
1 
 

GWAS of Over 427,000 Individuals Establishes GABAergic and Synaptic Molecular 

Pathways as Key for Cognitive Executive Functions 

Alexander S. Hatoum1,4, Evann C. Mitchell1,2, C. Lucia Morrison1,2, Luke M. Evans1,3, Matthew 

C. Keller1,2, & Naomi P. Friedman1,2 

1Institute for Behavioral Genetics, University of Colorado-Boulder 
2Department of Psychology and Neuroscience, University of Colorado-Boulder 
3Department of Ecology and Evolutionary Biology, University of Colorado-Boulder 
4Department of Psychiatry, University of Washington St. Louis Medical School 

Correspondence concerning this article should be addressed to Alexander S. Hatoum, Institute 

for Behavioral Genetics, 447 UCB, University of Colorado, Boulder, CU 80309.  

Email: alexander.hatoum@colorado.edu  

 

Keywords: Executive Functioning, Neurocognitive Functioning, Genome-wide Association 

Analysis, Genetic Correlations, Latent variable measurement 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/674515doi: bioRxiv preprint 

mailto:alexander.hatoum@colorado.edu
https://doi.org/10.1101/674515
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Executive functions (EFs) are top-down cognitive control mechanisms that direct goal-

orientated behaviors.  EF deficits are associated with psychopathology and neurological 

disorders, but little is known about the molecular bases of EF individual differences. Existing 

genome-wide association studies (GWAS) of EFs used small sample sizes and/or individual 

tasks, which are mixtures of higher and lower order cognitive mechanisms.  To remedy these 

limitations, we conducted a GWAS of a “Common EF” (cEF) factor based on multiple tasks in 

the UK Biobank (N=93,027-427,037), finding 299 independent loci. Gene-based analysis found 

synaptic, potassium channel and GABA pathways associated with cEF. cEF genetically 

correlated with almost all psychiatric traits and with behavioral and health outcomes. These 

patterns of genetic correlations were different than those previously found for intelligence.  Our 

results suggest that cEF is neurologically complex and that fast-neuronal processes form a basis 

for genetically influenced cognitive outcomes in health and psychiatric dysfunction.  
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Introduction 

Neurocognitive executive functioning (EF), or the ability to control and influence one's 

thoughts and actions to achieve goal-orientated behaviors1, varies continuously across the 

general population2.  EF is correlated with, but distinguishable from, a general intelligence factor 

at the phenotypic and genetic levels, and predicts behavior over and above intelligence3. Further, 

EF is an important construct in clinical neuroscience, and EF deficits are associated with 

multiple neurological and behavioral disorders, including Alzheimer’s disease4, vascular 

dementia5, lateral sclerosis6, and almost all psychiatric disorders, including schizophrenia7, 

depression8, ADHD9, antisocial personality disorder10, sleeping dysfunction11, and suicidal 

ideation12.  Because of these broad associations, it has been argued that EF deficits are a common 

risk factor across all psychiatric symptoms1,13,14. Furthermore, EF is associated with clinical 

outcomes within disorders. Among schizophrenia patients, lower scores on EF tasks relate to 

worse daily functioning15, higher rates of hospitalization, and higher symptom severity16, and EF 

predicts better daily functioning among Alzheimer’s patients17. Thus, EF differs between cases 

and controls and, for some disorders, relates to degree of disorder impairment. 

Past twin and family studies have established that EF is highly heritable in childhood18, 

early adulthood3 and middle age19, and the genetic variance underlying EF reflects the same 

genes across multiple time points20.  Furthermore, twin studies have shown that EF relates 

genetically to several different psychiatric disorders13 and behavioral dimensions of health, like 

sleep11.  However, little is known about the molecular underpinnings of EF in humans. Most 

historical perspectives from the candidate gene21 and animal22 literature have argued that 

neurocognitive function is supported by metabotropic processes, in particular the slow 

neuromodulator effects of the dopaminergic systems.  However, recent work in humans with the 
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drug ketamine23 has argued that fast ionotropic processes probably influence neurocognitive 

ability, in particular, the excitatory neurotransmitter glutamate (via activation of NMDA 

receptors)23. Fast inhibitory GABAergic processes have also been studied in relation to EFs, but 

are often neglected in the literature24.  Unfortunately, no GWAS of EF has had sufficient power 

to compare these mechanisms. To date, the largest GWAS of neurocognitive tasks included 

1,311 to 32,070 individuals (depending on the task) and found a single genome-wide significant 

association for a processing speed task25.  It is likely that larger samples will be required to 

discover and differentiate the molecular pathways associated with EF in the general population.  

As these different mechanisms implicate different pathways for medication targets and overlap 

with brain disorders, further discovery of these pathways is needed.  

Furthermore, all previous molecular genetic studies have measured EF using individual 

tasks, such as response inhibition, working memory maintenance, updating, mental set shifting, 

etc.  However, because EFs are control processes, each task includes a mixture of “common” EF 

(cEF) and the lower-level cognitive processes on which each individual EF task operates2. These 

lower-level processes can contribute to individual differences in performance on specific tasks, 

leading to the "task impurity problem”2.  This task impurity implies that GWAS hits and 

molecular processes associated with individual EF tasks may be imperfect proxies of cEF, 

diluting or obscuring results one would find on cEF itself.   

Past work has demonstrated that across multiple cognitive tasks, a cEF factor can be 

derived to capture the variance shared across EF tasks and remove task-specific processes to 

solve this task impurity problem2.  This should increase the effect sizes of associations with cEF2 

and aid in the interpretation of discoveries, which can be tied into the broader literature on cEF. 

For example, past research suggests psychiatric outcomes are more strongly related to cEF itself 
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rather than specific EF components, such as working memory updating or task shifting1,13,14. 

Finally, given the separability of intelligence and cEF3, it is likely that there are unique 

biological systems acting on cEF apart from those shared with intelligence.   

This study is the first to examine a GWAS of cEF with a factor based on multiple 

cognitive tasks, and it is the largest GWAS sample for any cognitive ability to date.  We 

generated a cEF factor score in the UK Biobank (UKB) sample of over 427,000 individuals of 

European ancestry based on the commonality of five EF tasks across multiple measurement 

occasions. We generated a cEF score in the entire sample but also conducted analyses separately 

in two UKB subsamples, differing in which specific EF measures were collected, in order to 

ensure consistency of effects across different missingness patterns.  The specific goals of our 

investigation were (1) to catalogue the specific SNPs associated with cEF; (2) to characterize the 

genetic and molecular pathways underlying cEF; and (3) to understand the degree to which the 

association between cEF and psychiatric health and wellness is due to shared genetic factors, 

including whether this pattern is different from past studies of intelligence. 

Results 

SNP associations and Annotations in the Full Sample 

Using confirmatory factor analysis we obtained a factor score of cEF in the full UKB 

sample of 427,037 individuals.  We used this score to conduct a GWAS in the full sample as our 

main analysis (see Online Methods for generation of model, and Figure 1 for full model). 

Because the actual n for each EF task varied by ascertainment, due to some individuals being 

part of a more densely measured online sample (see Table 1 for descriptive statistics of 

indicators, and Table 2 for genetic correlations among indicators), we also tested consistency in 
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genetic effects by conducting GWAS in two UKB subsamples. First, we conducted a GWAS of 

the cEF factor score in the more densely measured sample of 93,024 individuals who had the 

trail-making task and completed an additional online battery (the “dense” sample) of cognitive 

tasks; we chose this sample based on the trail-making task because trail-making has been used as 

an indicator of cEF in past genetic studies of cEF and the sample containing trail-making had 

more dense measurement18,19. Our second UKB sample was individuals who completed at least 

one neurocognitive task and were part of the UKB but did not complete the trail-making task and 

were unrelated to people measured on the online cognitive battery (n=256,135, the “sparse” 

sample).  All genome-wide results and their annotations for this study can be accessed, including 

SNP wise effects, gene-wise p-values and pathways, via FUMA 

(https://fuma.ctglab.nl/browse/65 for the full sample,  https://fuma.ctglab.nl/browse/66 for the 

dense sample, and http://fuma.ctglab.nl/browse/67 for sparse sample results).   

We found 299 independent loci significantly associated with cEF in the full sample 

analysis, using BOLT to run a linear mixed model test of association controlling for age, age2, 

sex, first 20 principal components, and batch and site (Figures 2 & S6, & S1-S7). Consistent with 

these results BOLT-REML estimated SNP-heritability of cEF to be 0.104 (se=0.002). The most 

significantly associated SNP mapped to EXOC4 and is an eQTL in cerebellar tissue (β=-.012, p = 

2.1e-26).  Q-Q plots (supplemental Figure S1) show departure from expected p-values under the 

null hypothesis for all three samples (lambda_full =1.6946, lambda_dense=1.311, 

lambda_sparse=1.3101), but low LD-score regression intercepts (Full = 1.0381, Dense = 1.0128, 

Sparse = 1.0238) which suggests that this inflation reflects high polygenicity of cEF, rather than 

confounding stratification. Of these associated loci, we identified 334,554 cis-eQTLs within 

relevant brain tissues. However, not all gene expression was due to cis-eQTLs, as Circos plots 
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showed 1,329 possible long-range regulatory connection between SNPs, giving credence to the 

importance of regulatory variation in cEF gene expression. Of particular interest, some of the 

longest-range connections between SNPs were found on chromosome 17 between C17 (cytokine 

gene) and LRRC37A2 (Table S6 & Figure S2).  These analyses show the high biological 

complexity of cEF, as cEF is highly polygenic, and this polygenicity and related to a very 

complex expression profile characterized by both long- and short-range patterns of regulatory 

expression. Because of the staggering number of eQTLs and the complex pattern of long-range 

regulatory processes, further analyses looked for convergence across gene-based and tissue-

based approaches.   

Comparison of the densely- and sparsely-phenotyped subsamples 

 SNP-heritability of the dense subsample was higher than the sparse subsample (LDSC26 

h2=.19, se=0.014 and h2=.07, se=0.0039, respectively). Nevertheless, both samples appear to 

measure the same cEF construct, albeit with varying levels of precision, because they were 

highly genetically correlated (LDSC-based rG=0.918, se=0.029). Despite the three-fold smaller 

sample size in the dense sample, we identified the same number of genome-wide significant loci 

in both samples (34 independent loci in each, 7 of which were shared between both samples; 

Supplemental Table S1 & S8-S19), suggesting greater measurement precision in the dense 

subsample and that adequate measurement of phenotypes is an important aspect of discovering 

cEF-associated loci.  However, the larger number of identified loci when using the combined 

dataset, demonstrates the statistical power gained from utilizing our factor-based approach to 

leverage the entire sample. Therefore, we focus our remaining discussion on analyses of the full 

sample.  

Gene-Based Analysis 
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Gene-Wise Analysis. To discover individual genes associated with cEF, we ran a gene-

wise test of association by aggregating effects of all SNPs within 10kb of each gene using the 

FUMA/MAGMA pipeline. We identified 319 genes significantly associated (Bonferroni α= 

0.05/18597 = 2.689e-6) with cEF in the full sample, 21 of which were consistent across the 

dense and sparse subsamples, with the strongest association again being EXOC4 (Figure S4, 

Supplemental Tables 20-22). Inflation of gene-based p-values (Q-Q plots in supplemental Figure 

S3) is likely due to polygenicity, as described above.   

Gene-Set Analyses. To discover specific molecular pathways that are most strongly 

associated with cEF, we performed a gene-set analysis of  "Curated Gene Sets" and "GO terms" 

pathways identified in Msigdb v5.227 using MAGMA (5,917 gene-sets tested), with gene-level p-

values from gene-wise analysis as input.  Post-Bonferroni correction, we found 12 associated 

gene-sets, all of which could be summarized under three broad pathways: potassium channel 

activity, synaptic structure, or GABA receptor activity (Figure 3A). Suggestive associations of 

additional pathways, which did not exceed the multiple-testing threshold, also implicated 

synaptic, potassium channel and ionotropic pathways as being associated with cEF.   

 To follow up on this analysis we ran a conditional gene-set analysis28 to investigate 

which pathways remained significant after accounting for the other top pathways. In this 

analysis, we excluded the “synapse” GO term pathway, the “GABAA gene” set pathway, and 

“voltage-gated potassium channel” pathways due to multicollinearity, as these are supersets of, 

or overlapped completely with, other significant pathways (particularly “GABA receptor 

complex” and “voltage-gated potassium channel activity” ).  The GO terms for “GABA receptor 

complex” and the GO terms for “regulation of synapse structure or activity” remained 

significantly associated conditioning on all other significant pathways, meaning that genes 
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specifically in these molecular pathways have independent and strong contributions to genetic 

variation in cEF.   

  Based on the current molecular literature23, it is possible that glutaminergic and 

dopaminergic pathways are involved in cEF variation, but we probably lacked statistical power 

to discover them due to our conservative multiple comparison threshold (genetic pathways are 

not independent, so a Bonferroni over-corrected). We hypothesized a priori that genes in 

dopaminergic, glutaminergic and GABA pathways would be enriched and extracted the effects 

of these MBsig pathways that were above nominal significance (but did not meet Bonferroni 

significance). While there are 10 nominally significant glutaminergic and dopaminergic 

pathways, the effect sizes and significance values are highest for GABA (Figure 3B).  Some 

glutaminergic pathways were nominally significant. The strongest association was NMDA 

receptor activation, which is the main pathway targeted by ketamine and previously supported23.  

Finally, dopaminergic genes showed the weakest evidence for association of pre-hypothesized 

pathways, with only two pathways nominally associated with cEF. Together, these results 

suggest a strong association of GABA in cEF individual differences, but we cannot completely 

rule out glutaminergic pathways.  Dopaminergic pathways showed the weakest evidence of pre-

hypothesized pathways.  

We attempted to find converging evidence for GABAergic function using cell-type 

specific gene expression in three human brain tissues (that were publicly available through 

FUMA, see supplemental Figure S5 for full discovery results from single-cell type enrichment), 

specifically the human cortex, the hippocampus and the frontal cortex. We found our GWAS to 

be significantly enriched in genes specifically expressed in GABA2 cells in the hippocampus, 

GABAergic neurons in the prefrontal cortex (though this was specific to 26 weeks of gestation) 
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and hybrid and neurons cells in the whole human cortex (across age), post-Bonferroni correction 

(within tissue for all cell-types of that tissue). 

Gene-Property Analysis. Genes can be differentially expressed in particular tissue types.  

We used the results of the gene-wise analysis as input for MAGMA/FUMA to conduct gene-

property analysis by tissues across 30 broad and 53 specific human tissues in the GTEx sample 

to ascertain which tissues associated variants were likely influencing gene expression in. After 

Bonferroni correction, only the brain and pituitary broad tissues were implicated, whereas all 13 

specific brain tissues were associated except the substantia nigra and spinal cord-c1 

(supplemental Figure S6).  No other tissues were implicated.  

Transcriptional Profiling. To examine the transcriptional profile across the implicated 

brain tissues (all GTEx tissues excluding the substantia nigra and the spinal cord c-1), we used 

PrediXcan29 to predict brain transcription patterns that lead to improved cEF from our SNP 

summary statistics and tissue-specific eQTL expression associations from the GTEx sample's30 

11 associated brain tissues. We found 441 brain tissue-specific transcripts (of 4,324 possible) 

associated with cEF, post-Bonferroni correction (supplemental Table S23 and Online Figure S7).  

We then entered this transcriptional profile in the connectivity Map (cMAP)31. After filtering for 

transcripts found in multiple tissues, 78 were also associated with transcriptional changes after 

exposure to perturbagens in the cMAP.  Thirty-three perturbagens mimicked the cEF 

transcriptional profile (supplemental Table S24).  Of note, 3 of the top 15 substances have 

previous psychiatric and cognitive applications: nicergoline32, an anti-dementia drug that is 

shown to be effective in a broad array of behavioral and cognitive disorders in old age; 

nortriptyline33, a first-generation tricyclic antidepressant; and chlorpromazine34, a typical anti-

psychotic that is prescribed to treat severe cases of schizophrenia, bipolar, OCD, and depression.   
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Candidate Gene and Candidate Gene Polymorphism Analysis 

Similar to other recent studies on schizophrenia and major depression35–37, we found no 

evidence that the most popular candidate gene polymorphisms (those reviewed by 21) were 

related to cEF at levels above chance.  No polymorphism that is historically studied in the 

candidate gene literature was genome-wide significant and in the same direction as hypothesized. 

Likely the most studied candidate gene polymorphism, COMT val/met (rs4680), was not 

significant at the genome-wide level (β = -.002, p=.021) and was in the opposite direction of 

effect as what was hypothesized in the candidate gene literature.  The popular polymorphisms of 

the DRD2 gene were genome-wide significant, but in the opposite direction as hypothesized by 

the candidate gene literature (rs1079596: β = 0.010, p=1.3e-10; rs2075654: β = 0.010, p=1.4e-

10). 

We also used MAGMA to derive combined p-values from GWAS summary statistics to 

determine the degree of association of historical cEF candidate genes (as opposed to the most-

studied specific polymorphisms within them), again derived from ref 21.  Only DRD2 was 

associated with cEF (p=1.15E-12). 

Analysis of cEF Full Sample Summary Statistics 

Genetic Correlations. We used LD Score regression through LDhub38 to estimate the 

genetic correlation between cEF and other major behavioral and neurological phenotypes, many 

of which have been associated with EF phenotypically and/or genetically in the literature. To 

summarize briefly, cEF was significantly associated (above Bonferroni correction α = .0011) 

with all psychiatric disorders (except anorexia, which was nominal, and autism, which was non-

significant), all education and intelligence variables and neuroticism. cEF did not show a strong 
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pattern of association with neurological disorders. We found moderate and nominally significant 

genetic correlations of cEF with numerous other cognitive, psychiatric, and personality traits 

(Fig. 4, Supplemental Table S25). 

We also examined the genetic correlation of cEF with intelligence, given prior literature 

suggesting a close relationship3,39,40. We estimated the genetic correlation between cEF and 

intelligence (using summary statistics from Sniekers et al. 201741) to be .71 (se=.0215); this 

correlation was greater than zero, p=1.00e-221 but also significantly less than 1, p= 1.4e-59), 

consistent with cEF being genetically separable from intelligence. This SNP-based genetic 

correlation is similar to those from twin-based rG estimates of IQ and EF (.5 in young adults3, 

.69 in middle age40, and 1 in children39). Moreover, cEF was more strongly genetically correlated 

with bipolar disorder and schizophrenia than was intelligence42 and the 95% confidence intervals 

in genetic correlation between cEF and these disorders and intelligence and these disorders did 

not overlap (Scz-IQ = -.2122 & CI=.049, Scz-EF=-.3457 & CI=.043, BiP-IQ=.0562 & CI=.080, 

BiP-EF = -.3161 & CI=.067).  

Discussion 

We discovered and characterized the molecular genetic processes that influence top-down 

cognitive control (in humans). The genetics of Common Executive Functioning (cEF) are highly 

complex, as we found 299 independent significant loci associated with cEF. However, the 

genetic pattern of our results was categorized by genes influencing fast ionotropic and synaptic 

pathways, in particular GABAergic process, rather than the commonly studied metabotropic and 

neuronal pathways. Finally, it is likely these fast-synaptic processes influencing cEF could 

further elucidate mechanisms of psychiatric disorders, as cEF is genetically correlated to all 

forms of psychiatric distress.    
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 This study used gene-set and cell-type-specific analysis to discover (and test) molecular 

pathways underlying cEF. We found GABA activity from multiple lines of evidence, and cell-

type-specific analyses implicated GABA in both the cortex and hippocampus. Further, 

GABAergic pathways were the most associated molecular pathways tested and influence cEF 

above and beyond other neurotransmitter pathways. Finally, synaptic and ionotropic pathways 

were more strongly associated with cEF than the traditionally studied metabotropic and 

dopaminergic pathways. Together, the consistency in our findings strongly implicates a key role 

of fast-synaptic communication mechanisms underlying the inheritance of cEF, rather than the 

slow neuromodulatory processes that are often hypothesized in the literature. Interestingly, while 

there is some past support for GABAergic pathways, of the associated neurotransmitters in the 

literature, GABA is often neglected24. Thus, investigating genetic variation in GABA pathways 

is a promising future direction to understand top-down cognitive processes and their correlates.   

We also hypothesized that glutamate, in particular NMDA receptor agonism, would 

influence cEF. While several of these pathways were nominally significant, none reached 

Bonferroni significance, though many were close and this threshold was conservative. As sample 

sizes of EF tasks increase, we expect GWAS to implicate glutaminergic as well as GABAergic 

function.   

We found little evidence for the most popular cEF molecular theories. Namely, little 

evidence was found that dopaminergic processes relate to the inherited vulnerability to cEF 

deficit. It is possible that alterations in dopaminergic function are a consequence, rather than an 

inherited cause, of cEF performance. Importantly, the dopaminergic candidate genes that are 

currently used in the neurocognitive and imaging literature21 were not associated with cEF, 

despite very high power to detect previously reported associations. This work suggests that 
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researchers should shift from studying EF using dopaminergic and serotonergic processes to 

GABA (and perhaps glutaminergic) processes.  

We attempted to localize where in the brain these molecular patterns may be most 

important. In contrast to the widely held belief that EF is a frontal brain phenomenon, the 

molecular pathways underlying cEF that we detected are almost entirely neurological and likely 

not confined to one brain region. In addition to the frontal-parietal brain regions classically 

associated with EF, this work is consistent with imaging studies that have suggested associations 

between cEF and lower-order brain areas, particularly the cerebellum43, as this was our most 

enriched brain area in a gene-property analysis. In this study, the strongest signal came from a 

variant mapped to EXOC4, which influences exocytic vesicles docking to the plasma membrane.  

The sentinel variant is an eQTL in the cerebellum, and we found significant eQTL enrichment 

(across the genome) for the cerebellum and a number of other non-cortical brain regions.  It is 

possible that the associations of these regions are due to the need for repeated deliberate action in 

cognitive abilities, that likely evolved from basic motor processes controlled by the cerebellum44. 

It is likely that the molecular processes underlying cEF are influential in psychiatric 

dysfunction. We found novel genetic associations with schizophrenia, bipolar disorder, alcohol 

dependence, Alzheimer’s disease, educational attainment, age of first birth, and parents age of 

death. We also replicated genetic association of cEF with depression45 and ADHD46. These 

results are in line with past literature, suggesting cEF is a broad risk factor for 

psychopathology1,13. Finally, as recent genome-wide association studies47 of schizophrenia and 

medical drug repurposing of bipolar, depression, and anxiety48 medications have implicated 

drugs targeting GABAergic processes, it is likely these processes of cEF would be good targets 

of intervention for the top-down cognitive deficits seen in psychiatric disorders.   
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 While there is substantial and significant overlap between our cEF factor and 

intelligence, there is some separability based on a genetic correlation significantly below unity. 

Further, this genetic correlation is likely to be inflated given that previous meta-analyses of 

intelligence, upon which the genetic correlations were estimated, included cohorts with EF 

tasks41,42.  In addition, past work on general intelligence did not discover GABA activity or 

synaptic pathways (that we found associated with cEF) and, instead, found pathways associated 

with neurogenesis and neuron development (though the sample size was smaller)42. Finally, the 

separability of cEF and intelligence is reflected in differential correlations with outcomes of 

interest. cEF genetically correlates more strongly (non-overlapping 95% CIs) with schizophrenia, 

bipolar disorder, than intelligence (when compared to the results published in Savage, Jensen et 

al.42), whereas, intelligence is more genetically correlated with educational attainment, head size, 

autism, openness to experience, and smoking behaviors than cEF41,42. Thus, in line with twin 

literature3, cEF is related to but genetically distinct from intelligence, and this distinction may be 

key to understanding the cognitive component of psychopathology in particular.  

Though most lines of evidence herein implicate cEF as a potential target of intervention, 

there have been very few (human) studies that have attempted to target cognitive deficits in 

psychiatric disorders49. With our summary statistics as input, we used gene-sets, gene-property 

analysis and transcriptional profiles to prioritize drug relabeling. Our analyses point to several 

pharmaceuticals as possible targets for addressing the cognitive deficits in psychiatric disorders. 

Specifically, nicergoline, nortriptyline, and chlorpromazine induce transcriptional profiles 

similar to higher cEF and are known to cross the blood-brain barrier.  Interestingly, all three 

drugs have been used to treat a broad array of psychiatric conditions, are older classes of psycho-

pharmaceuticals with less specific drug targets, and treat disorders related to EF.  Additionally, 
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all three of these drugs have some modest evidence in favor of their efficacy. For example, 

nicergoline has been shown to improve glucose uptake and cell firing of ionotropic 

neurotransmitters50, so drugs with a similar profile may be a useful area of future investigation. 

Past work in depressed elderly individuals found improved cognitive abilities and reduced 

depression symptoms with exposure to nortriptyline33. Finally, low doses of chlorpromazine 

have been shown to improve “cognitive inhibition” in healthy individuals34. More work should 

be done to see how these drugs may influence cognitive abilities, particularly in clinical 

psychiatric populations.   

There are a number of limitations. First, almost all bioinformatic follow-up depended on 

tissue-based analysis from the GTEx sample. While this sample is the richest source of eQTL 

data to date, a lack of generalizability from this population would affect our results as well. 

Further, to the extent that there is a strong genetic correlation in expression across tissues, we 

expect signal from the multiple correlated brain tissues, and while we used tissue-specific 

expression, this does not mean we can draw strong conclusions about which tissues are 

implicated above and beyond one another. Finally, although it is typical in GWAS to focus on 

European samples, we cannot draw strong conclusions about how well these molecular 

underpinnings will generalize to non-European populations.   

Conclusion 

 cEF is heritable and highly polygenic, with clear indication for a role of synaptic, 

GABAergic, and ionotropic pathways. Some of these processes reflect a shared genetic influence 

on cEF and psychiatric disorders and may be viable pharmacological targets. We establish here a 

molecular profile of neurocognitive ability that helps clarify the neuro-molecular underpinnings 
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of individual differences that capture the top-down component of psychiatric dysfunction and 

well-being. 
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Table 1. Descriptive Statistics for Cognitive Measures Used to Obtain Factor Scores 

Measure N Mean SD Min Max Skewness Kurtosis 

Trail making 
       

Onlinea 104,050 0.00 0.11 -0.44 0.44 0.48 0.73 

Numericb 104,052 1.57 0.14 1.14 2.87 0.65 0.67 

Alphanumericb 104,050 1.80 0.15 1.31 2.87 0.49 0.46 

Symbol-digit substitution 
      

Online 117,785 19.76 5.11 0 40 -0.40 0.54 

Prospective 

Memoryc 
       

Initial visit 171,309 0.24 -- -- -- -- -- 

Repeat visit 20,314 0.15 -- -- -- -- -- 

Imaging visit 15,880 0.12 -- -- -- -- -- 

Pairs Matchingd 
       

Initial visit 484,340 0.76 0.37 0.00 2.22 0.39 0.56 

Repeat visit 20,085 0.70 0.34 0.00 2.06 0.33 0.55 

Imaging visit 15,472 0.66 0.33 0.00 2.00 0.35 0.61 

Online 114,828 0.83 0.37 0.00 2.31 0.39 0.26 

Digit Span 
       

Initial visit 50,116 6.69 1.34 2 12 -0.32 0.84 

Imaging visit 4,237 6.80 1.24 2 11 -0.20 0.68 

Online 111,086 6.92 1.49 2 11 -0.38 1.09 

Note. Descriptive statistics and sample information for each task loading on the common 

executive functioning (cEF) factor from the UKBiobank sample. N includes European and 

non-European descent in the UKBiobank.  
aUnstandardized residual of the log10-transformed alphanumeric path time after regressing out 

the log10-transformed numeric path time; only this score was used in the model. 
bLog10-transformed total times in seconds to complete the numeric and alphanumeric paths; 

these variables were not used in the confirmatory factor analysis model but were used to obtain 

the residualized trails measure used in the model. 
cCategorical variable coded as 1 for correct and 0 for incorrect on first try. The mean described 

proportion correct. Dashes indicate that other descriptive statistics were not calculated. 
dSum of the log10-transformed number of incorrect matches +1 in the 6- and 12-card rounds.  
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Table 2. Genetic Correlation between common EF indicators and common EF samples 

 Symbol 
Digit 

Pairs 
Memory 

Digit 
Span 

Prospect. 
Memory 

Trail 
Making 

Trails+ 
cEF 

Trails- 
cEF 

Full  
cEF 

Symbol 
Digit 

0.1245 
(0.0079) 

       

Pairs 
Memory 

0.6603 
(0.0271) 

0.0713 
(0.003) 

      

Digit Span 0.3226 
(0.0345) 

0.442 
(0.0263) 

0.1337 
(0.0069) 

     

Prospective 
Memory 

0.4479 
(0.0414) 

0.5982 
(0.0348) 

0.4539 
(0.0355) 

0.0527 
(0.0039) 

    

Trail 
Making 

0.7126 
(0.0322) 

0.7085 
(0.0317) 

0.653 
(0.0293) 

0.5927 
(0.0463) 

0.1136 
(0.0084) 

   

Trails+ 
sample cEF 

0.8428 
(0.0138) 

0.858 
(0.0207) 

0.6653 
(0.0214) 

0.6416 
(0.0365) 

0.9274 
(0.0133) 

0.1894 
(0.0105) 

  

Trails- 
sample cEF 

0.7031 
(0.0307) 

0.9831 
(0.0074) 

0.558 
(0.0259) 

0.7052 
(0.0308) 

0.7771 
(0.0381) 

0.923 
(0.0286) 

0.0696 
(0.0038) 

 

Full sample 
cEF 

0.7683 
(0.0178) 

0.9527 
(0.0047) 

0.6164 
(0.0178) 

0.7046 
(0.0255) 

0.8452 
(0.0215) 

0.9629 
(0.0106) 

0.9892 
(0.0073) 

0.0906 
(0.0039) 

Note. Lower diagonal matrix representing the genetic correlation and standard error of each 

indicator and common executive functioning (cEF) factor scores in theTrails+, Trails-, and full 

samples. as estimated by LD score regression.  The heritability of each measure is shown on the 

diagonal.  
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Figure 1. Justification for a common executive functioning (cEF) factor across cognitive tasks in 

the UK Biobank: (A) Correlations taken from Mplus; (B) Confirmatory factor analysis model 

used to extract factor scores. Ellipses indicate latent variables; rectangles indicate observed 

variables. Numbers on arrows are standardized factor loadings, and numbers at the end of arrows 

are residual variances. All parameters were statistically significant (p<.05). Trails= trail making 

(online); SymDig= symbol-digit substitution (online); PM= prospective memory; Pairs= pairs 

memory; Digit= digit span; IQ= intelligence; RT= reaction time. Task names with 1=first 

assessment; with 2=repeat assessment; with 3=imaging visit assessment; with O=online follow-

up.  Directionality was reversed for some variables so that for all variables, higher scores 

indicate better performance. 
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Figure 2. Manhattan plots for GWAS of common executive functioning (cEF) in the full sample 

(Panel A), the densely-phenotyped sample (Panel B), and the sparsely-phenotyped sample (Panel 

C). Each dot is a SNP, chromosomes are organized on the x-axis, y-axis represents the negative 

log10 of the p-value per SNP.  
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Figure 3.  Associated Gene-set Categories from MAGMA Gene-Set Analysis. Signal GO term 

and curated gene set enrichment for SNPs influencing common executive functioning (cEF) as 

the MAGMA gene enrichment beta and standard error. (A) Gene-sets significantly associated 

post Bonferroni corrected alpha for 10,651 tests α = 4.7E-06.  (B) Gene-sets in hypothesized 

pathways that were nominally significant. VG = voltage-gated.  
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Figure 4. Genetic correlations between common executive functioning (cEF) and psychiatric, 

behavioral and health traits using LD score regression. Bars indicate 95% confidence intervals. 

All results significant at nominal significance p < .05.  ** represents significance below 

Bonferroni correction. 
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