computes 
the harmonic mean of recall and precision, giving each equal weight. In an F(N)-score, recall is 
considered N times more times more important than precision: 
 

(N ) (1 N ) F =  +  2 × precision × recall
(N  × precision) + recall2  

 
Judged by F1, Metal surpasses all traditional callers (Fig. 5). With increasing priority given to 
recall, the impact of Scotch’s superior recall becomes clear.  
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/628222doi: bioRxiv preprint 

https://doi.org/10.1101/628222
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Curnin et al. 10 

 
Fig. 5: F scores with recall by count and recall by base in Syndip.  
We plot the F scores of the tools examined. In an F(N) score, recall is considered N times more important 
than precision. Recent callers such as DeepVariant and GATK HaplotypeCaller provide higher precision 
but are more likely to miss large variants. As the weight given to recall grows, Scotch and Metal surpass 
other callers.  
 
Sanger sequencing validates variants not in consensus truth set, altering precision estimates 
While more successful than other tools in identifying larger variants, Pindel-L, and, to a lesser 
extent, Scotch, exhibit low precision on the consensus truth set. On Syndip, the precision of 
DeepVariant, GATK HaplotypeCaller, and VarScan2 lies between 89% and 97%. On deletions, 
Scotch’s precision is lower (72%) but higher than Pindel-L (27%) while on insertions, both 
Scotch (14%) and Pindel-L (3%) decline significantly. 

We carried out Sanger sequencing to determine what proportion of variants identified as 
false positives by Scotch were, in fact, real variants absent from the consensus truth set. We 
selected for sequencing 100 indel breakpoint calls made by Scotch in NA12878 and flagged as 
false positives in GA4GH Benchmarking, with two constraints. First, half of the selected calls 
were insertion breakpoints, and half were deletion breakpoints (which, in turn, were half 
deletion-start and half deletion-end breakpoints). Second, 20 of the 100 calls were selected to 
have potential correlates in Syndip: indel calls within 3 bp, of any type, in the Syndip truth set. 
This constraint was introduced to determine whether Syndip had identified any additional 
common indels not detected by NA12878.  

Analyzing resultant chromatograms with Poly Peak Parser37, an online alignment-based 
tool that identifies indels, produced a validation rate of 35%. (The full results are available in 
Supplementary Table 21.) For 26 of the original 100 calls, surrounding GC content had been too 
high for effective primer design or PCR amplification failed. In an additional 20 cases, 
sequencing quality was too low to make an accurate determination. We further excluded 2 calls 
that were flagged as false positives not because they were missing altogether from the NA12878 
truth set, but because Scotch had mis-identified their type. 18 out of the remaining 52 calls were 
verified as genuine indel breakpoints. 14 of these validated variants are homopolymer deletions.  

If we consider these samples to be representative of Scotch’s false positives, this implies 
that approximately 4321 of Scotch’s reportedly false positive calls in fact refer to real variants 
missing from chromosome 22 of the NA12878 GiaB truth set. This result improves estimates of 
Scotch’s precision. Based solely on the gold standard, we considered Scotch to have made 
16,241 false positive calls across all indel breakpoints, out of 28,488 calls total. Reclassifying a 
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portion of former “false positives” variant calls as true positives, in proportion to validation rates 
from Sanger sequencing, improves precision from 43% to 58%. 

These truth set validations also imply inflated values of recall for current callers. In line 
with Scotch’s estimated 12247 true positive calls matching 9788 indel breakpoints, we estimate 
that, proportionately, 4321 of the Sanger-validated calls refer to 3453 new indel breakpoints. An 
“ideal” indel caller with recall and precision of 100% on the consensus gold standard, would not 
have identified any of these new true positives and its recall, upon consideration of these new 
variants, would decline to 74%. More information on these calculations is available in the 
Supplementary Note.  
 

 
Fig. 6 : Updated benchmarking following Sanger sequencing validation. 
a, A sample chromatogram from Sanger sequencing of a call made by Scotch in NA12878 that was absent 
from the truth set. The mismatched peaks on the right side of the image indicate a heterozygous deletion. 
b, A visual representation of the approximate relative magnitudes of the original truth set, the set of 
alleged false positives calls by Scotch, and the genuine variants within the alleged false positive calls that 
we expect from our Sanger sequencing. Below, metrics indicate updated estimates of the performance of 
Scotch and an “ideal” indel caller, which had a precision of 100% on the original truth set.  
 
Scotch identifies clinically relevant variants missed by other tools 
Our approach to improving indel calling was motivated by clinical application. While exome and 
genome sequencing are effective in diagnosing rare genetic disorders, estimates of diagnosis rate 
using this technology fall between 30% and 40%, leaving many patients undiagnosed. With 
Scotch, we sought to develop a method that would find these presumed genetic causes 
identifying as many true positives as possible, while minimizing the risk of missing the variant of 
interest.  

We applied Scotch to the genomes of several patients presenting to Stanford’s 
Undiagnosed Diseases Network (UDN). The UDN is a national consortium of medical centers 
taking on patients whose atypical constellations of symptoms have evaded diagnosis. We chose a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/628222doi: bioRxiv preprint 

https://doi.org/10.1101/628222
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Curnin et al. 12 

representative sample of undiagnosed patients at the Stanford center and applied the Scotch 
algorithm. In 21 of 26 cases, plausible candidates for the diagnosis were found. Such candidates 
would require further work to firmly establish disease causality but their presence in a large 
majority of undiagnosed cases is encouraging, especially considering that most variants detected 
in this way could be assumed to contribute to at least hemizygous loss of function. One example 
case illustrates the power of the new approach well.  

An adult woman presented with distal asymmetric myopathy including scapular winging, 
mild facial weakness, decreased forced expiratory volume, and muscle biopsy notable for 
rimmed vacuoles and myofibrillar disorganization. In addition to a myopathy gene panel that was 
negative, whole-exome sequencing was performed for the patient, without a diagnosis. With 
whole genome sequencing data, Scotch made 4.5m indel breakpoint calls. (This is more than 
VarScan2, GATK HaplotypeCaller, and DeepVariant (1.1 - 1.9m), but fewer than Pindel (5.2m) 
and Pindel-L (12.7m).) Of Scotch’s calls, 4,365 were deletion breakpoints within 100 bp of 
exons of ClinVar- and OMIM- annotated genes. 460 of these were seen in no unrelated samples, 
and a phenotype-based prioritization tool38 ranked breakpoints of a 498-bp exon-skipping 
stop-loss deletion in HNRNPA1  in rank 50. This deletion was not reported by DeepVariant, 
GATK HaplotypeCaller, or VarScan2; it was identified by Pindel, Pindel-L, and Metal. The 
implicated gene is a member of the hnRNP family, which has important roles in nucleic acid 
metabolism; mutations in HNRNPA1 have been previously implicated in neuromuscular disease 
in patients with features which substantially overlap our case’s phenotype. 

 
Discussion 
 
We present an approach to optimizing calling of insertions and deletions in the human genome. It 
is designed to optimize recall: evaluated on Syndip, across all indel breakpoints Scotch performs 
with higher sensitivity than any other tool. Scotch reports variants previously only accessible to 
long-read sequencing. Evaluated on simulated data, Scotch retains recall close to 1 on variants 
across the size spectrum. While high recall comes at the expense of lower precision, Sanger 
sequencing demonstrates that this is, to an extent, an artifact of a consensus dataset that omits 
some true positive indels. Taking these into account, the meta-calling approach incorporating 
Scotch surpasses all other tools and is likely to improve the diagnostic rate of clinical genome 
calling. 

A significant advantage to benchmarking new algorithms is the recent publication and 
sharing of “reference” genomes derived from long read sequencing. These build on consensus 
datasets produced by the Genome in a Bottle consortium (which continues to expand its own 
reference collection in this direction). Notably, basic comparison of these “gold standard” 
callsets (NA12878 and Syndip) reveals major differences in the number and size distribution of 
variants too large to be explained by the diversity of individual human genomes. Syndip’s use of 
long-read sequencing and multiple orthogonal variant callers provides for a greater number of 
variants that span a wider range of sizes, thus offering more comprehensive benchmarking 
opportunities.  

Scotch’s base-by-base procedure is less dependent on indel size than more coarse-grained 
approaches. For a caller that identifies variants by reconstructing regions of the genome through 
local assembly, the difference between a 40 bp and a 400 bp indel is significant. But while the 
complete presentation in sequencing data of these variants may differ, their breakpoints are 
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described by similar combinations of soft-clipped reads and changes in sequencing depth and 
quality. This relative conformity is the basis of Scotch’s ability to detect indels of drastically 
different sizes. While trained primarily on NA12878 with a truth set produced by the Genome in 
a Bottle consortium, we added many large simulated indels to Scotch’s training data to increase 
its sensitivity to large variants. Though trained only on indels of up to 500 bp, Scotch identifies 
variants in Syndip of up to several thousand base pairs in length.  

We developed a meta caller (Metal) that delivers superior performance overall by 
integrating five variant callers. Collating the variants reported by these callers in its “smart 
intersection,” Metal maximizes the number of true positive calls retained while filtering out 
erroneous calls resulting from sequencing errors. The high number of callers and their high 
initial sensitivity—as well as the loose comparison requirements—produces a master callset with 
high recall, including capture of many large variants, and high precision. Across all indel 
breakpoints in Syndip, Metal registers higher recall than any caller other than Scotch. At the 
same time, Metal greatly improves upon Scotch in terms of precision.  

Sanger sequencing of variants called by Scotch missing from the NA12878 truth set 
reveals that some “false positives” are bona fide indels. Most of these are variants in 
homopolymer runs. While the reliability of Sanger sequencing itself declines in such regions, the 
prevalence of variants increases. We view improving sensitivity to these and other broader 
categories of variants as an imperative. We note that the incompleteness of benchmark datasets, 
in addition to presenting a challenge to machine-learning based approaches that may learn to 
miss the same indels, warps metrics derived from benchmarking. Considering the new true 
positives predicted by Sanger sequencing improves estimates of Scotch’s precision, and lowers 
estimates of other callers’ recall.  

While gold standard datasets provide critical insight into the performance of variant 
callers, their potential for incompleteness means they should not be relied on exclusively. This is 
especially true in light of efforts to expand the capabilities of variant callers into broader 
categories of genetic variants—and those that lie in more challenging genomic regions—where 
current gold standard datasets are particularly likely to be incomplete. Over-reliance on 
benchmarking metrics may hinder the development of new tools by incorrectly penalizing 
improved callers with low precision, and rewarding those that maintain the “status quo” of 
identifying indels that are already confidently detected. In addition to evaluating callers against 
benchmark dataset, we encourage evaluation by Sanger sequencing of a sample of calls made 
outside the truth set for a more full picture of indel callers’ capabilities. While attention to a 
variety of metrics is important, we urge greater focus on recall and improvement in discovery of 
a wider range of variants, relative to precision.  

In summary, we present Scotch and Metal, tools capable of identifying new true positive 
insertion and deletion variants, expanding the range of variants that can be detected from 
next-generation sequencing data. We hope these tools, aided by insights from benchmark 
datasets, can continue to advance understanding of human disease and genetic diversity.  
 
Methods 
 
Input 
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Scotch accepts a Binary Alignment Mapping (BAM)21 file containing next-generation 
whole-genome sequencing data. Scotch also accepts a FASTA file providing the corresponding 
reference genome. Scotch divides the input by chromosome for parallel processing.  
 
Features 
Scotch’s model evaluates each position with respect to 39 features. These include “primary 
metrics,” quantities which are extracted directly from sequencing data; “delta features” which 
track the differences in primary features between neighboring positions; and “genomic features,” 
which describe the content of the reference genome at a given locus. Information on feature 
importance is available in the Supplementary Note (Supplementary Fig. 1, Supplementary Table 
25).  
 
Primary features 
These 11 features are calculated directly from the sequencing data. Three describe 
coverage—including the number of reads, reads with no soft-clipping, and reads with a base 
quality of 13 or higher. Each of these are normalized across the sample for comparability with 
samples from various sequencing runs. Two more features describe the quality of the 
sequencing—the mean base quality and the mean mapping quality across all reads. Four more 
are calculated from the CIGAR string that details each read’s alignment to the 
reference—recording the proportion of bases at that position across all reads that are marked as 
inserted, deleted, soft-clipped, and that at are at the boundary of soft-clipping (i.e., the base is 
soft-clipped but at least one neighboring base is not). Two more features describe the 
soft-clipping of the reads, if present: one gives the mean base quality of soft-clipped bases, 
another gives the consistency score of the soft-clipping.  

A position’s consistency score is a metric we derived that gives the ratio of the number of 
reads supporting the most common soft-clipped base (i.e., A, T, C, or G), to the number of all 
soft-clipped reads. Soft-clipping provides important signal of an indel to our model; this score 
helps a model distinguish indel-related soft-clipping (where all soft-clipped reads should support 
the same nucleotide) from that caused by low sequencing quality (where different nucleotides 
will be present).  
 
Delta features 
20 additional features give the change in each of the primary features listed above— except the 
soft-clipping consistency score—from a given locus to both of its neighbors.  
 
Genomic features 
Eight features, lastly, are derived from the reference genome, providing Scotch with insight into 
regions where sequencing errors are more common. Four of these features are binary: they 
indicate whether a genomic position is located in high-confidence regions, “superdup” regions, 
repetitive regions, and low-complexity regions. The remaining four describe GC-content (in 
windows of 50 and 1000 bp), mappability, and uniqueness.  
 
Prediction and Output 
These features are combined in a human-readable TSV that can serve as the input to any number 
of machine-learning setups. We trained several random forest models to identify the signals of 
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indels in this data. The primary output of Scotch is a VCF file that lists all breakpoints 
discovered, their confidence, and their type.  
 
Training 
We evaluated Scotch’s performance when provided with labelled training data from five 
different sources: simulated variants, Syndip, CHM1, NA12878, and NA12878 with simulated 
variants. We found optimal results with the last source of training data. We also performed a 
hyperparameter optimization over random forest hyperparameters including the number of trees 
(ntree) and the number of predictors that can be considered at each node (mtry), though we found 
these to be largely insignificant.  
 
Implementation 
Scotch is implemented in Bash, Python, and R, and relies on the following packages: samtools, 
pysam, randomForest, and the GATK20,30,39. The codebase is publicly available on GitHub at 
https://github.com/AshleyLab/scotch, and the genomic features used by the machine learning 
model are available at https://github.com/AshleyLab/scotch-data, precomputed across the 
genome for convenience.  
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