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Methods used for Images in Figures10

Some experimental images of the T. adhaerens have been edited to remove the background, leaving only11

the animal for clarity. In these cases, a uniform black or white background has been introduced. Some12

images were edited to adjust levels of brightness, contrast and color for clarity.13

Interpretation and formulation of the cell-cell junction bonding/debonding14

criterion15

We relate our simple model to existing literature and ideas before jumping into the debinding criterion.16

The debonding/bonding criteria is central to understanding the dynamics of tissues under load and how17

they dynamically reconfigure (or not) under external driving.18

A very interesting and useful low order expansion of the energy of a confluent tissue within a plane is

captured by a elegant simple energy function applied to vertex degrees of freedom (the energy function is

reminiscent of a foam)1:

εi = kA(Ai−Ao)
2 +ΓP2

i + γPi

The second order term in perimeter (behaving like an elasticity of the cortex) is important for stabilizing19

the shape of the cells when the first order term (like the cell surface tension) goes negative. Without this20



stabilizing elasticity, cells with negative effective surface tension would stretch in an unstable fashion to21

infinitely thin cells with large surface area, but near Ao area.2, 3
22

A negative effective surface tension makes sense when we decompose the contributions of this term23

into two competing first order contributions2. γPi ≡ αPall
i −βPshared

i , where α is the contribution from24

the cell’s internal cortical tension and β is the energy contribution from interaction with other sticky25

cells. In the case of a perfectly confluent tissue with no edges (periodic BC or infinite size), the energy26

contributions from both go negative when the shared energetic contributions exceed the cell’s own surface27

tension α < β . This energetic description is powerful in the limit where the kinetics of the bonds is fast28

compared to the timescales of interest4, 5. This holds true in the long-timescale behavior of tissues flowing29

under tension6.30

On short timescales where the bond-lifetime is comparable to the dynamics, the transients begin to

play an important role in the response of the tissue to forcing (internal or external). To study the dynamics

of the bonds of the tissues, we can unfold the contributions of the two surface tension terms into:

εi = kA(Ai−Ao)
2 +ΓP2

i +αPi +∑
j

δ jiε junction

With the complementary kinetics of the cell-cell junctions governed by the presence or absence of a bond,

denoted by δi j

δi j =


0, when bond is absent

1, when bond is present

Debonding criterion31

The first order description of the dynamics of the bonds under force turns to Bell’s formulation of a first

passage process over an energy barrier7. In this case, the dynamics of a single junction-junction bond has

the lifetime,τ , of:

τ = τoe
Eo−roF

kBT
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Where τo is the natural lifetime of the bond, Eo is the bond energy. ro is the distance along the reaction32

coordinate between the bound and unbound state, F is the applied force, kBT is the temperature in units of33

energy.34

This can be inverted to be used as a rate in the following kinetic master equation for a two-state

system:

∂

∂ t
Pbound = rbinding(1−Pbound)− runbinding(F)Pbound

However, a cell-cell junction is representative of a large ensemble of bonds all working in concert35

to keep the cells stuck together (with higher order cis and trans assemblies forming over a hierarchy of36

timescales)8, 9.37

We can justify approximating these ensemble dynamics as a threshold by considering distributed load38

amplification. When a single bond-fails, the neighbors feel a sharp increase in their load causing them to39

fail, and so on. We get an avalanche of bond failures that looks a lot like a threshold.40

Using Bell’s rate to solve for the steady state of the distribution:

∂

∂ t
P = 0 = rb(1−Pss)− rueβ (Eo−roF)Pss

We get a steady state probability which is dependent upon force.

Pss =
1

1+ ru
rb

e−β (Eo−roF)

Then the ensemble becomes a Bernoulli distribution if the binding events are independent:

p(n;N(t),P(F)) = (Pss(F))n(1−Pss(F))N(t)−n

Where n is the number of bound junctions. N(t) is the recruitment of cis-bonds which create these41

large scale islands of cell-cell adhesion clusters with a timescale in the ∼ 10 of seconds9. Pss(F) is the42

steady state which is determined by a single external force distributed over the population of attached43
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bonds.44

Recall that the mean of a Bernoulli distribution is simply 〈n〉= N(t)Pss45

Next, we calculate for a given Fpull the mean force distributed to each of the bonds10. This takes for

the form of:

〈F〉=
Fpull

〈n〉

We can take the analytical form of the expectation value for a Bernoulli random process:

〈F〉=
Fpull

N(t)Pss(〈F〉)
=

Fpull

(
1+ ru

rb
e−β (Eo−ro〈F〉)

)
N(t)

The calculation does not have an analytical solution:

N(t)〈F〉− ru

rb
e−β (Eo−ro〈F〉) = Fpull

So given that this function set transcends algebraic interrogation, we expanded our exponential as a46

Taylor series to O(F). This gives us the result:47

〈F〉 ∼

(
1+ ru

rb
e−βEo

)
Fpull

N(t)− ru
rb

β roe−βEoFpull

This is the low order approximation of the force dependence and looks like the functional form:

〈F〉(Fpull)∼
C1

1
Fpull
−C2

The average force on each two-state system diverges when N(t)F−1
pull =

ru
rb

β roe−βEo .48

If we recall that our probability of being bound looks like:

Pss =
1

1+ ru
rb

e−β (Eo−ro〈F〉)
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Then, we can plug in our calculated mean force with feedback to give us the probability of steady

state binding for a given pull force:

Pss(Fpull)≈
1

1+ ru
rb

e
−β

(
Eo−

roC1
F−1

pull−C2

)

As Fpull → C−1
2 the exponential diverges rapidly sending the binding probability toward 0. For

sufficiently high affinities, this function is well approximated by a Heaviside step function.

Pss(Fpull)≈ Pss(〈F〉= 0)
(
1−ΘHeaviside(Fpull−Fc)

)
The distribution, and therefore the probability of debonding, is then captured by a single value, the49

force threshold of debonding, Fc. In the elastic limit, we can translate our threshold yield force, into a50

geometric criterion allowing us to port over efficient methods in computational geometry to quickly update51

the connectivity at each time-point.52

Comparison of debonding criteria with results from contact mechanics53

This single threshold approach is complemented by the formulation of Hertz contact mechanics with

adhesion energy formulated by Johnson and coworkers11. The JKR theory for contact mechanics asks

the question about the interplay between the stored elastic energy of deformation and the surface energy

of contact. The math is identical to fracture mechanics in that the critical values are tight thresholds

determined by the radius, the interaction energy, and the critical load to separate the two surfaces. In this

picture, strain and stress are related through the modulus and there is no transients. From the perspective of

JKR theory, there is a finite pull-off load or force which is equal to the crossover in the energy contributions

(being attached or not). This crossover occurs at:

Fpull off = 3π∆γR

Where ∆γ = γ1 + γ2− γ12.54

Notice that the energy between the interfaces is the integral of the LJ interaction potential to give the55
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work to remove the sphere. While the interpretation is slightly different, the debonding threshold comes56

out similarly from this very distinct approach. [cite same as above]57

Bonding criterion58

For rebonding We propose a single timescale for maturation, τmature, on the ’stiffness’ of the cell-cell59

junction. This single timescale is consistent with the local recruitment of the cadherin complex, which we60

have represented above as N(t). The number of cytoskeletal links between the two cells correlates to the61

stiffness and the number of links, and is determined by the number of cadhearins in the local cluster.62

With N(t) = No(1− e−t/τmature), the cell-cell bond energy looks like:

εbond(t) = Noε junction

(
1− e−t/τmature

)

Where t is the age of the bond since entering into the triangulation and the geometric cutoff, Lbreak.63

By focusing our attention on the behavior of the connectivity matrix to emphasize the dynamics64

of cell-cell junctions over cellular shape dynamics, we open up the door to a careful comparative study65

incorporating higher order cell dynamics more consistent with recent work12, 13. Undoubtedly cell shape66

will contribute to our understanding of the collective action in a tissues response to fast timescale forcing67

and will be a target in the next generation of models.68

Applying bonding/debonding criteria to low order dynamics of a model tissue69

Following above, we wrote two models to explore the impact of cell shape [results not presented in detail

here]. One where cells are promoted to a large number of degrees of freedom and their shape is governed

by

εi = kA(Ai−Ao)
2 +ΓP2

i +αPi +∑
j

δ jiε junction

The second, we removed the shape dynamics and replaced it with a characteristic cell compliance (of

the form of a Hertizian interaction). We capture qualitatively the compliance of the cells (in a two body

way) by linearizing the elasticity of the vertex model energy and using those fictious springs between the
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cells. This simplified energy emphasizes the central role of dynamics of this connectivity network:

εi = ∑
j

δ jiε junction

We can expand the energy of the junction term into: ε junction =
∫ Lbreak

0 d` ·
(
−k junction∆`

)
. This70

becomes the energy of the bond.71

The dynamics of this network emerge as two simple possibilities. (1) the cell-cell junction is stretched72

to the threshold of failure resulting in the breaking of the bond and a formation of a new edge (’edge’73

meaning that we do not locally conserve the number of constraints, no CCC). (2) The network can74

undergo a tranformation similar to a shear transformation zone or t1 (which conserves the number of local75

constraints). The STZ type transformations occur when the energy of one configuration is more favorable76

than the other, however, the time dynamics of rebonding still control the kinetics of the bond swap. The77

old bond will break and the new bond will slowly form.78

This competition between stress relaxation mechanisms forms the basis of the competition between79

fracture and flow.80

Steady state solutions to dissipative failure of a toy model81

The simplest viscoelastic system comes in the form of a Maxwell element: a damping in parallel to a82

series system of a damping and a spring.83

We can define the stress of our linear spring as σs(t) = k`s(t), where `s is the strain.84

For the simple damper, the stress goes as : σd(t) = η
∂

∂ t `d(t).85

If we take our results from up above, we suggest that a force threshold looks like a good low order86

model for the rupture criterion, thus we can apply the well known stress criterion for failure. This suggests87

that failure occurs at a value σ∗.88

One can then apply a imposed strain rate to the connecting walls ˙̀pull(t) and generate the equation

for the growing internal stress as:

∂

∂ t
σs = η ˙̀pull− k`s
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This relationship has the straightforward implication that the steady state is that the material will fail89

if the imposed pull rate is faster than ˙̀pull ≥ σ∗

η
.90

If the flowing material instead falls into the Herschel-Buckley equation of yield stress fluids, as we

might expect for a flowing material, this relationship instead becomes:

∂

∂ t
σs = ηHB ˙̀n

pull−σy− k`s

With n becoming the power of the HB equation (∼ 3 for our sticky material) and σy being the yield stress.91

Outside the transients this means that failure will occur for imposed pulling rates: ˙̀pull ≥
(

σ∗−σy
ηHB

)1/n
.92

If we combine these two results, we find that the two complementary mechanisms of relaxation can

combine forces to give:

∂

∂ t
σs = ηHB ˙̀n

pull−σy +η ˙̀pull− k`s

At small pull rates, the relaxation timescale of the tissue dominates. At large pull rates the relaxation93

through neighborhood exchange takes over.94

The cross-over value occurs when: ηHB ˙̀n
cx−σy = η ˙̀cx which becomes:

˙̀cx =

(2
3

)1/3η

χ
+

χ

21/332/3ηNB

where χ ≡
(

9η2
HBσy +

√
3
√

27η4
HBσy−4η3

HBη3
)1/3

95

A followup to this question is: does the cross-over between subcellular and cellular scale flows occur96

before the threshold for fracture?97

Generically, there are four outcomes to a pull experiment in this toy model. (1) At low pull rates,98

and fast cellular relaxation timescales, the tissue yields by sub-cellular flow alone. (2) At medium pull99

rates with a slow cellular relaxation relative to the rate of loading, the tissue can cross over into a flow by100

neighborhood rearrangements. (3) When the yield stress is higher than the fracture stress, the tissue never101

flows via rearrangement and only flows via subcellular processes up to breaking (on these fast timescales,102
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the bond-lifetime controls the kinetics rearrangments) (4) At sufficiently fast loading rates, the tissue fails103

catastrophically as the loading cannot be compensated for via either of the available stress relaxation104

mechanisms (on these timescales, a third candidate might be stress induced oriented cell division)14.105

This toy model illustrates that even with higher order mechanisms of cell relaxation on short106

timescales15, the concept of pitting flow versus fracture as competing mechanisms holds a useful tool107

for understanding. The presence of such a mechanism enriches the character of tissue under fast loading108

timescales and suggests an interesting interplay between flow mechanisms which can serve complementary109

roles.110

Kinetic perspective on the competition between fracture and flow111

The central theoretical concept in this work is the competition between edge formation and neighborhood112

exchange (or fracture versus flow). While in the main text, we developed an argument on the foundation113

of a numerical study with a simple real-space interpretation, here we attempt to formulate the argument in114

a more model-agnostic perspective. This toy argument is a simple tool for understanding outcomes and115

coming up with sharp definitions.116

One possible approach to this is from the perspective of the kinetics on a dynamic energy landscape.117

Let’s consider a three state system with the following properties.118

• State 1 corresponds to a configuration of the neighborhood matrix between 4 particles. It is119

metastable at zero force.120

• State 2 corresponds to the lowest energy transformation of that neighborhood matrix which preserves121

the number of local constraints. It is metastable at zero force and is an STZ like transformation122

away from state 1.123

• State 3 corresponds to a fractured state where the number of constraints is fewer than state 1 or 2.124

First, it is critical to link these multistate kinetics to the practical definition of ductile and brittle used125

in this text. A generically ductile material will pass from State 1 to State 2 a majority of the time. Whereas126

a generically brittle material will preferentially pass from State 1 to State 3. A final possibility is that127
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material could pass quickly through State 2 en route to State 3. In this language, this material will still128

behave in a ’brittle’ fashion, if the lifetime in State 2 is insignificant compared to the timescales of the129

problem. If a material has a long-lived occupancy in State 2 at any force, we call it ductile. A more ductile130

material will almost exclusively use the State 1 to State 2 path on this kinetic path for a large range of131

forcing.132

Let’s assume that the energy needed to generate new edge is εB
break. The activation energy for this133

transformation is the same as the bounding energy.134

Let’s further assume that the energy needed to undergo an STZ transition is εB
ST Z . This is a barrier135

height and represents a combination of both elastic and adhesive energies at play. Noteworthy, this136

landscape is time dependent controlled by timescales set by τmature and the neighborhood topology which137

we approximated by a computational geometry problem (reasonable in the limit of stiff cells and lower138

adhesion energies i.e. low shape parameter).139

We apply an external force to state 1 driving it toward state 2.140

On the long time limit (where the transients of the bond kinetics are short compared to the timescales),141

The outcome of the pull (whether it STZs or breaks) will be dependent upon the relationship between the142

activation energy for the STZ, εST Z (which is a configuration dependent calculation) versus the energy to143

severe the connection between cells and create new edge, εbreak.144

When εbreak < εST Z , new edges will form. In the other case, the tissue will flow through STZs.145

This relationship is born out in the crossover observed at low τmature between fracture and flow in the146

numerics. Recall that εbreak ∼ `2
break whereas εST Z will be essentially independent of the edge-formation147

energy and will be determined by the complicated interplay of cell compliance and local configuration.148

Thus we expect a cross-over in the qualitative behavior of the tissue when these energy scales intersect (in149

the long-time limit).150

On the timescales where the cell-cell junction kinetics become relevant, the problem requires a little151

more careful a treatment.152

By a mean first passage process, the kinetics on this energy landscape can be approximated via153

transition state theory using the energy barrier height separating the valleys. This is essentially a study of154

the rate of extreme values in energy given a finite temperature.155
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The rates between these three states then look something like:

r1→2 ∼ e−βεST Z r1→3 ∼ e−βεbreak r2→3 ∼ e−βε23Barrier(tage)

There is now a new term in here which has an interesting time-dependence, ε23Barrier(t) which represents156

the barrier between the new STZ state and the state with new edges. Due to the maturation time of the157

cell-cell junction, this is time dependent. The junction stabilizes with time.158

The energy of this relationship looks something like:

ε23Barrier(tage)∼ εbreak− ε jNo

(
1− e−tage/τmature

)

Where tage] is acting as the age of the new cell-cell junction, just following its recent STZ type transforma-159

tion.160

Using a Bell-like dependence on force in the direction of a transformation, the rates will take the

form:

r1→2∼ e−βεST Z+F ·r̂12∆r12 r1→3∼ e−βεbreak+F ·r̂13∆r13 r2→3∼ e−βε23Barrier(tage)+F ·r̂23∆r23

Where F · r̂i j∆ri j is the applied force projected along the reaction coordinate between state i and state j161

multiplied by the projected distance along the reaction coordinate of the minimum.162

We can use this simple back of the envelop calculation to approximate the expected probability of163

ending up in State 3 within a time, tobserve and compare that to the probability of ending up in state 2164

within time tobserve. This ratio gives us a quantitative measure of where on the ductile-brittle spectrum we165

might expect to find a model system for given εST Z,εbreak,ε jNo,τmature, and F · r̂i j∆ri j.166

For the case of τmature→ 0, the time dynamics of the second term does away and we can just define
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this tractable matrix collecting all of our rates:

K ≡


−e−βεST Z+F − e−βεbreak+F e−βεST Z+F e−βεbreak+F

0 −e−βεbreak+F e−βεbreak+F

0 0 1


The measure of the ratio of trajectories which pass through state 2 to state 3 tells us something about

where this failure lies on the ductile-to-brittle spectrum. In the simplest one step, this looks like:

number of STZ
number of fracture

=
e−βεST Z

e−βεbreak

.167

In the first step the ductility of the flow-fracture material looks like something which is dependent168

upon only the energy barriers.169

But this doesn’t catch the intuition that the lifetime in the second state is also important for under-170

standing the material response at the threshold of failure. We can learn something about that by evolving171

the probabilities forward in time for a small period tobserve.172

After time tobserve the dynamics will have gone:

|P(t = tobserve〉= Ktobserve|P(t = 0)〉

To generalize taking this matrix to the tobserve power, we can find the transformation matrix which

diagonalizes it and then take the power of the diagonalized matrix sandwiched by the tranformation:

Ktobserve = SΛ
tobserveS−1

This equivalent to finding the normal modes of this kinetic matrix, and using the time evolution operator173

to advance forward.174
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Which we can then apply to our initial state:

|P(t = 0)〉=


1

0

0


We calculate our a template matrix raised to the power of n→ tobserve such that a→ e−βεST Z+F and

b→ a→ e−βεbreak+F


−a−b a b

0 −b b

0 0 1


n

=


(−a−b)n (−b)n− (−a−b)n (−b)n+1+b

b+1

0 (−b)n (−b)n+1+b
b+1

0 0 1


The outcome of this calculation will take the ratio of the probabilities of being in state 2 and that175

of state 3. For small values of this ratio, the system appears brittle and for large values of this ratio, the176

system appears more ductile. The pathway from state 1 to 3 will define it dissipation.177

The next step is to consider how a system with a finite maturation time behaves under force. This is178

trickier, but can be approximated in a couple ways. One of which is by adding a long chain of states which179

keep track of the age’s effect on the transition probability. For the purpose of this work, it is sufficient to180

play out the thought experiment: if the mean rate from 2 to 3 is greater then the material will behave in a181

more brittle manner with a finite observation time. This means that an order 1 maturation time will have182

the effect of driving the system to more brittle-like behavior.183

Clearly, this toy representation is an oversimplification of the rich spatio temporal dynamics of184

yielding. It neglects the coupling and facilitated dynamics whereby an STZ can initiate another STZ185

nearby coupled via the 2D shear transformation Green’s function16. It is also worth cautioning that this toy186

model is a configuration dependent oversimplification. There are many configuration dependent energies187

that can be calculated for different types of this problem (e.g. any of the energy functions suggested in the188

earlier paper are great candidates), but the point is that they are strongly local configuration dependent and189

thus that is what makes cell-resolved modeling important for understanding failure in these heterogenous190
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materials at wavelengths comparable to the constituent cell size.191

A final note is that the statistics show here assume that thermal-like (Boltzmann distributed) flucua-192

tions are driving these transitions. Since these flucuations are active in nature, other distributions may be193

better descriptions to understand the finer points.194

Despite its extreme simplicity, this second toy representation helps us communicate the central role195

between flow and fracture by making clear definitions, reasonable calculations and a playground for196

exploring the implication of input parameters on the position in the ductile to brittle spectrum of response.197
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Supplementary Information: Videos198

1. Video1.mov: Asexual reproduction by fission in Trichoplax adhaerens.199

Time-lapse quasi-dark field imaging of animals in lab culture conditions using a DSLR camera. A200

single animal ‘splits into two’ by a binary fission process in about one hour. Video playback is sped201

up, and time stamp represents hours and minutes. Scale bar: 3 mm.202

2. Video2.mov: Physiological tissue fractures in the ventral epithelium of Trichoplax adhaerens.203

Time-lapse quasi-dark field imaging of animals in lab culture conditions using a DSLR camera. The204

ventral epithelium sustains fracture holes which heal completely in about one hour. Video playback205

is sped up, and time stamp represents hours and minutes. Scale bar: 1 mm.206

3. Video3.mov: Physiological tissue fractures in the dorsal epithelium of Trichoplax adhaerens.207

Time-lapse quasi-dark field imaging of animals in lab culture conditions using a DSLR camera.208

The dorsal epithelium sustains fracture holes which grow in size and do not heal. These animals209

eventually become long string-like animals over about 7 hours. Video playback is sped up, and time210

stamp represents hours and minutes. Scale bar: 3 mm.211

4. Video4.mov: Ventral tissue fractures at a cellular resolution.212

Time-lapse confocal imaging of animals in an open dish configuration matching native culture213

conditions. The ventral epithelium is tagged with a fluorescent cell membrane dye (green), and a214

lysotracker dye (red) that labels acidic granules in lipophil cells. Videos are looped over 5 secs, and215

the time stamps on images represent minutes and seconds. Scale bar: 50 um.216

5. Video5.mov: Model results with steady pulling.217

We display the phase diagram from our heuristic tissue model, which explores a parameter sweep of218

steady force gradient versus the threshold strain for breaking cell-cell bonds. Next, we sequentially219

show simulations that demonstrate cases of elastic, ductile and brittle tissue properties — and their220

corresponding parameters on the phase diagram. The time stamps represent simulation units.221

6. Video6.mov: Model results with unsteady pulling.222
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We show simulations with unsteady pulling of the model tissue, and demonstrate how this captures223

both fractures and healing. The time stamps represent simulation units.224

7. Video7.mov: Tension force-induced brittle fracture in Trichoplax adhaerens.225

Time-lapse fluorescence microscopy imaging reveals a tensile force-induced fracture. The ventral226

epithelium is tagged using a lysotracker dye, which labels acidic granules in lipophil cells. Video227

playback is real time, and time stamp represents minutes and seconds. Scale bar: 0.5 mm.228

8. Video8.mov: Shear force-induced brittle fracture in Trichoplax adhaerens.229

Time-lapse fluorescence and bright field microscopy imaging reveals a shear force-induced fracture230

in the ventral epithelium. The dorsal epithelium is tagged using 0.5 um sticky, fluorescent micro-231

beads. A Particle Image Velocimetry (PIV) analysis is carried out to quantify the internal tissue232

velocity fields (highlighted by green arrows). Video playback is sped up, and time stamp represents233

minutes and seconds. Scale bar: 1 mm.234

9. Video9.mov: Non-affine motion analysis on experimental data.235

Time-lapse fluorescence and bright field microscopy imaging reveals a shear force-induced fracture236

in the ventral epithelium. The dorsal epithelium is tagged using 0.5 um sticky, fluorescent micro-237

beads. A Particle Tracking analysis is carried out to quantify the non-affine motion of the micro-238

beads (with magnitude highlighted by colors). Video playback is sped up, and time stamp represents239

minutes and seconds. Scale bar: 1 mm.240

10. Video10.mov: Correlation between non-affine motion and internal strain rate, in experimen-241

tal data.242

Time-lapse fluorescence and bright field microscopy imaging reveals a shear force-induced fracture243

in the ventral epithelium. The dorsal epithelium is tagged using 0.5 um sticky, fluorescent micro-244

beads. Larger values of non-affine motion are thresholded and overlayed (white dots) on contours245

(jet colorbar) of the internal strain rate calculated from the PIV analysis. Video playback is sped up,246

and time stamp represents minutes and seconds. Scale bar: 1 mm.247
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