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Abstract 29 

To prevent erroneous actions, individuals must often inhibit prepared behavioral 30 

responses. The right inferior frontal gyrus (rIFG) and its connectivity patterns are 31 

prominently implicated as key to behavioral inhibition. However, previous studies have 32 

applied neurostimulation methods with low spatial resolution that impede simultaneous 33 

network modeling of neural activity. Therefore, direct evidence for inhibitory control in 34 

rIFG is lacking, while the accompanying network mechanisms remain unknown. We 35 

addressed this gap using a Stop Signal task and transcranial focused ultrasound 36 

(TFUS) to pars opercularis in rIFG. TFUS improved stopping performance by enhancing 37 

stopping speed. Electroencephalographic dynamic causal modeling indicated inhibition 38 

performance increased by TFUS modulating pars opercularis pyramidal neuron 39 

connectivity to subcortex. By combining TFUS and network modeling, our results 40 

provide causal evidence that response inhibition is implemented along two pathways 41 

originating from a direct rIFG to subcortical pathway and a parallel pathway that 42 

modulates pre-SMA inhibition onto subcortical nodes.  43 

44 
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Introduction 45 

Behavioral inhibition is necessary to suppress impending actions that become 46 

contextually inappropriate (Aron et al., 2014; Baddeley, 1996; Logan and Cowan, 1984). 47 

The control over inhibitory capacities is dramatically reduced in pathologies dominated 48 

by aberrant impulse control, e.g. ADHD (Bari and Robbins, 2013). The stop-signal task 49 

has been widely used as a paradigm for probing inhibition (Logan and Cowan, 1984). 50 

This task involves cueing action execution (Go signal) on every trial. On a percentage of 51 

trials, individuals are cued (Stop signal) to attempt inhibiting responses at a delay after a 52 

Go. This task allows deriving the stop signal reaction time (SSRT), a latent measure of 53 

stopping speed.  54 

The predominant conceptual framework implicates a right-lateralized prefrontal 55 

stopping circuit driving inhibition (Aron, Robbins, and Poldrack, 2014; Chambers et al., 56 

2006), with an anatomical locus in the posterior portion of the right inferior frontal gyrus 57 

(rIFG), pars opercularis (Aron and Poldrack, 2006). It has been argued this area directly 58 

implement motor braking via projections to subcortical nodes (Aron et al., 2014). 59 

Supporting evidence is based on demonstrations that rIFG neural activity is larger in 60 

successful compared to failed stopping (Aron et al., 2006; Boehler et al., 2010; Li et al., 61 

2006), and both inhibition and SSRTs being altered in individuals with rIFG lesions 62 

(Aron et al., 2003) and ADHD (Morein-Zamir et al., 2014). rIFG is considered a core 63 

node for response inhibition, nevertheless successful inhibition also engages a broader 64 

network that includes pre-supplementary motor area (pre-SMA; Duann et al., 2009), 65 

subthalamic nucleus (STN) and striatum (Aron et al., 2007; Mallet et al., 2016).  66 
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Although modulation of RIFG activity typically accompanies inhibitory control, 67 

several researchers have proposed RIFG’s involvement is indirect (Duann et al., 2009; 68 

Sharp et al., 2010; Xu et al., 2017). This indirect role involves rIFG registering a stop-69 

signal context, and signaling the context to pre-SMA, which has been argued to 70 

explicitly trigger inhibition (Duann et al., 2009; Sharp et al., 2010; Rae et al., 2015). At a 71 

network level, this hypothesis has gained support from fMRI connectivity in stop-signal 72 

studies wherein pre-SMA alone exhibited modulated connectivity with subcortical 73 

structures during successful inhibition (Duann et al., 2009; Rae et al., 2015). However, 74 

other connectivity studies have implicated both rIFG and pre-SMA connectivity to STN 75 

and striatal pathways as predicting inhibition speed (Jahfari et al., 2011; Xu et al., 76 

2017). Additionally, primate research implies that direct neural projections to the STN 77 

originate in both the rIFG and pre-SMA, with the STN acting as an integrator (Haynes 78 

and Haber, 2013). These dual-pathway models leave open the possibility that rIFG can 79 

directly trigger inhibition in parallel with pre-SMA (Aron et al., 2016).  80 

In contrast to the above conclusions, an alternative framework posits that neither 81 

rIFG or pre-SMA directly implement inhibition, with inhibition emerging from attentional 82 

orienting and biased competition processes (Hampshire and Sharp, 2015; Chatham et 83 

al., 2012). This proposition is based on findings indicating sectors of rIFG are 84 

equivalently active during stop-signal and other putatively non-inhibitory tasks (Erika-85 

Florence et al., 2014; Hampshire et al., 2010; Xu et al., 2017). For example, rIFG 86 

activity scales with stimulus probability (Shulman et al., 2009) and regularly during tasks 87 

requiring attentional re-orienting (Vossel et al., 2006; Levy and Wagner, 2011). The 88 

claim that attentional orienting drives response inhibition is supported primarily by 89 
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demonstrating rIFG fMRI activity is equivalent during both stop-signal tasks and other 90 

tasks with no apparent inhibitory demands (Sharp et al., 2010). In this framework 91 

(reviewed in Hampshire and Sharp, 2015), inhibition could occur through rIFG top-down 92 

signals that bias attentional processing through increasing synaptic efficacy of sensory 93 

cortices (Hampsire, 2015; Feldman and Friston, 2010).   94 

Given the prevalence of findings supporting either a direct or indirect role of rIFG 95 

in response inhibition, or the absence of behavioral inhibition processes altogether, 96 

delineating between alternative mechanisms has remained inconclusive. For example, 97 

an established way to control for attentional demands is comparing neural activity 98 

during a stop-signal and putatively non-inhibitory tasks. However, a notable issue with 99 

this comparison is that other tasks may still induce unaccounted for cognitive processes 100 

or latent inhibitory demands not directly measurable in behavior (Aron et al., 2014). 101 

Given the ambiguity introduced by comparing tasks to parcellate neural activity 102 

underlying inhibitory versus other cognitive demands, direct approaches are needed to 103 

circumvent these issues.  104 

Neurostimulation during inhibitory tasks offers a potential in-route to identify how 105 

rIFG, and particularly pars opercularis, is causally involved in motor braking, while 106 

detailing its role in the broader inhibition network. Respectively, several studies have 107 

applied transcranial magnetic (TMS; Cai et al., 2012; Obeso et al., 2013; Verbruggen et 108 

al., 2010) or direct current (Jacobson et al., 2011) stimulation during inhibition tasks. 109 

Some studies found offline TMS applied to either rIFG or pre-SMA impaired or improved 110 

inhibition performance (Chambers et al., 2006; Verbruggen et al., 2010), respectively. 111 

However, others have shown pre-SMA TMS can either improve inhibition with no effect 112 
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on rIFG (Obeso, 2013). Limitations of previous human neurostimulation response 113 

inhibition studies include either lack of neural activity measurements or limited spatial 114 

accuracy (Opitz et al., 2013). For example, TMS applied to rIFG during inhibition tasks 115 

most likely engaged ventral premotor areas involved also in action switching (Buch et 116 

al., 2010). The implication is that, if rIFG is potentially involved in attentional orienting, 117 

inhibitory control, or both, these neurostimulation approaches likely elicited broad 118 

effects on these processes. Therefore, it remains to be causally established that rIFG 119 

and, more importantly, pars opercularis, engage an explicit motor inhibition mechanism 120 

embedded in its connectivity that operates alongside attentional mechanisms (Munkata 121 

et al., 2011; Wiecki and Frank, 2013). 122 

Here, we employed MRI-guided, neuronavigated transcranial focused ultrasound 123 

stimulation (TFUS) directly to the pars opercularis of the rIFG while humans performed 124 

a stop-signal task. TFUS is a stimulation technique with a millimeter spatial resolution 125 

(Fini and Tyler, 2017). Neural activity underlying response inhibition was assessed with 126 

EEG event-related potentials (ERPs) and source analysis. Using this approach allowed 127 

us to delineate the specific role of pars opercularis, while detailing which ERPs and 128 

network functions are directly related to inhibition success and its speed (SSRT). TFUS 129 

to pars opercularis significantly improved response inhibition through a targeted effect of 130 

shortening SSRT. To determine how TFUS altered biophysical mechanisms generating 131 

neural activity underlying inhibitory mechanisms, we built dynamic causal models 132 

(DCM) of ERPs using microcircuit models. The main network hypothesis was that an 133 

explicit rIFG inhibition mechanism would be embodied in direct rIFG-to-subcortical 134 

connectivity weighting that directly reflects TFUS-induced changes in stopping efficiency 135 
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(SSRT). We confirmed this hypothesis by demonstrating TFUS directly altered rIFG 136 

connectivity to a hidden subcortical node. In addition, DCM also indicated that only No-137 

TFUS successful versus failed stopping, rather than successful stopping in general, 138 

were differentiated by mechanisms linked to network mechanisms associated with 139 

attentional modulation, i.e., recurrent synaptic superficial gain of visual cortex. 140 

Importantly, these results support the proposal that rIFG is directly involved in 141 

implementing an explicit response inhibition function and stopping efficiency. 142 

Methods 143 

Participants   144 

Participants consisted of healthy adult volunteers and were divided into one of 145 

three experimental groups. The main experimental group received transcranial focused 146 

ultrasound (TFUS) stimulation to the right inferior frontal gyrus (rIFG) (n = 25; 19 males, 147 

mean age 24.1 yrs SD 3.2 yrs). A second group was used as cortical site, active control 148 

group. These participants received stimulation to the ipsilateral somatosensory cortex 149 

(S1) (n = 23; 15 males, mean age 22.4 yrs. SD = 3.3 yrs).  A third group received a 150 

sham stimulation near the right temple (n = 15; 8 male, mean age 24.2 yrs SD = 2.8 yrs) 151 

and was used as control for possible auditory effects of TFUS over rIFG (sham rIFG). 152 

All individuals were right-handed and received financial compensation for participation 153 

in the study. Before being enrolled, each subject was screened for neurological 154 

disorders and previous history of epilepsy, stroke, or brain injury. Furthermore, a 155 

neurologist from the Barrow Neurological Institute (Phoenix, AZ) screened all subjects’ 156 

T1 scans after structural MRI acquisition, and before participation in the study. 157 

Stop Signal Task and TFUS design 158 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/649665doi: bioRxiv preprint 

https://doi.org/10.1101/649665
http://creativecommons.org/licenses/by-nc-nd/4.0/


The current study used the conventional Stop Signal Task that involved both ‘Go’ 159 

and ‘Stop’ trials (Fig. 1A). We presented the experiment using Opensesame (Mathôt et 160 

al., 2012). Each trial started with a centrally-located fixation cross on the monitor. In 161 

both trial types, the fixation cue was replaced by a green ‘Go’ circle (3° x 3° visual 162 

angle), with an exponentially-distributed time interval (mean: 500 ms; standard 163 

deviation: 50 ms). Subjects were instructed “to press the up key as soon as they 164 

detected the Go circle” (top panel, Fig. 1A). In ‘Go’ trials, the circle vanished when the 165 

button was pressed or after 800 ms had passed from the fixation cross stimulus. In 166 

‘Stop’ trials, the stop was a red square which appeared around the green circle (middle 167 

and bottom panel, Fig. 1A). If the subject successfully inhibited his/her response with 168 

respect to the Stop cue within 800 ms, the red square was extinguished, and the trial 169 

was considered a successful inhibition. The time required to inhibit a response following 170 

the Stop signal is defined as stop signal reaction time (SSRT) (see below). The timing of 171 

the Stop cue relative to Go cue, i.e., the stop signal delay (SSD), was presented at one 172 

of four fixed, but subject-specific SSDs. The SSDs were designated by having each 173 

subject first perform a practice block of 50 Go trials only to determine their baseline Go 174 

reaction time (RT). After this block, the 4 SSD levels were set to 25, 35, 75 and 95% of 175 

the mean Go RT. These SSDs were fixed throughout the experimental session. Using a 176 

set of fixed SSDs allowed us to calculate the SSRT using routines that are less 177 

susceptible to low trial numbers (Matzke et al., 2013; see Data processing). Additionally, 178 

we sought to determine the effects of online TFUS at different SSDs to estimate the 179 

effects of stimulation on neural and behavioral responses at different stages of a Go 180 

process predicted by response inhibition models (Verbruggen and Logan, 2009). All 181 
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trials were separated by an inter-trial interval of 2000 ms (±300 ms randomly drawn 182 

jitter).  183 

TFUS was delivered either simultaneously with (1) the Go signal in both Go and 184 

Stop trials, or (2) the Stop signal (Fig. 1A). The purpose of delivering TFUS during Go 185 

trials was to determine the neural and behavioral effects of TFUS to rIFG independent 186 

of a stopping signal. Specifically, this allowed us to assess whether any effects of TFUS 187 

on stopping behavior are related merely to alteration of the timing of an underlying Go 188 

process. Therefore, we used 5 types of trials. The first two consisted of Go trials with no 189 

TFUS or with TFUS locked to the Go cue (No-TFUS and Go-TFUS trials, respectively). 190 

The other three trials consisted of Stop trials: No-TFUS trials, Go-TFUS, and TFUS 191 

locked to the Stop signal (Stop-TFUS). These three types of Stop trials were examined 192 

across the four SSDs. 193 

TFUS delivery for Stop trials was evenly distributed across the 4 SSD levels. The 194 

overall probability of a stop trial was set to 35% of all trials (Fig. 1B). We chose this level 195 

to accommodate the need for large amounts of Stop trials required to examine the 196 

effects of TFUS on Stop trials across all SSD levels, while still making Go trials more 197 

frequent. Each experimental session consisted of 1200 trials distributed across 12 198 

blocks. Blocks were segmented into stimulation and no-stimulation blocks; the former 199 

containing trials with and without stimulation, and the later containing no stimulation. 200 

Trial types (Go and Stop trials) were randomly and evenly distributed throughout the 201 

experiment. The trial numbers were chosen to enable the comparison between TFUS 202 

and non-stimulation trials across successful and failed inhibition trials, while allowing a 203 

reasonable number of trials to be performed without inducing significant fatigue to the 204 
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participants. The block design, as well as the use of an active-stimulation and sham 205 

control groups was chosen to mitigate any possible carry-over effects of the stimulation 206 

across trials. 207 

EEG acquisition 208 

EEG was recorded using a 64-channel ActiCap system (BrainVision, Morrisville, 209 

NC), with a standard 10–20 layout. Data was recorded at a sampling rate of 5 kHz, with 210 

resolution 0.1 μV and bandpass filter of 0.1–100 Hz. Impedances were always kept < 5 211 

kΩ. Online recordings utilized a ground at AFz and left mastoid reference. At the 212 

beginning of each session, electrode layouts with respect to each individual’s head 213 

shape were registered using a CapTrak camera system (BrainVision, Morrisville, NC) 214 

with the left and right preauricular, and nasion as fiducial landmarks. This allowed for 215 

later co-registration with each individuals T1 structural MRI scan and for source-216 

localized analysis (see Data Processing).  217 

Structural MRI acquisition (T1) and processing 218 

For purposes of TFUS neuronavigation and co-registering EEG electrode 219 

placement, we obtained a structural T1 MRI scan for each participant. T1 volumes were 220 

collected using an 3D MPRAGE sequence (TR = 2300 ms, TE = 4.5 ms, 1 x 1 x 1.1 221 

mm3 voxels, field of view 240 x 256 mm2, 180 sagittal slices) in a Philips Ingenia 3T 222 

scanner with a 32-channel head coil. Brainsuite was used to process T1s, which 223 

included cortical extraction sequence and a surface label-registration procedure with the 224 

BCI-DNI atlas. After labeling, we checked the locations and created a mask of either 225 

pars opercularis (rIFG group) or the centroid of ipsilateral S1 (control group). This 226 
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volume labeling and mask creation procedure was used for guiding TFUS target 227 

identification.  228 

TFUS targeting, setup and parameters 229 

All stimulation targets were planned prior to subject arrival. We used a Brainsight 230 

neuronavigation system (Rogue industries) with subjects’ T1 scans to guide placement 231 

of the transducer beam profile with respect to each individual’s neuroanatomy. First, we 232 

created a subject-specific mask from the cortical atlas registration and projected it into 233 

the Montreal Neurologic Institute (MNI) coordinate system (Evans et al., 1994).  When 234 

planning the TFUS target, we considered both MNI coordinates and individual anatomy. 235 

For example, neuroimaging studies (Boehler et al., 2010) and metanalysis (Chikazoe et 236 

al., 2009; Levy and Wagner, 2011) have shown specific activation of the pars 237 

opercularis (around x=48, y=16, x=18) for contrasts of successful inhibition versus Go 238 

trials and successful versus failed inhibition trials. In the case of the RIFG group, we first 239 

identified these MNI coordinates.  Notably, the pars opercularis is an anatomical 240 

definition and is often referred to as ventro-lateral prefrontal cortex in neuroimaging 241 

studies focused on localization of activity that is functionally related to response 242 

inhibition and cognitive control (Levy and Wagner, 2011). During target planning, we 243 

confirmed the identified MNI coordinates were inside the anatomical region of the pars 244 

opercularis, identified from registering atlas maps to individual anatomy. We also 245 

performed visually confirmation that the TFUS target was indeed rostral to the inferior 246 

precentral sulcus, dorsal to the sylvian fissure, caudal to the ascending rhomulus of the 247 

syvian fissure, and ventral to the inferior frontal sulcus (Tomaiuolo et al., 1999).  248 

Because significant anatomical variation exists in this region, individual anatomy rather 249 
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than coordinates were prioritized when planning the TFUS focus. For the S1 group, 250 

stimulation was targeted near x=-43, y=-29, z=54 and within the left post-central gyrus. 251 

Because we used a single element transducer, with a fixed focal depth of 30mm and a 252 

5mm silicon spacer, all stimulation was done at a penetration depth of 25mm and 253 

normal the surface of the scalp.  254 

After EEG setup, we used an infrared optical tracking system (Polars Vicra, NDI 255 

Medical) to register the subjects’ structural MRI scans in virtual space, with their head 256 

and the ultrasound transducer in real space. The alignment and cortical registration 257 

were accomplished by registering the individual’s T1 derived anatomy using the nasion, 258 

tip of the nose, philtrum, and left and right periauricular notch and tragus. To visualize 259 

the TFUS target in the cortex, we created a custom design in Solidworks that rendered 260 

the transducer housing and ellipsoidal beam profile projection into the registered cortex 261 

(Fig. 1C). A 3D printed housing was made for the transducer to hold the optical tracking 262 

unit and silicon spacer (ss-6060 Silicon Solutions, Cuyahoga Falls, OH 263 

http://siliconesolutions.com/ss-6060.html). Acoustic conductive gel was applied to both 264 

the transducer and the scalp. After correct placement of the transducer using the 265 

neuronavigation, we recorded the coordinates of the stimulation target. Figure 1C 266 

shows the rendering from one subject’s T1 and scalp in the rIFG group, along with the 267 

3D rendering of the transducer housing (green object) and the pars opercularis mask 268 

(white anatomical structure).  In the auditory rIFG control group, we employed a sham 269 

TFUS (similar to Legon et al., 2018) by placing the gel coated transducer perpendicular 270 

to the rIFG target. This sham procedure was done to ensure there was still an auditory 271 

effect of the ultrasound (from the pulse repetition frequency) without active stimulation.  272 
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The TFUS transducer was held flush to the head with a custom-made, 273 

lightweight, elastic mesh cap, which did not interfere with EEG recording. To ensure 274 

accurate TFUS placement throughout the experimental session, the rotational and 275 

cartesian displacement of the beam profile from the cortical target was tracked. The 276 

overall accuracy was measured as deviation from the original alignment of the beam 277 

with the anatomical target. During the experimental session, we sampled the position of 278 

the TFUS transducer during each break. Accuracy was very high, with an average 279 

deviation of ±1.5 mm displacement across all subjects and sessions.  280 

The setup and parameters used for TFUS in this experiment were nearly 281 

identical to those used by Legon et al. (2014). We used a broadband, single-element 282 

focused ultrasound transducer with a center frequency of 0.5 MHz, a fixed focal depth of 283 

30mm, and a lateral spatial resolution of 4.5 mm2 and axial spatial resolution of 18mm2 284 

(Blatek, Inc., State College, PA) (Legon et al., 2014). Prior water tank testing through 285 

cadaver skull revealed transcranial spatial-peak pulse average intensity (Isppa) of 5.8 286 

W/cm2, and the optimal frequencies for TFUS transmission while minimizing cranial 287 

attenuation are 0.2- 0.65 MHz (Hayner and Hynynen, 2001; White et al., 2006).  288 

 The TFUS waveforms were generated using a two-channel, 2 MHz function 289 

generator (BK Precision) (Legon et al, 2014). Channel 1 was triggered by the 290 

presentation computer and produced the pulse repetition frequency (PRF) of 1.0 kHz. 291 

This was used to trigger channel 2, which produced short burst at the 0.5 MHz acoustic 292 

frequency. The result produced a ultrasound waveform with a carrier frequency of 0.5 293 

Mhz, PRF of 1.0Khz, and duty cycle 24%. Each stimulation duration was 0.5 s. The 294 

transducer power was driven by sending channel 2’s output to a 40-W linear RF 295 
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amplifier (E&I 240L; Electronics and Innovation). The waveforms were triggered in 296 

alignment with experimentally-relevant temporal events (see description below and Fig. 297 

1A). It has been previously verified that the resulting waveform does not incur any 298 

heating of skin or skull bone (Legon et al., 2014).  299 

Computational simulation of TFUS propagation 300 

We quantified peak pressure amplitude, peak intensity and accuracy of the beam 301 

distribution with TFUS target to rIFG using the pseudospectral simulation method in K-302 

wave (Treeby and Cox, 2010). Reference peak pressure planes for the simulations 303 

were derived from a water tank test and previous data (Legon et al., 2014). Simulation 304 

parameters were first validated by simulating the transducer in water to compare the 305 

simulation results with those from the water tank test. The max pressure plane at the 306 

30-mm focus in the water tank was used as a source input pressure for the transducer 307 

during the simulation. The transducer was modeled to have a 30-mm radius of 308 

curvature. Water simulations used a homogenously medium of water density (1000 309 

kg/m3) and speed of sound (1482 m/s). We created a computational grid over a 256 x 310 

256 x 256 with 1-mm spacing. The points per wavelength were 6, Courant–Friedrichs–311 

Lewy = 0.1, and simulation time was set to 6 pulses (duration = 250 μs) to ensure 312 

simulation stability.  313 

Simulation of ultrasound through water predicted a max pressure of 1.05 Mpa 314 

and spatial peak pulse average intensity (Isppa) of 22.4 W/cm2 at the focus. This 315 

prediction closely aligns with previous studies and simulations (Legon et al., 2014) of 316 

the same transducer. Comparison of simulations and water data indicated a 97% match 317 

of pressure/intensity at the focus taken over a 5 mm3 voxel section in all 3 planes at the 318 
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focus. The lateral full-width at half maximum of the max pressure at the beam was 4.39 319 

mm in simulation (Fig. 1C).  320 

For simulating transcranial US, we extracted 3-dimensional maps of the skull 321 

from a CT (1-mm resolution) and brain from T1 MRI scan (1-mm resolution) from three 322 

preoperative patients at Barrow Neurological institute. The MRI and CT were both co-323 

registered and normalized to the MNI space in SPM12. To mimic our approach of 324 

targeting used in the experiments, we surface registered the gray matter volume to the 325 

BCI-DNI atlas and identified the centroid of pars opercularis. This allowed us to map 326 

from world coordinates of the scan to MNI coordinates of the target (Fig. 1D). The 327 

average stimulation location for these three subjects was x = 48, y = 18, and z = 6. 328 

Conversion from Hounsfield units in the CT to sound speed and density were done 329 

using the relations described in Aubry et al. (2003). All skull materials were set using 330 

these parameters, while other tissues were treated as homogeneous with parameters 331 

set to that of water. Attenuation was modeled as a power law with a β = 0.5 and 332 

absorption was also modeled with a b = 1.08 (Treeby and Cox, 2010). Results for this 333 

simulation are presented in the Results section. 334 

Data processing and experimental variables 335 

Behavioral variables 336 

 The main variables under consideration were the Go trial reaction time (Go RT), 337 

percentage of successfully inhibited responses on Stop trials (successful stopping) per 338 

SSD, failed inhibition reaction time, and SSRT. The SSRT was estimated using a 339 

hierarchical Bayesian parametric approach (Matzke et al., 2013a) that allows estimation 340 

of the distribution of SSRTs while assuming an ex-gaussian distribution of SSRTs. 341 
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Importantly, we chose this approach as Matzke et al. (2013a) showed that it performs 342 

well even when there are only a few trials available per SSD level. This SSRT 343 

estimation procedure was run separately per group (rIFG and S1) and trial types (No-344 

TFUS Stop trials, Go-TFUS Stop trials, and Stop- TFUS Stop trials). As we report in the 345 

Results section, we used combined RTs from Go trials with and without TFUS because 346 

stimulation did not alter the Go RT.  347 

EEG artifact removal 348 

Continuous EEG data were first down-sampled to 250 Hz, then high-pass filtered 349 

(1 Hz) and re-referenced to the scalp average. Any channels that displayed artifacts for 350 

more than 25% of the total session were removed before further processing but were 351 

later interpolated after artifact rejection. We removed channels that were designated 352 

unsuitable for analysis by visual inspection and absolute temporal standard deviation (> 353 

5) across channels. It is important to note that, in each of the stimulation groups, the 354 

cortical sites of rIFG and S1 were close to the F8 and CP4 electrodes. Therefore, these 355 

electrodes could not be used for EEG recording in their respective groups and were 356 

always interpolated after artifact removal. The remaining data processing involved 357 

creating epochs from Stop trials locked to stop signal onset (-100 to 500 ms 358 

peristimulus) because our analysis focused on this epoch. Individual epochs were then 359 

rejected from further analysis if they contained large scalp EMG or rare events (< 8% of 360 

all trials). The ERPs baseline corrected by subtracting the activity from -100 ms to the 361 

stop signal. Out of the 53 participants, 3 subjects were excluded from analyses due to 362 

EEG recording issues (impedance >25 kΩ across channels). The remaining data were 363 

bandpass filtered from 1-25 Hz. EOG artifacts related to eye movements and blinks 364 
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were removed using Independent Components Analysis using eeglab (ICA; Delorme 365 

and Makeig, 2004). On average, 3.35 components were removed per participant. 366 

Because we later applied a Hanning taper to the edges of the event-related potentials 367 

(ERP) before dynamic causal modeling, we applied the same procedure to the ERPs 368 

after cleaning using a Hanning taper. 369 

QUANTIFICATION AND STATISTICAL ANALYSIS 370 

Behavior analysis 371 

 To quantify how the probability of response inhibition changed over levels of 372 

SSD, P(respond|signal), and across TFUS conditions within and across groups we fit a 373 

2-parameter logistic model. This was done to analyze P(respond|signal) as a curve. 374 

This was achieved using by fitting the 2-parameter linear mixed-effects model with 375 

random intercepts and slopes to obtain subject and condition specific model 376 

parameters. P(respond|signal), denoted as p, were converted to a negative logit (log((1-377 

p)/p) before fitting. As our main goal was to estimate the logistic curve slope (β), we ran 378 

the mixed-effects model (using LME4 in R) with the full interaction of SSD and 379 

stimulation condition (no-TFUS, Go-TFUS, Stop-TFUS). Logistic slopes per subject 380 

were estimated by combining fixed and random coefficients. β parameters were 381 

analyzed using a mixed-design ANOVA on β with factors of Group (3 levels) and TFUS 382 

(3 levels: No, Go, Stop). 383 

Separating neural components of Go-responses and response-inhibition 384 

Our analysis of ERPs was based on the premises of the Independent Horse 385 

Race model (Logan and Cowan, 1984) – which posits independent accumulation of Go 386 

and Stop activity till one of them reaches threshold. Due to the nature of measuring 387 
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these processes through EEG and the inhibitory processes, there is overlap of neural 388 

processes related to stopping and going during stop trials. Therefore, we removed Go-389 

related activity from both successfully (SS) and unsuccessfully (US) inhibited Stop trials 390 

through subtracting the Go ERPs from the Stop ERPs. We used the approach 391 

employed by Mattia et al. (2012). On a per-subject basis, we found Go-trial ERPs (No-392 

TFUS and TFUS) that had RTs that were latency-matched to SS trials based on each 393 

subject’s SSRT. These Go trials had to have RTs either equal to or greater than the 394 

SSRT. For US trials, we found latency-matched Go trials with RTs with a different 395 

procedure. We first calculated each subject’s mean signal-respond RT for each of the 396 

two highest SSDs. We then calculated the difference in SSD (ms) and searched for Go 397 

RT trials for each SSD that fell within the mean signal-respond RT ± half the difference 398 

of the SSD (ms). This was done to prevent overlap of activity from both faster and 399 

slower Go RTs and signal-respond RTs. These steps were performed separately for the 400 

highest and second highest SSD. This procedure was done separately for SS and US 401 

trials for both TFUS conditions. After correcting the SS and US stop trial, the corrected 402 

ERPs were averaged across the two highest SSDs per subject (corresponding to the 403 

85% and 105% mean Go RT of each subject). These ERPs were used for the remaining 404 

analysis.  405 

Analysis of inhibition-related ERP  406 

Our analysis focused on event-related potentials (ERPs) from source-localized 407 

analysis and Dynamic Causal Modeling (DCM; David et al., 2006). The primary 408 

motivation for these analyses is that previous work has revealed a set of ERPs that 409 

often accompany response inhibition following a Stop signal (reviewed in Huster et al., 410 
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2013 and Kenemans, 2015). The main ERPs found in inhibitory tasks include a N2/P3 411 

complex that has a fronto-central and radial topography. This component has been 412 

hypothesized to be generated mainly by the pre-SMA/SMA in the medial frontal cortex 413 

(Huster et al., 2013) and has been considered to reflect a critical signature of reactive 414 

stopping elicited by stop signal tasks (Kenemans, 2015; Wessel and Aron, 2017). 415 

Furthermore, the P300 of this complex has been proposed to be a relevant marker of 416 

stopping efficiency, given that it predicts the SSRT (Wessel and Aron, 2015) and 417 

successful versus failed inhibition (Kok et al., 2003). The ERP associated with stopping 418 

in rIFG is typically associated with a negative amplitude difference comparing 419 

successful and failed stopping that emerges around 200 ms (N200; Schmajuk et al., 420 

2006). We examined these ERPs and P/N100 responses which are sometimes elicited 421 

over sensory areas, depending on whether the stimuli used for Go and Stop signals are 422 

in the same sensory modality (Kenemans, 2015). By combining TFUS and EEG, we can 423 

examine some of the issues that are addressed by ongoing debate, i.e., which of these 424 

potentials are stopping-relevant, and how their activity is generated by a network model 425 

through DCM – all without signal interference induced by stimulation.  426 

Scalp space analysis. 427 

 To examine the standard ERP effects typically found in the SST, we first 428 

examined activity at the sensor level. This was done using permutation-based 429 

dependent samples t-tests. Spatiotemporal activity was examined and multiple-430 

comparison corrected for using a cluster-based p-value correction of p < 0.01 and 5000 431 

permutations for each contrast considered. The contrasts included comparison of (1) 432 

successful stop (SS) – unsuccessful stopp (US) trials over Go-TFUS and Stop-TFUS 433 
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conditions, a (2) SS (No-TFUS) – SS (Stop-TFUS) contrast, and (3) and interaction 434 

contrast comparing SS – US difference between the No-TFUS and Stop-TFUS 435 

conditions. The first contrast is typically used to determine which areas exhibit ERPs (or 436 

brain areas) that differentiate successful inhibition (Swaan et al., 2012). The third 437 

contrast (interaction) was used to determine how the SS-US contrast differed between 438 

No-TFUS and Stop-TFUS conditions. The second contrast was the main focus of our 439 

analysis and was used to determine which scalp ERPs differentiated successful 440 

stopping in the No-TFUS and Stop-TFUS conditions. We anticipated that this contrast 441 

would reflect processes that mainly include those responsible for both the success and 442 

efficiency of inhibitory processes, e.g., SSRT.  443 

P300 onset and SSRT TFUS effects  444 

Recent work has indicated that the frontocentral P300 onset latency is related to 445 

the SSRT (Wessel and Aron, 2015). Therefore, we hypothesized that TFUS altered 446 

inhibition through the SSRT and expected a shift in this latency as well. We calculated 447 

the shift in P300 onset crossings between TFUS conditions in two steps. First, we took 448 

the across-subject mean frontocentral ERP waveform in a time-window of ±50 ms 449 

around the zero-crossing. To calculate each subject’s zero-crossing time, we calculated 450 

the dynamic time warping distance from the template mean ERP to the subject’s ERP. 451 

Second, this distance was added to the median zero-crossing time to obtain an 452 

individual subject crossing for both the No-TFUS- and Stop TFUS-locked conditions.  453 

Source localization 454 
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To estimate the activity in source space from the sensor recordings, we used a 455 

group inversion with the multiple sparse-priors approach as implemented in SPM12. 456 

The individual subject data passed to the inversion routine were mean sensor ERPs per 457 

condition. We performed the group inversion only for the rIFG groups and analysis 458 

because this was the only group to exhibit behavioral effects from TFUS. In this 459 

procedure, the individual’s recorded electrode locations and individual T1 were warped 460 

to the default MNI anatomical brain and cortical mesh provided in SPM. These meshes 461 

were used to calculate the forward solution using a boundary element head model. All 462 

conditions were used in the group inversion routine.  Because the multiple sparse-priors 463 

approach attempts to fit the sensor data with respect to the lead-field matrix, we 464 

performed the inversion over a window starting from the stop signal up to 500 ms. While 465 

narrow windows are considered better for time-resolved estimation, we wanted to 466 

estimate overall changes in activity using the same window we would employ later for 467 

dynamic causal modeling.   468 

Source analysis: Whole-brain contrasts and regression  469 

Based on examination of the sensor level data, we first identified time windows 470 

surrounding the ERPs discussed above (N100, N200, and P300). To balance the 471 

number of points contributing to the source estimate used for analysis, we used the 472 

same window size for estimating the source activity of each ERP. The time windows 473 

were centered around the across-subject mean peak activity of each ERP with a 474 

window of ±40 ms. These time windows were used to create 3D source image activity 475 

interpolated into MNI voxel space for each subject and condition. The resulting images 476 

were spatially smoothed (6 mm full-width half maximum) evoked power from 1-25 Hz. 477 
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We used evoked power because we were concerned with ‘activation’ and time window, 478 

but not the direction of voltage deflection. This choice was driven by the fact that we 479 

already established the canonical inhibition related ERPs at the scalp level. These 480 

evoked images were analyzed used a flexible factorial design to implement a repeated-481 

measures ANOVA, including all main effects and interactions. The factors included (1) 482 

inhibition success (SS or US trial), and (2) stimulation condition (No-TFUS or Stop 483 

TFUS). The resulting statistical parametric maps were analyzed with a threshold set at p 484 

< 0.005 (peak-level, uncorrected) and cluster-wise FWE p < 0.05. For expositional 485 

brevity, these SPMs are presented in the supplementary material except for the 486 

conjunction F-contrast showing the overlap of the SS-US and TFUS F-contrasts. This 487 

conjunction shown in the main text both confirms the differential SS-US effect in rIFG 488 

and the spatially precise impact of TFUS. 489 

 We also conducted a whole-brain SPM linear regression using the same time 490 

windows identified above. We regressed the difference in evoked activity between No-491 

TFUS and Stop-TFUS SS trials against the difference in each subject’s SSRT for these 492 

conditions. Using this approach, we examined both positive and negative contrasts (t-493 

tests) in each window. This analysis was done to (1) determine prior source locations 494 

for the DCM analysis (see below) and (2) identify which areas predicted the change in 495 

SSRT due to TFUS. Because a primary goal was determining DCM priors, we used a 496 

lenient uncorrected cluster threshold of P < 0.01 and a minimum cluster-extant 497 

threshold of 20 voxels. 498 

Dynamic Causal Modeling (DCM)  499 
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To model the connectivity of the network involved in successful stopping, we 500 

used the canonical microcircuit model (Bastos et al., 2012) for all areas except the 501 

contralateral motor cortex. For left motor cortex (M1), we used a recently developed 502 

version built-off the canonical microcircuit that more closely resembles the agranular 503 

structure of M1 (Bhatt et al., 2016). Our sequential model building and analysis focused 504 

both on a priori areas of interest that have been well described in response inhibition 505 

literature (e.g., Wessel and Aron, 2017) – including rIFG, rpre-SMA, rDLPFC – and 506 

those areas that we identified in comparing the effects of Stop TFUS and No-TFUS 507 

changes in SSRT on evoked power. Given the typically right-lateralized areas found to 508 

be modulated by inhibition, we focused mainly on pathways on the right hemisphere. 509 

We used source locations identified in both (1) the regression of change in SSRT and 510 

(2) the whole-brain SPM interaction F-contrasts examining locations for which Stop-511 

TFUS and No-TFUS were different for the SS-US comparison. The significant source 512 

cluster peaks (P < 0.01 threshold) revealed by these analysis were labeled using the 513 

AAL atlas labeling toolbox, and used to identify source coordinates in MNI space 514 

([x,y,x]: rIFG [48,28,4]; pre-SMA [6, 24, 54]; rDLPFC [30, 28, 40]; rParietal [10,-74,56]; 515 

rTemporal [52,-18,-12]; LM1 [-37,-25,-62]; right inferior occipital gyrus (rIOG) [46, -516 

76,10]). These source locations are in general agreement with previous literature in both 517 

fMRI, EEG, and MEG studies of SSTs (Aron et al., 2006; Boehler et al., 2010; Rae et 518 

al., 2014) and meta-analyses of cortical locations and boundaries (Chikazoe et al., 519 

2009). In building the model, we also included a hidden deep source to model the 520 

potential connectivity effects to and from cortical sources. Because the main output of 521 

the basal ganglia mediating inhibition and responding is the thalamus, we used a source 522 
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location [4, -16, -2] identified during a previous fMRI stop signal study (Boehler et al., 523 

2010). This approach of using a deep source node in DCM for EEG has been previously 524 

employed by David et al. (2011). In the DCM, we used an equivalent current dipole 525 

model and allowed the inversion process to optimize the source locations. 526 

 To determine the appropriate model connectivity structure, we first examined the 527 

grand mean ERP data in SS No-TFUS trials from a window spanning 0 – 500 ms. 528 

Recent work has shown that estimating the model structure from grand means (across 529 

subjects) is sufficient and provides a close approximation to fixed-effects selection when 530 

using ERP data (Litvak et al., 2015) rather than fitting DCMs across all subjects for each 531 

variation in connection structures.  532 

To optimize the model structure, we performed Bayesian model selection using 533 

family-wise fixed effects in several iterations. In the first set of iterations, we inverted 48 534 

different models from the grand mean data, and then partitioned it into several families 535 

(Penny et al., 2010). These families were based on (1) the structure of the pre-frontal 536 

hierarchy (Fig. S1), (2) structure of the lower hierarchy (Fig. S1), (3) whether exogenous 537 

inputs were supplied to right inferior occipital gyrus (rIOG), rIFG, or both, and (4) 538 

whether the cortical nodes projecting to the hidden deep source were of the forward or 539 

backward type. Inputs were modeled as a Gaussian bump with a prior onset of 60 ms. 540 

With respect to comparison (4), pulling evidence from previous inhibitory control, 541 

primate tracing, and tractography studies and reviews, the areas we examined for 542 

different connections projecting to the deep node included rIFG, pre-SMA, right 543 

dorsolateral prefrontal cortex (rDLPFC) and rIOG. A backward connection from M1 to 544 

the deep node was also included based on putative M1 to basal ganglia connections 545 
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(Nambu et al., 2002). Because the efferent connections from Thalamus output is 546 

excitatory and has been found to target deep pyramidal layers (Yamawaki et al., 2014), 547 

the above listed areas all received forward connections from the deep source.  548 

In this modeling, we assumed hierarchically connected areas always entailed a 549 

backward and forward connection between nodes. Nodes that were lateral in a 550 

hierarchy were supplied with both forward and backward nodes (Fig. S1). A final note is 551 

on the connections between lower areas and prefrontal areas. Rather than optimize all 552 

possible connection permutations, we chose to instantiate connections that reflect the 553 

cognitive and attentional control-related differences typically postulated to operate in 554 

dorsal and ventral pathways (Corbetta and Shulman, 2001). Both streams received 555 

forward input from rIOG. The ventral stream included a forward connection from 556 

rTemporal cortex to rIFG. The dorsal stream included forward projections from rParietal 557 

to both rDLPFC and pre-SMA.  558 

After inversion of each model, we used a fixed-effects Bayesian model selection 559 

to perform family inference and calculate the model posterior probability to determine 560 

the winning model in each family. The family model probability results from these four 561 

different family comparisons are shown in Figure S2. This analysis indicated that, 562 

across families, the winning model had (1) a prefrontal hierarchy with laterally 563 

connected rDLPFC and rIFG above pre-SMA, (2) a parallel structure of rParietal and 564 

rTemporal cortices without a lateral connection, (3) exogenous inputs to both rIOG and 565 

rIFG, and (4) backward cortical to deep connections.  A diagram of the final model 566 

structure is shown in the DCM results section. 567 
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 The next step in model building involved determining which connections were 568 

modulated by conditions specific changes between No-TFUS SS and US trials and, 569 

primarily, between No-TFUS SS and Stop-TFUS SS trials. For our purposes, this 570 

included extrinsic connections between areas and intrinsic gain connections within an 571 

area. Instead of testing an expansive set of permutations of condition-specific 572 

modulations of extrinsic connections (B matrix in DCM), we a priori opted to use the 573 

recently developed Parametric Empirical Bayesian modeling framework for DCM 574 

(Friston et al., 2016). As will be explained below, this involves doing Bayesian statistics 575 

on full DCMs that will have all condition modulatory parameters of interest entered a 576 

hierarchal-general linear model from which hypotheses can be tested. This obviates the 577 

need for conventional statistics and model reduction over all extrinsic connections. If a 578 

DCM model is referred to as full, this includes condition-driven modulations of all 579 

extrinsic connections. Otherwise it includes an explicitly stated set of connections.  580 

After determining a model structure, we inverted this model for each subject’s 581 

ERPs. This inversion was performed twice, using different combinations of trials to 582 

assess different hypotheses. The DCM was first inverted using the No-TFUS US and 583 

SS trial ERPs. The US trial was set as the baseline. This inversion allowed us to first 584 

compare how the network connections were modulated between US and SS trials in a 585 

baseline network without the effects of TFUS. Specifically, we wanted to examine how 586 

changes in connectivity (DCM B matrix) distinguished between unsuccessful and 587 

successful inhibition. Analysis of this general linear model (described below) focused on 588 

the B matrix which describes how connections changed between conditions. This 589 

comparison was done to mirror the standard comparison of SS and US trials that is 590 
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typically employed to reveal what inhibitory mechanisms were more potently activated 591 

during SS trials (Aron et al, 2014). Furthermore, using this contrast of conditions 592 

provides a baseline to ask whether the same connectivity mechanisms were altered 593 

when comparing No-TFUS and Stop-TFUS SS trials. Therefore, the second DCM model 594 

inversion was applied to the No-TFUS and Stop-TFUS SS trials. The No-TFUS trials 595 

were used as a baseline for the fit. Again, this allowed a focus on the connectivity 596 

modulation between the two conditions and treated the non-stimulation condition as the 597 

baseline network.  598 

To analyze the resultant DCM condition-specific changes and the modulation of 599 

connectivity parameters by experiment relevant variables (e.g., SSRT), we tested 600 

group-level effects using the Parametric Empirical Bayes (PEB) framework. We give a 601 

brief overview of PEB (for in-depth discussion, see Friston et al., 2016) for hypothesis 602 

testing and connectivity parameter extraction using a PEB. Building a PEB statistical 603 

model involves creating a hierarchical model with, in our case, two levels. The lower 604 

level is the subject level, which is the results of DCM fits to individual’s ERP data. This 605 

first level includes the posterior means and uncertainties for each subject’s DCM 606 

connectivity parameters. The PEB framework statistically models these parameters 607 

using a Bayesian general linear model (GLM) at the group level. As is the case with 608 

GLMs (and mixed models), the model attempts to explains the connectivity parameters 609 

as between-subject and within-subject variability, while allowing for between-subject 610 

differences in connectivity parameters to be treated as random effects. The PEB 611 

Bayesian GLM allows using subject-based DCM parameters to be examined using a 612 

linear model with respect to explanatory variables at the between-subject (group) level. 613 
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Because the PEB framework yields group-level estimates as empirical priors, this 614 

approach also allows changing parameters that were estimated at the subject level by 615 

allowing them to be estimates distributed around a group mean effect. This process 616 

stands in contrast to the typically used “summary statistic” approach, which often 617 

involves applying several t-tests or correlations per connection.   618 

For clarity, we built two separate PEB models for the DCMs fit to (1) No-TFUS 619 

US and SS trials, and (2) No-TFUS and Stop-TFUS SS trials. The former PEB model 620 

was used to test hypotheses regarding mean changes in connectivity between 621 

unsuccessful and successful inhibition at baseline (No-TFUS). The latter PEB model 622 

was used to address (1) how the inhibition network connectivity changed on average 623 

between TFUS conditions (intercept in GLM), and (2) how individual differences in the 624 

change in SSRT between TFUS conditions was embedded in changes in connectivity 625 

parameters across subjects (covariate). Therefore, in the first model we only used the 626 

mean intercept as the explanatory variable to examine mean changes in connectivity 627 

between No-TFUS US and SS trials. The mean change parameters represent the gain 628 

change in connectivity going from US to SS trials. In the second model, which examined 629 

No-TFUS SS and Stop-TFUS SS trials, we used a design matrix of explanatory 630 

variables that included an (1) intercept representing mean changes in connectivity 631 

(mean TFUS effect), (2) the change in individual subject’s SSRT between TFUS 632 

conditions, and (3) the TFUS change in individual subject SSRT variability. Before 633 

entering the SSRT covariates, they were transformed to a gain change by taking the 634 

log-ratio of Stop-TFUS SSRT (mean or variability) over the No-TFUS SSRT (mean or 635 
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variability). The covariates were then z-scored to have a zero mean and yield 636 

standardized PEB model parameters.   637 

When initially estimating each of the two PEBs, we always entered in the full 638 

model including all extrinsic and intrinsic connection modulatory parameters. Because 639 

our hypotheses centered around changes along prefrontal and deep areas, and ventral 640 

pathway interactions, we first compared the PEB model with and without dorsal pathway 641 

connection parameters. We show in the results that, across both PEBs, the model 642 

without dorsal pathway connection changes yielded a better model with respect to the 643 

explanatory variables. This allowed a substantial reduction in connectivity parameters 644 

needing to be tested. 645 

Once the group-level GLM parameters were estimated with respect to 646 

modulations of extrinsic and intrinsic connectivity, we used this framework to test 647 

several hypotheses regarding mean and SSRT driven changes in connectivity 648 

parameters. Hypothesis testing proceeds by Bayesian model reduction of the GLM. This 649 

involves turning off/on different connectivity parameters and comparing the free energy 650 

of reduced models. Comparing models in this manner is similar to performing classical 651 

hypothesis testing via model reduction in mixed models by employing likelihood ratio or 652 

F-tests.  653 

Hypotheses were tested by designing models with different combinations of 654 

parameters on/off. The model space of these hypotheses was defined in a factorial 655 

space that focused on 4 factors that could be modulated by mean connectivity changes 656 

(PEBs 1 and 2) or connectivity modulation via TFUS induced changes in SSRT (PEB 2). 657 

These factor/hypothesis spaces were driven by previous work. The first set of models 658 
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considered how inhibition is related to pathways the backward connections from rIFG 659 

and pre-SMA to the deep (i.e., basal ganglia) nodes. The second factor, driven by work 660 

indicating that pre-SMA interacts with rIFG before deep projections (Rae et al., 2009), 661 

tested for modulation of their backwards and forwards connections. The third factor was 662 

motivated by proposals that differences in inhibition (SS vs. US) might be mediated 663 

changes in attentional orienting, which predict changes in intrinsic self-inhibitory gain in 664 

either rIFG, rIOG, or both. Therefore, this factor examined for modulation of the 665 

superficial pyramidal cell gain across the nodes. Finally, to examine how SS versus US 666 

and different TFUS effects on inhibition depend on top-down vs bottom-up processing, 667 

our final comparison tested for the inclusion of either backward, forward or both sets of 668 

connections along the ventral pathway. Given that each of 4 factors had 3 levels each, 669 

plus a null (all zero) model, the first PEB surmounted to testing 34+1 (82) models, and 670 

PEB model 2 included 2*34+1 (163) models. 671 

Rather than summarize these effects as the free energy for each model, which 672 

would surmount to a severe reduction in discerning the probability of a winning model, 673 

the hypotheses were grouped into families, and model hypotheses were tested at the 674 

family level. After using family model comparison on reduced GLMs, we used Bayesian 675 

model averaging (BMA) to obtain GLM model estimates of connectivity parameters 676 

having a posterior probability >95%. BMA was performed on all families within a factor, 677 

weighting the summarized parameters by the probability of the family. For example, 678 

BMA parameters for the second PEB mode that includes the mean SSRT as a 679 

predictor, for example, should be interpreted as would a linear regression coefficient; 680 

similarly, the mean term would represent the mean change in connectivity. These BMA 681 
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parameters were reported as the final changes in connectivity and should be considered 682 

to have a 95% probability of being non-zero. 683 

Before conducting our main analysis presented, and to reduce the model space, 684 

we first considered whether the best PEB model would include ventral and dorsal 685 

pathway projections after fitting to individual subjects. Specifically, we asked if 686 

describing the baseline difference of no-TFUS SS and US inhibition involved modulation 687 

of either or both the dorsal and ventral pathways.  Using the family-based hypothesis 688 

comparisons test described above for PEBs, we created factor spaces including the 689 

dorsal, ventral, or both pathways. Both sets of pathways included top-down and bottom-690 

up connections that were grouped together. The dorsal pathway included the rParietal 691 

and rDLPFC nodes and the ventral pathway included rIFG and rTemporal. Bayesian 692 

model comparison (probability = 1) revealed strong evidence in favor of the model with 693 

just ventral pathway connection modulations from US to SS trials. Based on this result, 694 

we excluded dorsal pathway connections from the rest of our DCM analysis to reduce 695 

the space of parameters.   696 

Results 697 

Human participants performed a Stop-Signal task with online, trial-by-trial TFUS. 698 

Subjects were divided into groups based on receiving one of three stimulation type: (1) 699 

active stimulation targeted to right pars opercularis, (2) an active stimulation control site 700 

(ipsilateral somatosensory, S1) to account for non-site specific TFUS, and (3) sham 701 

stimulation to account for TFUS auditory artifacts. Since TFUS has been demonstrated 702 

to illicit immediate effects on ERPs (Lee et al., 2016), stimulation was applied online 703 
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(see Methods) either at the onset of the go or stop signal cue, during both Go and Stop 704 

trials (Figure 1A). We hypothesized that if rIFG implemented motor inhibition, then 705 

TFUS behavioral effects would be limited to alteration of stopping but not going.  TFUS 706 

in the pars opercularis group improved inhibition, while exerting no effects in control 707 

groups. TFUS also altered inhibition related ERPs, which were quantified at electrode 708 

and source-localized levels, while also assessing TFUS impact on effective network 709 

connectivity assessed using DCM.   710 

 711 

Figure 1 A. visual layout of Stop-Signal task and corresponding times when transcranial focused 712 

ultrasound (TFUS) was delivered. B. The left plot shows the average neuronavigation location of TFUS 713 

applied to all MRIs used in the rIFG group. The structural scans on the right show renderings of the 714 

targeted TFUS point in pars opercularis in 4 subjects. C. Lateral maximum pressure profile obtained at 715 

30-mm depth focus in both water and transcranial ultrasound simulation on a CT scan from one patient 716 

(solid and dotted lines, respectively). Horizontal red and blue lines denote full-width half maximum of the 717 

spatial profile of lateral pressure. D. Simulated transcranial pressure profile onto T1 MRI plot shown as a 718 

color overlay.   719 

Numerical simulation of TFUS to rIFG 720 
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 To determine intensity and accuracy of TFUS after skull transmission in the rIFG 721 

group, we used numerical simulations based on CT and MRI data from 3 preoperative 722 

patients and validated the simulation results using a water tank test. At the focus, 723 

modeling of transcranial simulations predicted an average maximum intensity of 2.8 724 

W/cm2. This is in the range of intensity of non-thermal neuromodulation (Legon et al., 725 

2014). Additionally, predicted shifts in peak pressure due to skull transmission was 1.25 726 

mm laterally, relative to a water model simulation, and had a lateral full-width half 727 

maximum of 5.1 mm (Fig. 1C). These simulations indicate a high spatial precision with 728 

>95% of energy limited to pars opercularis (Fig. 1D).  729 

Only TFUS to rIFG alters response inhibition  730 

We first addressed how probability of failing to inhibit responses, 731 

P(respond|signal) (Fig. 2A), changed across TFUS conditions within and across groups, 732 

by fitting a 2-parameter logistic linear mixed-model to obtain a slope (β) of the response 733 

inhibition curve across all subjects and TFUS conditions. Modeling indicated a good fit 734 

of the logistic curve (mean R2 = 84%). Analysis of β indicated only the rIFG group 735 

exhibited a TFUS-altered P(respond|signal). Importantly, behavioral effects of TFUS 736 

were not found for either control groups. Anova results indicated a significant Group x 737 

TFUS interaction (F(2,50) = 3.8, p = 0.034, η�
�  = 0.17), and an overall effect of TFUS 738 

condition (F(2,50) = 11.74, p = 0.002, η�
�  = 0.29). Follow-up one-way ANOVAs across 739 

TFUS onsets (e.g., coincident with stop signal), but within-groups, showed only the rIFG 740 

group exhibited differences across onsets. Follow-up t-tests in this group showed β for 741 

Stop-TFUS was lower than No-TFUS and Go-TFUS conditions (both p < 0.01: mean β’s 742 

indicating change in probability for approximately 25% change in normalized SSD: No-743 
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TFUS = 0.35 (0.12), Stop-TFUS=0.27 (0.08), Go-TFUS=0.35 (0.11)). These results 744 

indicate only the rIFG group was affected by TFUS, as predicted, and only during Stop-745 

TFUS. 746 

Figure 2A shows improved inhibition performance during Stop-TFUS for the rIFG 747 

group occurred at longer SSDs (65% and 95% SSD). A repeated-measures ANOVA on 748 

P(respond|signal) for the rIFG group across all SSD levels and TFUS onsets revealed a 749 

significant interaction (F(6,102) = 8.21, p < 0.0001, = 0.33). Contrast t-tests between 750 

Stop-TFUS and the average of No- and Go-TFUS across all SSDs indicated the 751 

interaction resulted from a reduction in P(respond|signal) for Stop-TFUS in the highest 752 

two SSDs (all p < 0.01; Bonferroni α = 0.0125). These results indicate Stop-TFUS 753 

induced improvements of inhibition were more pronounced at later SSDs.  754 

 755 

Figure 2. A. Probability of responding across stop signal delays in the rIFG TFUS group for all TFUS 756 

onsets. B. Violin plots of rIFG group across-subject distribution of stop signal reaction times (SSRT). 757 

 758 

Based on the prediction that rIFG implements an inhibitory process and our 759 

finding that TFUS improved inhibition in this group, we hypothesized rIFG TFUS 760 

changes to P(respond|signal) should result from a shortening of the stopping speed 761 

 

n 

 a 
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(i.e., SSRT); notably, TFUS did not affect other behavioral variables (e.g., Go RTs, see 762 

Supplementary Material). SSRT analysis in a mixed-design ANOVA indicated a 763 

significant Group x TFUS interaction (F(4,100) = 10.2, p < 0.001, η�
�

 = 0.21). Follow-up 764 

one-way ANOVAs within-groups indicated only rIFG group SSRTs (Fig. 2B) differed 765 

between TFUS onsets (p < 0.05), with t-tests confirming that SSRTs were indeed 766 

shortest and only altered during Stop-TFUS (Fig. 2B). This result, along with the above 767 

P(respond|signal), indicate rIFG Stop-TFUS altered inhibition by shortening the stop 768 

process (SSRT).  769 

Neural components underlying inhibition 770 

In the rest of the results we focus our analysis on the rIFG group because this 771 

was the only group exhibiting behavioral effects of TFUS. Furthermore, we only analyze 772 

No-TFUS and Stop-TFUS conditions because Go activity was subtracted from neural 773 

data at Stop trials (see Methods). 774 

Our first analysis examined sensor-level ERPs across three contrasts using 775 

cluster-based permutation t-tests: (1) successful – unsuccessful stopping contrast over 776 

both TFUS conditions, (2) successful (No-TFUS) – successful stopping (Stop-TFUS) 777 

contrast, and (3) interaction comparing successful – unsuccessful stopping between the 778 

No-TFUS and Stop-TFUS conditions. The cluster-based scalp maps show the 779 

progression of clusters time-locked to the stop-signal onset (0 ms, Fig. 3A,B).  780 
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 781 

Figure 3. A. Scalp plots of cluster-corrected permutation paired t-tests (p < 0.01). Colored contours 782 

represent significant clusters. (1). Contrast of all SS and US trials. (2). Contrast of TFUS conditions SS. 783 

(3). Interaction contrast calculated as SS-US of No-TFUS trials minus SS-US Stop-TFUS trials. B. 784 

Average ERP time courses of three clusters identified by the permutation testing that were differentiated 785 

by statistical contrasts. From left to right, the first cluster (left column) is right-parietal electrodes (CP6, 786 

CP4, P6, P8), the second cluster (middle column) is fronto-central electrodes (C1, Cz, C2), and the third 787 

cluster (right column) is right-frontal electrodes (F8, F6, F4). The vertical dashed lines represent the stop-788 

signal reaction times for the No-TFUS (magenta) and Stop-TFUS (maroon). Latencies in A and B are 789 

expressed relative to stop signal onset (0 ms). 790 

 791 

 We identified several ERPs that differentiated successful stopping (SS) and 792 

unsuccessful stopping (US) trials. The first contrast of SS-US (Figure 3A, row 1) 793 

indicated SS trials exhibited a larger ERP centralized over a right-parietal cluster around 794 

the time-range typically found for the P100 peak (100-148 ms). The interaction of SS-795 

US and TFUS showed this effect occurred earlier and during the peak onset (80-100 796 

ms) of Stop-TFUS trials. Consideration of the SS-SS contrast (TFUS effect; Figure 3A-797 

d 
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2nd row) indicated the largest effect was attributable to the SS TFUS trials, supporting 798 

previous conjectures that inhibition and stopping speed is directly related to larger P100 799 

parietal responses. This result also aligns with previous studies reporting an enhanced 800 

P100 during successful stopping (Boehler et al., 2009).  801 

We also examined the N100 in the right-frontal cluster in the 80-120 ms window 802 

(Figure 3B). We did not find a difference in the frontal N100 with respect to the overall 803 

SS – US contrast (Figure 3A). This result is in line with several other studies noting a 804 

non-significant effect of this contrast (Kenemans, 2015). However, we did find the ERP 805 

was substantially larger in SS TFUS trials compared to SS No-TFUS trials indicating a 806 

direct contribution to stopping efficacy. This increase for SS TFUS suggests this ERP 807 

may stem from rIFG and provide an index of stopping speed, rather than success.  808 

The ERPs most commonly associated with response is the N200/P300 complex. 809 

Notably, the N200 often appears in both right-frontal and fronto-central clusters, while 810 

the P300 is more aligned with the fronto-central (Huster et al., 2013; Kenemans, 2015). 811 

When examining the N200, which typically only appears during US (Liotti et al., 2010; 812 

Wessel et al., 2015), we found an ERP peaking around 200 ms in both clusters that only 813 

appeared in US trials (Figure 3B). This N200 emerged during both No- and Stop-TFUS 814 

(Figure 3, bottom right), with a larger amplitude during US Stop-TFUS.   815 

Of all possible ERPs, the fronto-central P300 has been regarded as the most 816 

robust marker of response inhibition and stopping speed (Wessel and Aron, 2015). 817 

Accordingly, we found P300 amplitude differed between SS and US trials, with US trials 818 

exhibiting a larger amplitude around the peak (290-320 ms) (Figs. 3A-B). However, 819 

because P300 peaks occur after the SSRT, this implies it is too temporally protracted to 820 
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reflect inhibition (Huster et al., 2013). Alternatively, others have indicated the P300 821 

onset latency is related to inhibition because it scales with individuals SSRTs (Wessel 822 

and Aron, 2015).  Based on this notion, we considered whether the P300 onset was 823 

causally related to the SSRT shortening induced by TFUS. We tested the specific 824 

prediction that Stop-TFUS SS trials should exhibit an earlier onset that correlates with 825 

individual changes in SSRT.  Visually, contrasting waveforms of SS trials across TFUS 826 

conditions (Fig. 3B, upper-middle) supports this intuition that P300 onset (zero-crossing 827 

in Figure 3B) shifted earlier in alignment with Stop-TFUS induced SSRT shifts. This was 828 

quantitatively supported by a significant, across-subject correlation between the TFUS 829 

induced in change P300 onset and SSRT (0.61, p < 0.05), providing direct support that 830 

P300 latencies reflect the timing of inhibition speed.  831 

Whole-brain source SPM and source-based regression analysis 832 

We also examined source-based activity to localize TFUS-induced changes in 833 

evoked activity and generating source location priors for DCM. We hypothesized that, if 834 

differential rIFG activation indexed SS versus US, then conjunction analysis should 835 

reveal an overlap between SS – US and No-TFUS – Stop-TFUS conditions if rIFG 836 

activity is related to successful stopping (Aron et al., 2014). As expected, whole-brain 837 

SPMs (Fig. 4A) revealed the only area exhibiting an overlap was a pars opercularis-838 

centered rIFG peak during the 20-100 ms time window (results of analysis of other time 839 

windows are reported in Supplementary Material).  840 

To understand how TFUS altered stopping efficacy, we compared changes in 841 

SSRT between Stop-TFUS and No-TFUS SS trials using whole-brain SPM linear 842 

regression. In the regression, positive contrasts indicate ΔSSRT (No-TFUS – TFUS) is 843 
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associated with larger activity in No-TFUS trials. Negative contrasts indicate TFUS SS 844 

trials exhibit larger evoked activity predicted by larger changes in SSRT. The negative 845 

contrast in Figure 4B indicates that the first site to exhibit increased TFUS-related 846 

predictions is rIFG. This occurred both in the -40:20 and 20:100 time-windows. The 847 

positive contrast found in early time windows indicates Stop-TFUS exerted effects on 848 

stopping by also decreasing early activity in both bilateral parietal and right temporal 849 

sites. We also found pre-SMA was only predictive of SSRT after rIFG, with the pre-SMA 850 

modulation peaking at 100:180 ms. These results show that areas typically associated 851 

with successful inhibition were predictive of TFUS-induced changes in behavior while 852 

occurring before the SSRT itself.  853 
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 854 

Figure 4. A. Whole-brain SPM F-contrasts of evoked activity in the 20:100 ms window. Figure shows the 855 

surface mesh projections of the overall SS – US (left) TFUS contrast (middle), and conjunction (right). 856 

Below the surface meshes is a table listing the statistics. B. Whole-brain SPM linear regression of activity 857 

No-TFUS and Stop-TFUS SS trials against SSRT changes in No-TFUS and Stop-TFUS SS trials. 858 

 859 

TFUS effects in an inhibition network: Dynamic Causal Modeling (DCM) 860 

The above TFUS results provide evidence that rIFG activity is causally related to 861 

inhibition. Principally, differences in local activation can result from both local and inter-862 

areal connectivity (David et al., 2006). We used DCM to quantify network effects. 863 

Bayesian model selection established a winning model as a hierarchical network in 864 

ty 

o 
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which rDLPFC and rIFG sat at the top of the hierarchy and pre-SMA being below these 865 

areas. The model also included nodes for right temporal (rTemporal), right inferior 866 

occipital gyrus (rIOG), right parietal (rParietal), a hidden subcortical node (Deep) and 867 

left motor cortex (M1). These results accord with networks proposed by previous studies868 

implicating both motor inhibition and attentional orienting (Weicki and Frank, 2013; 869 

Munkata et al., 2011). The DCM (Fig. 5) was fit to individual subject’s data to determine 870 

how connectivity parameters differentiated (1) No-TFUS baseline SS and US inhibition 871 

differences, and (2) between No-TFUS and Stop-TFUS SS trials and accompanying 872 

changes in SSRT. The above approach revealed the models agreeably captured the 873 

spatiotemporal properties of the ERP scalp data across both sets of model fits (Fig. 5).  874 

 875 

Figure 5.  A. Connections used to implement the final dynamic causal model structure. Exogenous inputs 876 

entered through rIFG and rIOG represented as a green box. All nodes except Left M1 and Thalamus 877 

es 

e 

 

ts 
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were all located in the right hemisphere. B. Left panel shows the mean observed and predicted scalp 878 

ERP data derived from the dynamic causal model fit to the No-TFUS US and SS trials. Right panel shows 879 

the mean observed and predicted scalp ERP data derived from the dynamic causal model fit to the No-880 

TFUS SS and Stop-TFUS SS trials.  These results show that the final model provided a good fit to the 881 

data.  Data are plotted relative to stop signal onset (0 ms on x-axis).   882 

 883 

The first set of analyses examined what connectivity parameters were altered 884 

during No-TFUS successful inhibition. The first comparison examined whether 885 

differential rIFG and pre-SMA interactions were related to baseline successful stopping, 886 

as suggested by several functional and anatomical studies (Duann et al., 2009; Rae et 887 

al., 2015; Swaan et al., 2012; Fig. 6A). Model comparisons revealed a winning family 888 

included interactions between both areas, but with a moderate posterior probability 889 

(0.78). BMA across families revealed both the connection from rIFG to pre-SMA (136%) 890 

and pre-SMA to rIFG (193%) were altered during SS trials.  Changes in this connection 891 

suggest that SS trials were supported by prefrontal interactions. Considering previous 892 

data indicating increases in pre-SMA projections (Forstmann et al., 2008) to striatum 893 

render increased RTs, this result might reflect an effect of blocking the impetus pre-894 

SMA provides towards responding to the Go signal (Verbruggen and Logan, 2009).   895 

The next comparison tested the hypothesis that both pre-SMA and rIFG 896 

projections to deep areas are necessary for successful inhibition (Fig. 6B). Only a family 897 

including changes from rIFG to deep was predictive of successful inhibition. BMA 898 

indicated rIFG exhibited a mean reduction in the backwards connection of 65% during 899 

successful stopping.  This result agrees with previous fMRI studies (Aron et al., 2006; 900 

Jahfari et al., 2011) indicating inhibitory processes are driven by cortical to basal ganglia 901 

interactions.    902 
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 903 

Figure 6. Family-based model comparison for different hypothesized interactions. Plots contain 904 

modulatory parameter of connections with strong positive evidence as being different between US and 905 

SS trials. Parameter estimates (>95% posterior probability) are in parentheses next to modulated 906 

connection in exponential percentage change. Anything above 100% reflects an increase in SS trials 907 

compared to US (opposite for below 100%). A. Test of rIFG and pre-Sma interactions. B. Tests of rIFG 908 

and pre-SMA backward projections to deep node. C. Tests for the ventral pathway connections. D. 909 

Comparison of intrinsic superficial pyramidal cell gains. 910 

 911 

 Another hypothesis that has been put forth regarding successful inhibition is that 912 

it is mainly mediated by attentional orienting in ventral pathways (Hampshire and Sharp, 913 

2015). DCM implementations of attentional process can be cast in terms of hierarchical 914 

predictive coding models (Feldman and Friston, 2010). Previous work suggests 915 

increased attention in sensory areas emerges as increased recurrent intrinsic gain 916 

(increased disinhibition) of superficial pyramidal cells thought to report prediction errors 917 

through forward connections (Auksztulewicz et al., 2015). In DCM, recurrent gains 918 

p, 
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would weight prediction error signals driven changes in top-down (backward) 919 

connections (Bastos et al, 2012). We designed the next two comparisons to examine 920 

whether SS trials exhibited these network changes. Extrinsic connection analysis in No-921 

TFUS SS indicated a winning family including only changes in top-down backward 922 

connections predicted successful inhibition (Pp =1). BMA indicated, however, the 923 

inhibitory connection from rIFG to rTemporal was reduced while backward connections 924 

from rTemporal to rIOG increased in connectivity (Fig. 6C).   925 

 The final SS and US modulation comparison analyzed changes in recurrent 926 

gains of rIFG, rTemporal and rIOG (Fig. 6D). The winning model (Pp = 0.99) included 927 

an increase in gain for both rIOG (176%) and rIFG (153%). Importantly, the increased 928 

rIOG gain is predicted by attentional orienting models of response inhibition (Hampshire 929 

and Sharp, 2015) and accords with previous DCM studies that have manipulated 930 

attentional cueing (Auksztulewicz et al., 2015). Mechanistically, the increased rIOG gain 931 

in SS trials results in ascending signal that has a larger effect on decreasing rIFG top-932 

down expectation signals in backward connections.  933 

Stopping efficiency (SSRT) is driven by lower and prefrontal interactions  934 

Another primary goal of understanding inhibitory control is quantifying how the 935 

efficiency of stopping, evaluated through the SSRT, is implemented via network 936 

pathways. Previous work has employed between-subjects’ correlations of SSRT and 937 

connectivity parameters to isolate the pathways involved in this process (e.g., Jahfari et 938 

al., 2011). Because previous studies using fMRI and a variety of connectivity methods 939 

revealed pre-SMA and rIFG to basal ganglia connections are correlated in different 940 

directions with SSRT (Jahfari et al., 2011), we adopted this approach when analyzing 941 
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the baseline No-TFUS SS versus US contrast. This correlational analysis indicated both 942 

connections were correlated in opposite directions with SSRT. Figure 7 shows that 943 

increasing connectivity from rIFG to deep targets predicted shorter SSRTs. The 944 

opposite pattern was found for pre-SMA, wherein increasing pre-SMA backward activity 945 

predicted longer SSRTs.   946 

 947 

Figure 7. Left and right plots show linear regression fits predicting individual subjects’ No-TFUS 948 

SSRT from the backward connection to the deep area projecting from rIFG and pre-SMA, 949 

respectively. Larger values on the x-axis denote decreasing backward inhibitory connectivity.  950 

  951 

TFUS to rIFG causally dissociates inhibitory mechanisms  952 

Building on TFUS’s effect of increasing inhibition performance, a primary 953 

question was whether the changes in connectivity strength between No-TFUS SS and 954 

Stop-TFUS SS trials would reflect stepwise changes in the connections modulated in 955 

the SS and US No-TFUS comparison. This comparison is in line with the idea of failed 956 

stop trials resulting partially from less active inhibition mechanisms. By applying TFUS 957 

to rIFG, we were able to causally dissociate rIFG’s role in implementing inhibitory 958 

th 

ty 
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mechanisms. Below, mean changes represent the average modulation of connectivity 959 

going from No-TFUS SS to Stop-TFUS SS trials. SSRT-based effects represent how 960 

changes in SSRT between TFUS conditions predict the change in connectivity between 961 

TFUS conditions. 962 

In first analyzing the family of models examining the rIFG and pre-SMA 963 

interaction, there was no clear winning family of models for both the mean and SSRT 964 

effect (Fig. 8A). For the mean, the model with projections from rIFG to pre-SMA (122%) 965 

and pre-SMA to rIFG (75%) was highest in probability (Pp = 0.79). Of these 966 

connections, SSRT change was only negatively related to the rIFG to pre-SMA pathway 967 

(r2 = 74%). indicating that an increase in inhibitory connectivity from rIFG to pre-SMA 968 

during Stop-TFUS trials predicted a larger change in SSRT. Therefore, changes in 969 

SSRT were not related to forward connections between these nodes, but instead were 970 

modulated by a top-down inhibitory modulation from rIFG to pre-SMA. 971 

 When comparing models testing the role of rIFG or pre-SMA to deep backward 972 

connections, family analysis revealed a strong effect of the mean change and SSRT 973 

change for both backward connections (Pp > 0.95 both effects). BMA in the winning 974 

family indicated both effects were above threshold for both connections. Both rIFG 975 

(143%) and pre-SMA (139%) exhibited increased connectivity during TFUS. Concerning 976 

changes in TFUS related changes in SSRT, the direction of effects was opposite for 977 

rIFG (154%) and pre-SMA (67%): for rIFG, decreased inhibition yielded increased 978 

SSRT change, and the opposite for pre-SMA. Together, these results point to 979 

differential interactions of both pre-frontal areas with a deep node in responding to 980 
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TFUS. These results are further in line with the directionally opposite linear correlations 981 

of the No-TFUS SSRT to each of these backward connections (Fig. 8B).  982 

 Finally, we examined ventral pathway parameters for TFUS modulation of top-983 

down, bottom-up, and intrinsic gain changes. Model averaging revealed the rIFG to 984 

rTemporal top-down connections (66%) decreased with TFUS, suggesting a direct 985 

effect from rIFG TFUS. This decrease in top-down rIFG connection agrees as well with 986 

the results found during the SS versus US comparison, suggesting a causal and 987 

overlapping pathway driving inhibition performance. All bottom-up connections 988 

increased as well (Fig. 8C). With respect to SSRT change (Figure 8D), only the bottom-989 

up connections were related to changes in the SSRT. However, the forward connectivity 990 

relations to SSRT were in opposite directions for modulations of the rIOG to rTemporal 991 

(110%) and rTemporal to rIFG (78%). Finally, we found rTemporal recurrent gain 992 

increased in mean (150%) and was positively related to changes in SSRT (163%). This 993 

relation between the SSRT effect and rTemporal to rIFG forward connection was strong 994 

enough such that a leave-one-out cross validation prediction of SSRT change using this 995 

connection exhibited a large correlation with actual SSRT change (0.84, p < 0.01).  996 

These results indicate neural implementation of stopping speed involves processing 997 

efficacy of bottom-up, temporal cortex (prediction error) signals.  998 
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 999 

Figure 8. Results of the family-based model comparison for different hypotheses tested when 1000 

comparing modulation from No-TFUS SS to Stop-TFUS SS trials. The family-based posterior 1001 

probability (F-Pp) for the winning model is listed below each model. The outcomes of these plots1002 

can be interpreted of as revealing the modulatory parameters connections with very strong, 1003 

positive evidence of US and SS trials being different. Parameters estimates with a greater than 1004 

95% posterior probability in these families are presented in parentheses next to the modulated 1005 

connection.  The parameters are presented in exponential form of percentage change. Values 1006 

above 100% equates to a parameter increase in SS trials compared to US (and the opposite for 1007 

values below 100%). Parameters in-active in each model are in a gray color. A. hypothesis test 1008 

of rIFG and pre-Sma interactions. B. Hypothesis tests of rIFG and pre-SMA backward 1009 

projections to deep node. C. comparison of intrinsic superficial pyramidal cell gains. D. tests for 1010 

the ventral pathway connections. 1011 

 1012 

Discussion 1013 

The present study examined whether pars opercularis sector of rIFG is explicitly 1014 

involved in motor response inhibition. We used a stop-signal task, online TFUS, source-1015 

localized EEG, and dynamic causal modeling of ERPs to examine this hypothesis and 1016 

examine underlying response inhibition network mechanisms. Behaviorally, TFUS 1017 

applied to pars opercularis and coincident with the stop signal increased the likelihood 1018 

of successful inhibition. Because TFUS enhancements of inhibition resulted from faster 1019 

ts 

or 
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stopping processes (i.e., SSRT), without altering Go RTs, this supports pars opercularis’ 1020 

role as directly triggering action stopping. Examination of scalp ERP analysis indicated 1021 

TFUS rendered a shift in the fronto-central P300 onset, which has been previously 1022 

hypothesized as neural marker of stopping speed (Wessel and Aron, 2015). 1023 

Imperatively, the shifted onsets were directly linked to and correlated with TFUS-1024 

induced changes in individuals SSRT. Spatial accuracy of TFUS was supported by 1025 

whole-brain evoked activity indicating only pars opercularis exhibited a conjunction 1026 

effect of TFUS with successful compared to failed inhibition (Figure 3). The hypothesis 1027 

that pars opercularis activity is directly related to stopping efficacy was confirmed by 1028 

TFUS-driven activity differences predicting between-subjects SSRT change (Figure 4B). 1029 

Despite these results, recent work suggested TFUS effects result from auditory artifacts 1030 

(Sato et al., 2018). Auditory effects, however, cannot explain our findings because 1031 

control groups exhibited no behavioral effects, and no group exhibited evoked auditory 1032 

cortex activity (Figure S7). We interpret the above results as indicating TFUS selectively 1033 

modulated pars opercularis activity, and pars opercularis explicitly implements response 1034 

inhibition.  1035 

Generally, response inhibition involves several processes embedded in 1036 

connections across a neural network, ranging from sensory cue detection, attention, 1037 

performance monitoring, and presumably explicit motor inhibition (Munkata et al., 2011; 1038 

Weicki and Frank, 2013; Wessel and Aron, 2017). Many have proposed that motor 1039 

inhibition is implemented directly in rIFG connectivity to basal ganglia (STN and 1040 

striatum), either in parallel or routed through pre-SMA (Aron et al., 2014), or both. In 1041 

contrast, others have proposed motor inhibition is better understood as an emergent 1042 
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outcome of attentional orienting and biased competition between neural processing of 1043 

response and inhibition cues (Hampshire and Sharp, 2015). Extant evidence indicates, 1044 

however, that motor inhibition and attentional processing are likely all involved in 1045 

different processing stages of inhibitory control tasks (Wessel and Aron, 2017).  1046 

Given the evidence for response inhibition as a multi-process phenomenon, a 1047 

key question is what network connections and biophysical mechanisms support action 1048 

stopping. A core component of models positing a direct rIFG motor inhibitory process is 1049 

that its connectivity with subcortical nodes should change with stopping success or 1050 

efficacy. The present study’s DCM analysis of No-TFUS successful and failed inhibition 1051 

is consistent with the hypothesis that rIFG and pre-SMA subcortical connections are 1052 

relevant for motor inhibition. DCM results of No-TFUS successful stopping also revealed 1053 

an anti-correlation of SSRT to pre-SMA and rIFG deep connection strength (Figure 7). 1054 

Our findings agree with another fMRI connectivity study (Jahfari et al., 2011) that found 1055 

successful stopping accompanied increasing pre-SMA to striatum connectivity and 1056 

predicted longer SSRTs, with the opposite correlation for rIFG to striatum. Pivotal 1057 

support for rIFG’s role is the result that TFUS effects on SSRT were directly related to 1058 

changes in rIFG and pre-SMA to deep connectivity with a similar anti-correlation pattern 1059 

as the baseline. We take these results to indicate pars opercularis subcortical 1060 

connectivity is directly involved in driving motor inhibition through feedback pathways. 1061 

This indicate a potential mechanistic effect of TFUS, wherein inhibition improved by 1062 

altering the connectivity of layer V rIFG pyramidal neurons by increasing the excitability 1063 

of these cells. Notably, this conjecture of an excitatory TFUS effect on pyramidal 1064 

neurons and our TFUS parameterization are in accordance with the neuronal 1065 
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intramembrane cavitation excitation (NICE) model that has been used recently to 1066 

explain the acoustical stimulation effects on the biophysics of neuronal firing (see 1067 

Plaksin et al., 2016).   1068 

An unresolved issue regarding the inhibition network is how rIFG and pre-SMA 1069 

interactions areas relate to inhibition in general (Duann et al., 2009; Swaan et al., 2012). 1070 

Our DCM optimization indicated rIFG projected to pre-SMA through backwards 1071 

inhibitory connections and pre-SMA to rIFG via excitatory forward connections. This 1072 

bidirectional connectivity agrees with previous fMRI stop-signal and DTI studies (Duann 1073 

et al., 2009; Rae et al., 2015). Functionally, No-TFUS DCM results revealed successful 1074 

stopping was accompanied by increases in both connections. However, when 1075 

comparing baseline and TFUS DCMs, our results indicate that only the rIFG to pre-SMA 1076 

connections in this subset of connections were effectively related to inhibition in terms of 1077 

the mean gain change in backwards connectivity and its covariation with TFUS induced 1078 

changes in SSRT (Figure 6A-B). This result is directly relevant to several studies that 1079 

have either concluded pre-SMA drives rIFG (Swann et al., 2011) during inhibition or the 1080 

opposite (Duann et al., 2009). Combining DCM and TFUS indicated the inhibitory effect 1081 

of rIFG onto pre-SMA is causally responsible for driving inhibition at a cortical level.  1082 

This raises the question of why the pre-SMA to rIFG connection was only relevant 1083 

during baseline successful inhibition. An alternative interpretation is found in 1084 

neuroimaging (Crone et al., 2006), ECoG (Swaan et al., 2012), and TMS studies of 1085 

proactive inhibition and response switching (Rushworth et al., 2002). These studies 1086 

have indicated pre-SMA encodes a set of potential actions. During response inhibition, 1087 

this predicts successful stopping involves pre-SMA signaling the action(stopping)-rule to 1088 
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rIFG. Therefore, the action rule and connectivity conveying it should not differ for 1089 

successful No-TFUS and Stop-TFUS trials because it should have been similarly 1090 

communicated under both conditions.  1091 

The above results provide causal evidence that pars opercularis and its 1092 

connectivity are directly involved in motor inhibition. Nonetheless, neuroimaging studies 1093 

have shown rIFG-related activation predicts attentional orienting and stimulus 1094 

expectancy processes during response inhibition (Erika-Florence et al., 2014; 1095 

Hampshire and Sharp, 2015; Xu et al., 2017). Although attention was not manipulated in 1096 

our study, we derived predicted network mechanisms from predictive coding models of 1097 

attention (Feldman and Friston, 2010) and DCM-EEG studies directly manipulating 1098 

attention and stimulus expectancy (Auksztulewicz et al., 2015). Importantly, the 1099 

microcircuits implemented in the DCM presently used are directly related to predictive 1100 

coding models and have explicit mechanisms supported by previous DCM studies. For 1101 

example, these studies have shown increased attention is linked to increased recurrent 1102 

gain on ascending (forward) sensory (prediction error) signals, while violations of 1103 

stimulus expectations were linked to decreased top-down and increased in bottom-up 1104 

connectivity, respectively (Auksztulewicz et al., 2015; Fardo et al., 2017). Along these 1105 

lines, our DCM during baseline stopping featured increased rIOG recurrent gain as 1106 

expected if attention increased the precision afforded to the sensory processing of stop 1107 

cues (Moran et al., 2013; Figure 7C). Concerning top-down changes, rIFG to rTemporal 1108 

decreased and rTemporal to rIOG increased (Figure 7D). Successful stopping at 1109 

baseline therefore may rely on an increased rIOG gain weighted sensory signals that 1110 

drive top-down changes in rIFG. However, increased connectivity from rTemporal to 1111 
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rIOG seems at odds with this interpretation because it implies a larger reliance on top-1112 

down information during successful stopping. This is explained by the finding that 1113 

optimized inputs to rIOG were negative and therefore inhibitory (rather than excitatory) 1114 

across subjects. Therefore, increasing rTemporal backward connectivity rendered an 1115 

enhanced negative rIOG signals.  1116 

Although the preceding results seem to accord with attention-based formulations 1117 

of inhibition, examination of TFUS effects on connectivity indicate inhibition success 1118 

was generally unrelated to these mechanisms. The only overlap between baseline and 1119 

TFUS conditions was a decrease in top-down rIFG to rTemporal backwards 1120 

connectivity. Still, this effect was not directly predictive of a change in SSRT. TFUS 1121 

effects also involved an increase in bottom-up connectivity that was predictive of SSRT 1122 

change (Figure 8D) in agreement with expectation violation effects found in other EEG-1123 

DCM studies (Auksztulewicz et al., 2015). The most interesting effect was recurrent 1124 

gains only increased in rTemporal, indicating SSRT changes were not due to increased 1125 

sensory weighting. We propose that cortically-related SSRT changes were driven by 1126 

TFUS altering the effects the rIFG to rTemporal connection had on the rTemporal gain. 1127 

A partial correlation supported this hypothesis by showing covariation of rTemporal gain 1128 

and SSRT change was rendered null when accounting for the correlation of rIFG to 1129 

rTemporal and rTemporal gain. A potential explanation for this result is that rIFG 1130 

engages in a proactive inhibitory function whereby it biases bottom-up processing of the 1131 

temporal cortex, which itself may encode the expected probability of stop signal 1132 

occurring. This interpretation is consistent with fMRI stop-signal studies demonstrating 1133 
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temporal cortex encodes a prediction error of stop-signal probability (Hu et al., 2015; Ide 1134 

et al., 2013).   1135 

In summary, TFUS can induced enhanced response inhibition performance, 1136 

allowing the underlying mechanisms to be linked to direct and source-resolved 1137 

electrophysiological neural processes in humans. By pairing TFUS with DCM, we found 1138 

a network model of response inhibition suggesting pars opercularis explicitly invokes 1139 

motor inhibition through deep pyramidal connections directly synapsing onto subcortical 1140 

nodes, as well as pre-SMA and temporal cortex. These results also significantly extend 1141 

the possible applications by showing TFUS combined with network modeling has the 1142 

potential to alter and infer the effective connection between biophysical network 1143 

mechanisms and behavior.   1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 
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 1155 

 1156 

 1157 
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Supplementary Materials 1409 

S1. Dynamic causal modeling structure optimization 1410 

 Below we show the structures used for building and optimizing the dynamic causal 1411 

model based on the no-TFUS successful stopping event related potentials. The full steps of the 1412 

process are described in the Methods section. Figure S1 shows the tested structures and 1413 

possible connections. Figure S2 shows outputs for comparing these models using Bayesian 1414 

model comparisons, as well as model comparisons for which nodes receiving thalamic input, 1415 

and tests for the type of connection projecting from cortical to deep areas (forward, backward, or1416 

both).  1417 

 1418 

Figure S1. Differences in dynamic causal model spaces that were compared for the lower network 1419 

structure and prefrontal network structure (top and bottom panel, respectively). The legend on the bottom 1420 

shows how different connections are coded in these putative model spaces.  1421 

or 

m 
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 1422 

Figure S2. Model probabilities for the different model tests. Each of these tests was examined on the 1423 

mean ERP data for No-TFUS SS trials using family-wise fixed effect Bayesian model selection. Above 1424 

each plot shows the model component being optimized. For example, the first bar plot shows the different 1425 

prefrontal hierarchy arrangements. Above each plot is the difference in log-free energy between the best 1426 

family and the 2nd best.  The log difference of free energies approximates a log-Bayes factor (Penny, 1427 

2012). It is considered positive evidence in favor of a model if this value is > 5. Evidence in favor of the 1428 

winning models (bars enclosed in red) was very strong. The plots on the right show the different structural 1429 

arrangements used to examine the prefrontal and lower-level hierarchical structure. 1430 

 1431 

 1432 

S2. Go Reaction Times 1433 

 We addressed whether TFUS (real or sham) exerted any effects on simply responding to1434 

the Go signal. We analyzed this by extracting the ex-gaussian-based mean RT using a 1435 

maximum likelihood approach (Lacoutoure and Cousineau, 2008). The means were calculated 1436 

separately for all subjects, and then analyzed using a 3 × 2 mixed-design ANOVA with factors of 1437 

the 3 groups, and TFUS state: No-TFUS and Go-TFUS trials. This analysis allowed us to 1438 

assess if “going”, independent of “stopping”, was altered by potential TFUS auditory artifacts, 1439 

nt 

al 

 to 
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stimulation to unrelated areas (S1 group), or whether TFUS to rIFG also influenced Go RT 1440 

processes independent of a stopping context signal. Table 1 shows the per group mean 1441 

difference of the RT between No-TFUS and Go-TFUS per group. Across groups, there was a 1442 

consistent negative difference indicating that RTs during TFUS may have been slightly shorter. 1443 

These differences in means seemed marginally larger for the rIFG group. However, the ANOVA 1444 

did not reveal any significant effect of TFUS, group, or their interaction (all p > 0.05). These 1445 

results suggest that neither TFUS (rIFG and S1 groups) nor auditory factors alone (sham rIFG 1446 

group) altered Go RTs independent of a stop signal.  1447 

S3. Signal-respond RTs and context independence 1448 

Calculating a measure of stopping latency (SSRT) based on the independent race- 1449 

model (Logan and Cowan, 1984; Bissett and Logan, 2014) assumes that signal-respond RTs 1450 

are Go processes resulting from a censoring of the Go RT distribution. Testing this assumption 1451 

predicts that (a) mean signal-respond RT should be faster than mean Go RT, and (b) during 1452 

fixed-SSD paradigms like the one employed here, signal-respond RT should increase with 1453 

longer SSDs because there are more failed inhibitory responses. Before testing (a) and (b), we 1454 

wanted to discern whether our TFUS manipulation exerted any effects on the signal-respond 1455 

RTs. Based on the context-independence assumption of the race model that signal-respond 1456 

RTs are Go processes escaping inhibition, and (2) if the TFUS-driven changes in inhibition 1457 

(P(respond|signal) (Fig. 3) are due to changes in inhibition, we should expect no differences in 1458 

signal-respond RTs between conditions or groups. We used a mixed-design ANOVA to examine 1459 

the subject level signal-respond RT means with Group (3 levels) and TFUS (3 levels: no-TFUS, 1460 

Go-TFUS, Stop-TFUS). We found no significant interactions or effects. Importantly, follow-up t-1461 

tests revealed no differences across TFUS conditions within the rIFG group (mean signal-1462 

respond RT: no-TFUS: 375 ±18 ms; Go-TFUS: 368 ±13 ms; Stop TFUS: 353 ±13 ms). This 1463 
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supports the conclusion that TFUS did not alter the mean of Go processes that escaped 1464 

inhibition. 1465 

 Given the lack of difference in mean signal-respond RTs (across all SSDs) across TFUS 1466 

conditions, we collapsed these RT means across TFUS conditions and compared them to each 1467 

subject’s mean Go RT with a mixed-design ANOVA. There was no interaction or Group 1468 

differences (p > 0.05). As expected, the mean signal-respond RT (all groups: 365 ±15) was 1469 

significantly shorter (F(1,50) = 89.77, p < 0.0001) than the mean Go RT (all groups: 436 ±22). 1470 

Next, we examined whether the signal-respond RT increased with increasing SSD by 1471 

regressing all subjects’ signal-respond RTs (collapsed across TFUS conditions) onto their SSDs 1472 

to obtain a single-slope parameter. This revealed a significant regression slope of 0.44 (p < 1473 

0.001), indicating signal-respond RTs did increase with increasing SSD.    1474 

 Having confirmed that TFUS did not alter signal-respond RTs or the Go RTs, we sought 1475 

to test the context-independence assumption of the race model. This has been done in several 1476 

ways (see Bissett, 2014 for a non-parametric approach). The standard approach for examining 1477 

this assumption is comparing predicted signal-respond RTs from fitting the independent race 1478 

model to the observed signal-respond RTs (Verbruggen and Logan, 2009). The independence 1479 

assumption is typically assessed by showing that observed signal-respond RTs and those 1480 

predicted by the independent race model are not different. Because we used a parametric (ex-1481 

gaussian) based approach to estimate the SSRT (Matzke et al, 2013), we verified these derived 1482 

fits by using a posterior predictive model comparison to the observed data. The models were 1483 

used to simulate 500 predictive distributions of signal-respond RTs to estimate the absolute 1484 

goodness of fit (Gelman & Hill, 2007) to each individual subject’s signal-respond RT. This 1485 

approach generates p-values that test for the difference in the predicted and observed signal-1486 

respond RTs at each SSD level. The typical metric for assuming goodness of fit is that the p-1487 

value is close to 0.5, while being below and above 0.05 and 0.95, respectively, is considered a 1488 
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poorly predictive model. As pointed out by Matzke et al. (2013), these estimates are most stable 1489 

for SSDs in which several signal-respond RTs are observed. Therefore, we analyzed each 1490 

subject’s p-values averaged across the two highest SSDs.  1491 

 The mixed-design ANOVA across groups and TFUS conditions did not reveal any 1492 

effects or interaction on the p-values. This result also agrees with the analysis showing no 1493 

differences in signal-respond RTs between TFUS conditions, indicating the Bayesian procedure 1494 

for estimating SSRT provided accurate predictions of signal-respond RTs. For all participants, 1495 

the p-values were in the range of 0.1 to 0.9 with a mean of 0.48 and standard deviation of 0.2.  1496 

 1497 

S4. SSRT Variability was not altered by TFUS. 1498 

 One possible driver of increased response inhibition performance in the rIFG TFUS 1499 

group is that it may have reduced within-subject SSRT variability. Therefore, as TFUS did not 1500 

alter mean or variance of Go RTs, if it reduced SSRT variability, this would increase the 1501 

likelihood of successful inhibition. Using the same statistical approach for the mean SSRT in the 1502 

main text, we found no significant effects of SSRT variability between any of the conditions (all p 1503 

> 0.05). 1504 

 1505 

S5. SS (No-TFUS) – SS (Stop-TFUS) whole-brain regression table 1506 

 Table S1 lists the peak coordinates of clusters of the difference in evoked activity of No-1507 

TFUS and Stop-TFUS SS with the between-subjects changes in SSRT. These coordinates were 1508 

used to identify which areas exhibited differential activation with respect to the speed of 1509 

stopping across subjects. Coordinates for relevant regions of interest were used as prior 1510 

locations in subsequent dynamic causal modeling in the main text.   1511 
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 1512 

Regression of ΔSSRT and SS (No-TFUS) – SS (Stop-TFUS) 
Time-

Window 
(ms) 

Regression 
Direction Region 

Peak 
Coordinates 
(X,Y,Z MNI) 

Z-value Extent 
(Voxels) 

-40:20 

Positive R Supramarginal   56, -40, 16 2.05 316 

 L Supramarginal  -56, -50, 18 1.94 123 

 R Inferior Temporal 40, -4, -40 1.92 45 

Negative R Inferior Frontal  40, 30, 10 1.94 55 
  

20:100 Negative R Inferior Frontal  56, 28, 12 2.64 455 
  

100:180 

Positive R Superior Frontal  26, 50, 18 3.18 568 

 
R Paracentral Lobule  6, -20, 68 2.98 389 

 
L Paracentral Lobule -6, -20, 68 2.94 563 

 
L Superior Frontal  22, 52, 28 2.74 574 

Negative L Supramarginal  -60, -28, 38 1.76 52 
  

180:260 

Negative R Inferior Occipital  46, -82, -6 4.12 41 

 
R Inferior Temporal  58, -40, -24 3.62 552 

 
L Inferior Temporal 

-58, -38, -
18 3.55 342 

 
R Middle Temporal  62, -2, -24 3.16 22 

  

260:340 

Positive L inferior Frontal  -46, 14, 32 4.25 39 

 
L Middle Frontal -30, 22, 34 2.84 236 

 
R Middle Frontal  26, 14, 42 2.61 442 

Negative R Angular  44, -62, 38 3.62 62 

 
L Postcentral -42, -34, 52 2.91 92 

  R Middle Temporal  50, 8, -30 2.81 73 

Table S1. Significant regions of regression for the change in TFUS induced SSRT.  1513 

 1514 

S6. Whole-brain SPM analysis 1515 

We performed a whole-brain SPM analysis for (1) positive t-contrast for SS (No-TFUS) – 1516 

SS (Stop-TFUS) trials to examine where activity was larger for TFUS compared to No-TFUS 1517 
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trials, (2) SS-US main effects, and (3) TFUS main effect. In all of the analysis below, we used a 1518 

cluster-forming voxel threshold of p< 0.005 1519 

SS-SS t-contrast. In the stop-signal locked window (-40:20 ms), we found differences in 1520 

left supramarginal gyrus. In the N100 window (20:100 ms), the contrast was significant, as 1521 

anticipated, in rIFG. This result supports our scalp ERP measures and previous results 1522 

indicating that an N100 occurs in the rIFG that is predictive of stop success. In the N200 window 1523 

(100:180 ms), we found increased source activity in TFUS trials in bilateral clusters with 1524 

locations indicative of pre-SMA (Mayka et al., 2006). Consideration of the fourth time window 1525 

(180:260 ms), which overlapped with the SSRT, revealed that only the right inferior occipital 1526 

area produced a larger response in TFUS trials. In the last window (260:340 ms), we found 1527 

clusters of activity larger in TFUS trials for left superior occipital, right cuneus, and anterior 1528 

cingulate. Because this window always occurred after the SSRT for both No-TFUS and TFUS 1529 

conditions, it is likely these changes in activity represent a component of performance 1530 

monitoring rather than inhibition per se. Examination of the contrast for larger No-TFUS SS trial 1531 

activity revealed this contrast was only significant in the latest time-window (260:340 ms). This 1532 

contrast indicated source ERP activity was larger in No-TFUS trials in bilateral postcentral gyrus 1533 

clusters. An important result from these contrasts is the primary areas in which activity was 1534 

larger during TFUS trials. We found that both rIFG and pre-SMA activity coincided with 1535 

increased TFUS-related stopping. Interestingly, this analysis confirmed that rIFG differences 1536 

occurred before those in pre-SMA. However, a temporal precedent of change in ERP does not 1537 

necessitate that stopping-related changes occurred in rIFG before pre-SMA. The source cluster 1538 

MNI locations and cluster sizes are presented in Table S2. 1539 

  1540 
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      1541 

SS (No-TFUS) – SS (Stop-locked TFUS) 
Time-

Window 
(ms) 

t-contrast 
Direction Region 

Peak 
Coordinates 
(X,Y,Z MNI) 

Z-value Extent 
(Voxels) 

  

20:100 TFUS > No-
TFUS Right Inferior Frontal 44, 28, 5 2.8 979 

  

100:180 TFUS > No-
TFUS 

L pre-SMA  -10, -10, 50 2.7 1108 

R pre-SMA  6, 22, 50 2.67 1069 

R DLPFC  30, 28 40 2.91 850 

  

180:260 TFUS > No-
TFUS Right Inferior Occipital  50, -70, 8 2.62 47 

  

260:340 

TFUS > No-
TFUS 

Left Superior Occipital -18, -82, 34 2.34 594 

Right Cuneus 18, -70, 32 2.31 259 

Anterior Cingulate 8, 6, 24 2.01 253 

TFUS < No-
TFUS 

Left Postcentral -18, -38, 68 2.02 578 
Right Postcentral  26, -24, 70 1.99 362 

P. Uncorrected Voxel < 0.005 and P. Cluster Uncorrected < 0.05 
Table S2. MNI locations for SS-SS contrasts  1542 

SS-US and TFUS F-contrast. Here we show brain areas that exhibited differential 1543 

evoked activation according to (1) successful compared to unsuccessful stopping (SS – US F-1544 

contrast), and (2) which areas were modulated by TFUS (TFUS F-contrast). We computed 1545 

these whole-brain SPM contrasts using a flexible factorial model to implement a repeated-1546 

measures ANOVA.  We examined these contrasts over three time windows that covered the 1547 

time from stop-signal onset till after the range of subject SSRTs. The main result from all of 1548 

these analyses is that the only brain area exhibiting overlap between a significant SS-US and 1549 

TFUS contrast was a right inferior frontal gyrus cluster centered on pars opercularis, during the 1550 
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20:100 ms time window. This result supports the accuracy of our TFUS manipulation and its 1551 

effects on inhibition performance. These data are shown in Figures S3-5. 1552 

 1553 

 1554 

Figure S3. SPM F-contrasts of source evoked power during the 20:100 ms post stop signal 1555 

window. F-contrasts and their cluster corrected statistics are shown for the SS-US contrast and 1556 

the contrast of SS trials during non-TFUS and stop-TFUS. 1557 
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 1558 

Figure S4. SPM F-contrasts of source evoked power during the 100:180 ms post stop signal 1559 

window. F-contrasts and their cluster corrected statistics are shown for the SS-US contrast and 1560 

the contrast of SS trials during non-TFUS and stop-TFUS. 1561 

 1562 

 1563 
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1564 

Figure S5. SPM F-contrasts of source evoked power during the 180:260 ms post stop signal 1565 

window. F-contrasts and their cluster corrected statistics are shown for the SS-US contrast and 1566 

the contrast of SS trials during non-TFUS and stop-TFUS. 1567 

 1568 

Interaction t-contrasts. The most common contrast in analyzing stop-signal neural data 1569 

involves comparing successful to unsuccessful stop activation (SS – US) as we did for the 1570 

above whole-brain analysis. The rationale is based on the assumption that areas directly related 1571 

to stopping/inhibition are more ‘potently’ active in successful trials, and that failed stop trials 1572 

(US) also reflect go activity according to the independent race model of Logan and Cowan 1573 

(1984). This choice of contrast also stems from the fact that typical stop-signal tasks do not offer 1574 

a second set of SS trials for comparison (which our experiment does). Therefore, this raises the 1575 

following question: Did TFUS yield changes in stopping by merely altering what would have 1576 
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been US Stop-TFUS trials? If TFUS merely raised the overall level of activity across all stop 1577 

trials, (i.e., SS and US), then we should expect no interactions. We examined the whole-brain 1578 

SPM interaction across the 4 time windows used in the previous analysis. In each window, we 1579 

examined the t-contrast interaction that compared for a bigger SS-US difference in either Stop-1580 

TFUS or No-TFUS trials.  We only found these effects for the 100:180 ms and 180:260 ms 1581 

window. The interaction t-contrast SPMs and corresponding tables are shown in Figures S6-7. 1582 

 1583 

1584 

Figure S6. SPM interaction t-contrasts of source evoked power during the 100:180 ms post stop 1585 

signal window. The t-contrast tested for areas in which the SS-US contrast was higher during 1586 

stop-TFUS compared to non-TFUS. The cluster corrected statistics are shown are shown below 1587 

the plot. 1588 

 1589 

 1590 

 

p 

w 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/649665doi: bioRxiv preprint 

https://doi.org/10.1101/649665
http://creativecommons.org/licenses/by-nc-nd/4.0/


1591 

Figure S7. SPM interaction t-contrasts of source evoked power during the 180:260 ms post stop 1592 

signal window. The t-contrast tested for areas in which the SS-US contrast was higher during 1593 

stop-TFUS compared to non-TFUS. The cluster corrected statistics are shown are shown below 1594 

the plot. 1595 

 1596 

We note that we only found significant contrasts in the latter two time windows, i.e., 100-1597 

180 and 180-260 ms from the Go signal. In both contrasts, the SS-US difference was larger in 1598 

the Stop-TFUS conditions. Generally, these results agree with that of the main text examining 1599 

just the SS-SS contrast and other studies (Aron and Poldrack, 2006; Boehler et al., 2010). 1600 

However, as Boehler et al. (2010) point out, this contrast is conservative which lends itself to 1601 

identifying areas primarily involved in successful stopping. It is also unlikely that this 1602 

conservative contrast can identify areas involved in the broader stopping network. It is therefore 1603 

not surprising that we did not find difference in parietal cortices, for example. Importantly, 1604 

though, these results demonstrating mainly activation differences in inferior frontal and occipital 1605 
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cortices is almost identical to that found in Boehler et al. (2010). This indicates that our results 1606 

generally agree with previous studies using the SS – US contrast.   1607 

 1608 

S7. ROI Interaction analysis 1609 

In the main text we presented a time-based source analysis of the main ROIs of interest, 1610 

including Right IFG, Right pre-SMA, Right DLPFC, Left M1, and Right Inferior Temporal 1611 

cortices. In the main text’s analysis, we compared SS trials across TFUS conditions. To address 1612 

the change in time-course activation at the ROI level, we computed the interaction of SS-US 1613 

(no-TFUS) and SS-US (Stop-TFUS) trials using the same MNI locations as used for analyses 1614 

reported in the main text (Fig. S6).  1615 

 1616 

Figure S8. Source-base evoked power time-series for different regions-of-interest listed in the 1617 

figure. Each ROI was extracted with a radius of 6 mm.   1618 

Only three of these ROIs are different before the minimum SSRT across TFUS conditions (185 1619 

ms). These include pars opercularis, Right Inferior Occipital, and Right inferior temporal ROIs. 1620 

t, 

ss 
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This result is mostly in line fMRI (Boehler et al., 2010; Li et al., 2006) and EEG/MEG (Boehler et 1621 

al., 2009; Wessel and Aron, 2015) studies, although previous work has also identified Right 1622 

temporal cortex (Rae et al., 2015; Xu et al., 2017). Nevertheless, previous findings of differential 1623 

temporal cortex activity have been based on comparing SS to Go trials rather than the SS – US 1624 

(and interaction) comparison we used here. Given the DCM and SSRT regression results 1625 

indicating changes in temporal cortex activity – as well as the temporal cortex’s role in visual 1626 

signal in both the top-down and bottom-up processing directions – these results suggest the 1627 

success of stopping may rely on information transfer of node between sensory and prefrontal 1628 

ventral areas, e.g., rIFG. Finally, an interesting result is the lack of difference in r pre-SMA 1629 

before SSRT. Notably, there was differential activation but only after SSRT. This result speaks 1630 

to the broader debate of whether pre-SMA or rIFG lead to stopping in a serial process fashion 1631 

(Aron et al., 2016; Obeso et al., 2013). For example, some studies have suggested that 1632 

information for stopping passes through pre-SMA onto rIFG and vice versa in other accounts. 1633 

These serial accounts, though, forego three factors. First, visual information regarding stop 1634 

contexts are passed up both the ventral and dorsal pathways which inherently project 1635 

separately to rIFG and r pre-SMA, respectively. Second, the prefrontal cortex is likely arranged 1636 

hierarchically with both areas connected with basal ganglia structures, such as the STN and 1637 

striatum. The third comparison is based on considering the current EEG-DCM (main test) 1638 

results to those from other fMRI-DCM and other connectivity results (Jahfari et al., 2017) on 1639 

inhibition. Specifically, the previous bilinear DCM models used in fMRI accounts of response 1640 

inhibition are unlikely to capture the fast-timescale processes that underlies stopping processes. 1641 

Along this same line, though, when considering connectivity as a property of inhibition 1642 

processes, caution should also be used in interpreting temporal precedence of control between 1643 

brain areas based solely on activation. Thus, the above results indicate that the set of expected 1644 

ROIs were differentially modulated by TFUS during SS stopping.    1645 
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S8. Assessment of possible auditory effects of TFUS   1646 

Recent work examining the effects of TFUS on cortical activity has employed animal 1647 

models to consider the possibility that TFUS may alter activity in auditory pathways. Using a 1648 

single-element transducer and optical imaging on a mouse model, Guo et al. (2018) showed 1649 

that, regardless of the transducer placement and target, TFUS caused activation of the auditory 1650 

pathway. They suggested that this activity may spread cortically and induce artifactual effects of 1651 

TFUS in cortical areas not directly targeted by TFUS. It remains unknown how auditory pathway 1652 

activation via TFUS would yield our behavioral and neural effects. Nevertheless, it is critically 1653 

important to quantify the extent to which auditory pathway activation might have affected our 1654 

results. To address this question, we analyzed source-localized evoked results across the rIFG 1655 

group, as well as S1 and sham rIFG control groups. Because our goal was to determine 1656 

whether TFUS altered the evoked activity with respect to No-TFUS, we compared the time 1657 

courses of source power for stop-locked data by using a source-based ROI of right auditory 1658 

cortex. We used the source location of X: 46, Y: -14, Z: 8 for right auditory cortex, which was 1659 

obtained from Rademacher et al. (2001). These locations were used to extract the eigenvariate 1660 

time-course after source localization in a sphere with radius of 8 mm to be conservative. These 1661 

source-time courses were converted to a pseudo activation using the (exp(SOURCE)+exp(-1662 

SOURCE))/2 transform. We used this procedure to ensure we could properly detect differences 1663 

regardless of the ERP activity sign (Fig. S9). 1664 

If the behavioral results in the rIFG group were merely the result of changes in auditory 1665 

pathway activity, we should at least see a difference when contrasting the SS-US trials for No-1666 

TFUS and Stop-TFUS conditions in the rIFG group, or at least across groups. Paired samples t-1667 

tests did not reveal any significant differences (after false discovery rate correction of p < 0.05) 1668 

when comparing the time courses of the No-TFUS and Stop-TFUS conditions (Fig. S9). 1669 
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Therefore, given the spatiotemporal fidelity of EEG, we conclude that our results were not 1670 

contaminated by TFUS artifacts activating the auditory pathway.   1671 

 1684 

Figure S9. Group source-evoked power time series from right auditory cortex.  1685 

Overall, these results suggest that, although TFUS may exert an auditory pathway 1686 

effects measurable in mouse single neurons and LFPs, (1) this activity may not be measurable 1687 

at the macroscopic level, and (2) support the notion that changes in auditory cortical activity 1688 

cannot account for our TFUS-related neural and behavioral effects. Additionally, we note that 1689 

Guo et al. (2018) found that the auditory pathway activation was accompanied by startle-like 1690 

reflexes. Our behavioral results (Fig. 2) are not compatible with a startle release reflex. If that 1691 

were the case, TFUS auditory-related startle activity would likely predict shorter RTs during Go 1692 

trials and failed inhibition Stop trials. The effects of TFUS on our behavioral responses are not 1693 

compatible with the involvement of startle reflexes, as we found no TFUS effects on the Go 1694 

RTs. Therefore, we conclude that the effects of TFUS on stopping behavior, nor processing by 1695 

the cortical and subcortical nodes of the inhibition network, were not induced by artifactual 1696 

stimulation of the auditory pathway. 1697 

 1698 
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S9. DCM family model hypothesis spaces and results 1699 

Below we show the resultant family model posterior probabilities for the family comparisons over1700 

the 4 factors (3 levels each) for both parametric empirical Bayesian (PEB) GLMs (Figure S10-1701 

11). PEB GLM model 1 examined the changes in mean connectivity from No-TFUS US to SS 1702 

trials. Changes in mean connectivity represent the gain on connectivity to represent the No-1703 

TFUS SS trials. PEB GLM model 2 examined the effects of TFUS-induced changes in mean 1704 

connectivity and changes in connectivity that accompanied change in SSRT across subjects. 1705 

Figures S8 and S9 show the changes in connections and family model probabilities for PEB 1706 

model 1. Figure S12 shows the results of tests of the exact same factor space displayed as bar 1707 

plots to represent the family probability of each model separately for the TFUS-induced mean 1708 

and SSRT change in successful inhibition connectivity.  1709 

 1710 

Figure S10. Hypothesis space and results of the Family based PEB Bayesian model 1711 

comparison for different hypotheses. Family-based posterior probability (F-Pp) and the log-1712 

er 
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bayes factor with respect to the winning model are listed below each model and were computed 1713 

as the difference in free energy between families (F-Pp/Log-Bayes). The winning model family is1714 

enclosed in a red box. The outcomes of these plots can be interpreted of as revealing the 1715 

modulatory parameters connections with very strong, positive evidence being different between 1716 

US and SS trials. Parameters estimates with a greater than 95% posterior probability in these 1717 

families are presented in parentheses next to the modulated connection. The parameters are 1718 

presented in exponential form of percentage gain. Values above 100% equates to a parameter 1719 

increase in SS trials compared to US (and the opposite for values below 100%). Parameters in-1720 

active in each model are in a gray color. The top Panel shows the hypothesis test of rIFG and 1721 

pre-SMA interactions. The bottom panel shows the hypothesis test of intrinsic gains modulation. 1722 

 1723 

 1724 

Figure S11. Hypothesis space and results of the Family based PEB Bayesian model 1725 

comparison for 3 different families comparing hypothetical different interactions between rIFG 1726 

and the deep node, pre-SMA and the deep node, or both interacting with the deep pathway. The1727 

plot is in the same format as Figure S8.  Both of these nodes had backward, inhibitory 1728 

connections with the deep pathway. The top panel compares families comparing the rIFG and 1729 

pre-SMA to deep backwards connection. The bottom panel compares families testing for 1730 

differences in top-down v bottom-up connections along the ventral pathway.  1731 
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 1732 

 1733 

Figure S12. Resultant family posterior probabilities for the comparisons of each factor. Each bar 1734 

plot shows the marginal probability of each family marginalized separately for changes in the 1735 

mean connectivity (blue bars) and connectivity changes predicted by TFUS induced changes in 1736 

SSRT (orange bars). The Bayesian model averaged parameters are presented in the main text. 1737 
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