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Abstract
Accurate manipulation of metabolites in the monolignol biosynthetic pathway is a key
step for controlling lignin content, structure, and other wood properties important to
the bioenergy and biomaterial industries. A crucial component of this strategy is
predicting how single and combinatorial knockdowns of monolignol specific gene
transcripts influence the abundance of monolignol proteins, which are the driving
mechanisms of monolignol biosynthesis. Computational models have been developed to
estimate protein abundances from transcript perturbations of monolignol specific genes.
The accuracy of these models, however, is hindered by the inability to capture indirect
regulatory influences on other pathway genes. Here, we examine the manifestation of
these indirect influences collectively on transgenic transcript and protein abundances,
identifying putative indirect regulatory influences that occur when one or more specific
monolignol pathway genes are perturbed. We created a computational model using
sparse maximum likelihood to estimate the resulting monolignol transcript and protein
abundances in transgenic Populus trichocarpa based on desired single or combinatorial
knockdowns of specific monolignol genes. Using in-silico simulations of this model and
root mean square error, we show that our model more accurately estimates transcript
and protein abundances in differentiating xylem tissue when individual and families of
monolignol genes were perturbed. This approach provides a useful computational tool
for exploring the cascaded impact of single and combinatorial modifications of
monolignol specific genes on lignin and other wood properties. Additionally, these
results can be used to guide future experiments to elucidate the mechanisms responsible
for the indirect influences.

Author summary
Engineering trees to have desirable lignin and wood traits is of significant interest to the
bioenergy and biomaterial industries. Genetically modifying the expression of the genes
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that drive the monolignol biosynthetic pathway is a useful method for obtaining new
traits. Modifying the expression of one gene affects not only the abundance of its
encoded protein, but can also indirectly impact the amount of other transcripts and
proteins. These proteins drive the monolignol biosynthetic pathway. Having an accurate
representation of their abundances is key to understanding how lignin and wood traits
are altered. We developed a computational model to estimate how the abundance of
monolignol transcripts and proteins are changed when one or more monolignol genes are
knocked down. Specifying only the abundances of the targeted genes as input, our
model estimates how the levels of the other, untargeted, transcripts and proteins are
altered. Our model captures indirect regulatory influences at the transcript and protein
levels observed in experimental data. The model is an important addition to current
models of lignin biosynthesis. By incorporating our approach into the existing models,
we expect to improve our ability to explore how new combinations of gene knockdowns
impact lignin and many other wood properties.

Introduction 1

Lignin is an important phenylpropanoid polymer that is embedded with cellulose and 2

hemicelluloses in plant secondary cell walls [1, 2]. It plays an important role in plant 3

physiology, defense, and adaptation by providing structural integrity, conducting water 4

through vascular tissues, and acting as a barrier to pests and pathogens [1, 3]. Lignin is 5

composed of three main sub-units, the p-hydroxyphenyl (H), guaiacyl (G), and syringyl 6

(S) monolignols. These monolignols define the composition and interunit linkages that 7

determine other characteristics of lignin [1, 2, 4]. How these monolignols are formed and 8

synthesized into lignin has been an important research area for more than five 9

decades [5]. Producing plants that have specific lignin phenotypes is of significant 10

interest in the bioenergy and biomaterial industries [6, 7]. 11

A key step to controlling lignin phenotypes is by precise manipulation of the 12

monolignol biosynthesis pathway. Genetic modifications are a useful method for 13

manipulating metabolic pathway behavior. These modifications alter transcript 14

production or abundance resulting in a change to the amount of proteins available to 15

catalyze key pathway reactions. It is not always intuitive how genetic modifications 16

propagate through biological systems culminating in changes to phenotypic traits. Many 17

approaches have been presented to understand phenotypic changes based on single 18

layers of biological information, such as GWAS [8,9]. However, biological systems 19

regulate themselves through diverse mechanisms including, transcriptional [10–12] and 20

post-transcriptional [10,13,14] regulation, and post-translational modifications [14–16] 21

among others. By improving our understanding of the factors that arise when knocking 22

down genes, we can better discern how metabolic pathway activity and phenotypic 23

responses change in response to knockdowns and other modifications. 24

Extensive study of the metabolic reactions associated with monolignol biosynthesis 25

in P. trichocarpa has resulted in a detailed mechanistic computational model of the 26

pathway, composed of 24 ordinary differential equations with 104 Michaelis-Menten and 27

103 inhibition kinetic parameters [17,18]. Wang et al. expanded their mechanistic 28

metabolic model of the monolignol pathway to incorporate information spanning the 29

genome, transcriptome, proteome, and 25 lignin and wood traits [4]. This multi-scale 30

model was used to help identify novel combinatorial genetic modifications that result in 31

desired lignin and wood characteristics such as increased saccharification efficiency 32

without negatively impacting plant growth. Wang et al., made the simplifying 33

assumption that the abundance of each protein was dependent only on the transcript 34

abundance of its monolignol gene. This simplification ignores possible epistatic 35

regulatory interactions that exist among the monolignol gene transcripts and proteins. 36
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Regulatory mechanisms can act at many different points in biological pathways. The 37

most commonly studied are transcriptional regulatory networks. Inferring and modeling 38

the relationships in these networks has been an area of significant interest [19–24]. 39

Temporal measurements of transcript abundance in response to stress or gene 40

perturbations are often used to identify and model these networks [21,23]. In the 41

absense of temporal data, variations in steady-state transcript abundance from multiple 42

gene perturbation experiments [25,26] or naturally occuring variations characterized 43

using eQTLs [27–29] have been used. Network structure and parameter estimation are 44

the two main components of modeling regulatory networks. These steps are often 45

combined using a regularization term to penalize model complexity during parameter 46

estimation [20]. Examples of these approaches include LASSO [27,30,31], LARS [32–34], 47

and sparse maximum likelihood [29]. 48

In addition to transcriptional regulation, post-transcriptional and post-translational 49

regulatory mechanisms relating to translation or protein degradation can play a critical 50

role in protein abundance [13,35,36]. Differences in expression of transcripts and 51

proteins suggesting such regulatory mechanisms have been found for genes encoding cell 52

wall proteins in Arabidopsis thaliana [37,38] and for genes involved in tobacco xylem cell 53

differentiation [39]. These mechanisms were also proposed to explain the poor 54

correlations between some of the monologinol gene transcripts and proteins in some 55

transgenic P. trichocarpa [4]. Having an accurate representation of the protein 56

abundance profile is important to assess how the metabolic pathway is driven. 57

Developing a computational model that captures the indirect regulatory influences 58

between monolignol genes at both the transcript and protein levels is important for 59

exploring how novel transgenic modifications impact lignin and wood characteristics. 60

In this paper we perform differential abundance analyses on the monolignol gene 61

transcript and protein abundances to further characterize epistatic influences on the 62

expression of the monolignol genes in differentiating xylem tissue of P. trichocarpa. We 63

then used the experimental transcript and protein abundance measurements [4] to 64

develop a model that describes the indirect relationships between the monolignol genes 65

as transcript to transcript, transcript to protein, protein to transcript, and protein to 66

protein influences. We used a sparse maximum likelihood estimator [29] to identify 67

potential key indirect regulatory influences between the monolignol gene transcripts and 68

proteins. Through in-silico simulations, our model more accurately estimates 69

monolignol transcript and protein abundances in transgenic plants where individual and 70

families of monolignol genes were knocked down than a model that does not incorporate 71

such regulatory influences. We identified and modeled apparent regulatory influences 72

among the PtrCAld5H, Ptr4CL, PtrPAL, PtrC3H3, PtrC4H, and PtrHCT gene families 73

and among the PtrHCT, Ptr4CL gene families and PtrCCoAOMT3, which manifest as 74

relationships between protein abundances but not the transcripts. Our model is able to 75

capture many of these putative epistatic influences between the monolignol transcripts 76

and proteins by specifying the abundance level of the targeted transcript as an input. 77

This model provides an important addition to the current computational lignin model, 78

allowing for the further exploration of the cascaded impact of genetic modifications on 79

the content, composition, and interunit structure of lignin and its related wood 80

properties. The identified relationships can also be used to further investigate the 81

specific regulatory mechanisms that govern monolignol gene expression. 82
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Fig 1. Monolignol gene transcript and protein differential abundance. (A)
PtrC3H3, PtrC4H1 and PtrC4H2 knockdown experiments (Construct i69). (B)
PtrCAld5H1 and PtrCAld5H2 knockdown experiments (Construct i29). (C) PtrCAD1
and PtrCAD2 knockdown experiments (Construct i35). (D) Ptr4CL3 and Ptr4CL5
knockdown experiments (Construct i15). (E) PtrCCoAOMT3 knockdown experiments
(Construct i21). Gray boxes are due to missing data. Rows are the monolignol gene
names, with the targeted genes for each experiment in purple. Columns are the
experimental lines. ∗ indicates padj<0.05.

Results 83

Data description 84

Wang et al. [4] performed a series of systematic transgenic experiments that knocked 85

down each of the 21 lignin specific genes and their gene families in the model tree P. 86

trichocarpa. The absolute transcript abundances were measured using RNAseq, and the 87

absolute protein abundances were obtained using protein cleavage coupled with isotope 88

dilution mass spectrometry (PC-IDMS) [40]. Multiple independent lines were grown for 89

each transgenic construct. Usually three of those lines were selected to show the effects 90

of a range in the level of the targeted knockdown gene expression, providing an 91

indication of the complexity of putative interactions as responses can be linear or 92

nonlinear. For each line, up to three biological replicates were collected after six months 93

of growth, resulting in 207 transgenic measurement profiles and 18 wildtype 94

measurement profiles. Due to limited greenhouse space, these experiments were grown 95

in six batches. To account for batch effects on the data, Wang et al. normalized the 96

data to the wildtype mean in each batch [4]. Additionally, the PC-IDMS approach for 97

quantifying protein abundance was not able to differentiate between the PtrPAL4 and 98

PtrPAL5 proteins because of the near identity of these proteins [40]. The transcript and 99

protein abundances for PtrPAL4 and PtrPAL5 were combined into one, which we refer 100

to as PtrPAL4/5. 101

Differential abundance analysis 102

To further examine the influence of targeted knockdowns on other non-targeted genes, 103

we performed a differential abundance analysis on both the transcripts and protein data. 104

Fig 1 contains heatmaps showing the results for five of the knockdown experiments: 105

construct i69, which targeted PtrC3H3, PtrC4H1, and PtrC4H2 (Fig 1A); construct i29, 106

which targeted PtrCAld5H1 and PtrCAld5H2 (Fig 1B); construct i35, which targeted 107

PtrCAD1 and PtrCAD2 (Fig 1C); construct i15, which targeted Ptr4CL3 and Ptr4CL5 108

(Fig 1D); and construct i21, which targeted PtrCCoAOMT3 (Fig 1E). Heatmaps for the 109

remaining transgenics can be found in Supplemental Figs S1-S4. Each column 110

represents a different line of that experiment, with each line containing up to 3 111

replicates. The rows indicate the monolignol specific gene name with the purple names 112

indicating the gene(s) that were knocked down. The colorscale of these heatmaps 113

corresponds to the log fold change (logFC) from their wildtype. Red represents a 114

negative fold change, i.e., a decrease in expression, and green corresponds to a positive 115

fold change or an increase in expression. Gray boxes represent missing data. Changes in 116

abundance that had a p-value adjusted for multiple comparisons less than 0.05 are 117

considered statistically significant and are indicated with an asterisk. 118

We see significant changes in abundance in several of the untargeted monolignol 119

genes. This indicates that there are cross-influences among the targeted monolignol 120

genes impacting the abundances of untargeted monolignol transcripts and proteins. 121

Collectively examining the responses of both the monolignol gene transcripts and 122
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proteins provides insight to the regulatory influences between the monolignol genes that 123

would not be detected by just examining the transcripts. While we observe some 124

instances of the same differential abundance patterns in the transcripts and proteins, 125

suggesting transcriptional regulation, we also observe several cases where only a 126

monolignol gene’s transcript or its protein abundance is significantly altered. This 127

suggests the presence of post-transcriptional or post-translational regulation. 128

In the PtrC3H3, PtrC4H1, and PtrC4H2 knockdown experiments we observe 129

significant increases in the abundances of the Ptr4CL, PtrHCT, and PtrPAL proteins 130

and significant decreases in the PtrCAld5H proteins (Fig 1A). However, their 131

corresponding transcript abundances, with the exception of some of the PtrPAL 132

transcripts, are not found to be differentially expressed. Similarly, in the PtrCAld5H1 133

and PtrCAld5H2 knockdown experiments we observe significant increases in the 134

abundances of the PtrHCT and PtrC3H3 proteins that are not observed in the 135

transcript data (Fig 1B). In the PtrCAD1 and PtrCAD2 knockdown experiments 136

(Fig 1C), we observe a decrease in the abundance of both the transcripts and proteins of 137

PtrCAld5H1 and PtrCAld5H2, as well as most of the other monolignol transcripts. 138

Despite this, many of the proteins are not significantly different from their wildtype 139

levels. This could be explained by the same behavior as in the PtrCAld5H1 and 140

PtrCAld5H2 knockdowns and PtrC3H3, PtrC4H1, and PtrC4H2 knockdown 141

experiments where we also observed an increase in several of the protein abundances. 142

The increase we observe in the proteins in those two knockdowns could lead to wildtype 143

levels in the PtrCAD1 and PtrCAD2 knockdown experiments because the transcript 144

abundances are significantly decreased. This behavior is seen to a lesser degree in the 145

experimental line that had the largest decrease in the Ptr4CL3 and Ptr4CL5 transcripts 146

and proteins. Additionally, we do not observe this behavior in the Ptr4CL3 and 147

Ptr4CL5 knockdown experiments (Fig 1D), suggesting that large knockdowns of the 148

Ptr4CL gene family may trump other regulatory influences. 149

In the Ptr4CL3 and Ptr4CL5 transgenics (Fig 1D), we observe significant decreases 150

in abundance of both the transcripts and proteins of PtrCAld5H1 and PtrCAld5H2 and 151

an increase in the PtrCAD2 abundances across multiple transgenic lines. Significant 152

decreases in abundance are also observed in the PtrHCT1, PtrHCT6, and 153

PtrCCoAOMT3 proteins in multiple lines. Similar behavior is seen in the transgenics 154

that individually knocked down Ptr4CL3 (Fig S4A) and Ptr4CL5 (Fig S4B), with 155

significant decreases observed in the PtrHCT1, PtrHCT6, PtrCCoAOMT3, and 156

PtrCAD1 proteins. The PtrHCT1, PtrHCT6, Ptr4CL3, and PtrCAD1 proteins are also 157

significantly decreased in the PtrCCoAOMT3 transgenics (Fig 1E). There are multiple 158

transgenics where one line showed significant changes in all or almost all of the 159

monolignol transcripts and proteins, but not in the other lines for the same transgenic 160

such as i35-7 (Fig 1C), i15-3 (Fig 1D), i19-7 (Fig S3F), and a13-6 (Fig S4B). This 161

behavior could be due to a nonlinear response to a change in the abundance of one or 162

more of the monolignol transcripts and proteins. 163

Some of the observed indirect effects occur within gene families, such as in the 164

PtrPAL knockdowns (Figs S1A-D), the PtrCCoAOMT1 knockdowns (Fig S3C), the 165

PtrCAld5H1 and PtrCAld5H2 single knockdowns (Figs S3D and E), and in the 166

Ptr4CL3 and Ptr4CL5 single knockdowns (Figs S4A and B). These indirect effects 167

within gene families could be due to sequence relationships with the targeted gene 168

instead of regulatory mechanisms. 169

Capturing the effect of these indirect regulatory influences is necessary to effectively 170

estimate the resulting protein levels that are responsible for driving monolignol 171

biosynthesis. Further, it is necesarry to capture the indirect effects that affect the 172

transcripts and the indirect effects on the proteins separately. 173
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Fig 2. Diagram of transcript-protein models. (A) Diagram describing our model
which includes positive (green arrows) and negative (red arrows) influences among the
monolignol transcripts and proteins defined by B (Eq. (3)). Using only targeted input
abundances (yellow), the other untargeted monolignol transcripts and proteins are
predicted (red) (B) In the old model only the one-to-one relationships from a
monolignol transcript to its protein were included. In scenario 1, only the targeted
monolignol transcripts were used as input abundances (yellow), the untargeted
transcripts remained at wildtype levels (gray) and the protein abundances were
predicted (red). In scenario 2, all of the monolignol transcript abundances were used as
input (yellow) to predict (red) the monolignol protein abundances.

Computational model 174

We developed a computational model that describes the observed cross-talk or 175

interactions among the monolignol genes by representing each monolignol transcript and 176

protein as a linear combination of the other monolignol transcripts and proteins. This 177

formulation allows us to describe the indirect cross-influences as transcript to transcript 178

and protein to transcript influences to represent influences impacting transcription, and 179

transcript to protein and protein to protein influences to represent the indirect 180

influences affecting the protein abundances. We estimated the weights of the 181

connections that make up these linear combinations using a sparse maximum likelihood 182

algorithm and the mean abundances from the experimental lines (see Methods and S1 183

Text). Using this model, we simulated the response of the untargeted monolignol gene 184

transcripts and proteins based on the desired transcript abundance of a targeted 185

monolignol gene or gene family (Fig 2A). We compare our model with the model from 186

Wang et al. [4] which assumed that all of the protein abundances were proportional to 187

their transcript levels (Fig 2B). We compare our model to two specific scenarios of this 188

old model: scenario 1, where the desired targeted transcript levels are specified and the 189

untargeted transcripts remain at wildtype levels, and scenario 2 where the full 190

transcript profile is specified. We estimate the untargeted monolignol transcript and 191

protein abundances using our model and both scenarios of the old model for single gene 192

and gene family knockdowns corresponding to the transgenic experiments [4]. When 193

exploring novel combinatorial knockdowns, however, where complete transcript profiles 194

are unknown, scenario 2 cannot be simulated. We refer to the transcript of a gene as 195

tGENE and the protein of a gene as pGENE in the following sections. 196

We performed a 10x10-fold cross-validation resulting in 100 training and testing 197

folds. The proposed model and the old model were trained on each of the 100 training 198

folds. For each of the trained models, the knockdown experiments in the training fold 199

and corresponding testing fold were emulated following the model estimation procedure 200

(see Methods) for our model, and following scenario 1 for the old model. In each of 201

these emulated experiments, the trained models estimated the untargeted monolignol 202

gene transcripts and proteins. Fig 3 shows boxplots of the resulting root mean square 203

errors (RMSE) of the estimated abundances across the 100 training (Fig 3A and 3C) 204

and 100 testing folds (Fig 3B and 3D) for both our proposed model and the old model 205

(Fig 2A and B - scenario 1). We performed a t-test to compare the distributions of the 206

RMSEs from the new model and the old model for each monolignol transcript and 207

protein. The x-axis labels with an asterisk had a significant difference (p<0.05) in the 208

means of the distributions from the new model (red) and scenario 1 of the old model 209

(yellow). We see that all of the training sets were shown to have a significant difference 210

(Figs 3A and 3C) while in the testing sets, 14 out of 20 of the transcripts and 11 out of 211

20 of the proteins were shown to have a significant difference (Figs 3B and 3D). In each 212

of the significant cases, the distributions from the new model have a lower mean RMSE. 213
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Fig 3. Boxplots of the RMSEs from the 10x10-fold cross-validation. Central
marks indicate the medians and the bottom and top edges of each box indicate the 25th
and 75th percentiles respectively. For these plots we normalized the RMSE for each
monolignol transcript and protein by their corresponding standard deviations estimated
from the wildtype experiments. This normalization allows each of the monolignol
transcripts and proteins to be viewed on similar scales. Since the RMSEs from both
models are scaled the same, this does not alter the interpretation of the results. Red
boxes are from our new model, and the yellow boxes are from the old model. (A)
Transcripts: training folds. (B) Transcripts: testing folds. (C) Proteins: training folds.
(D) Proteins: testing folds.

Fig 4. Heatmaps of the relationships in the transcript-protein models. (A)
Heatmap of the edge matrix B (Eq 3) solved using a sparse maximum likelihood
estimator. Green for positive influence, red for negative influence. Edges are from
columns to rows (e.g., the first row shows edges tPAL3 → tPAL1, tCCR2 → tPAL1,
tHCT6 → tPAL1, pC3H3 → tPAL1, pCAD2 → tPAL1, pCAld5H2 → tPAL1, and
pCCoAOMT3 → tPAL1). There were 295 edges detected out of a possible 1540 (19.16%
sparse). (B) The corresponding heatmap for the relationships considered in the old
model (ti → pi).

These cross-validation results show that our model performs as well or better than the 214

scenario 1 of the old model. 215

Fig 4A shows a heatmap of the relationships identified in our model (B in Eq 3) 216

when trained on the means from all of the experimental lines. Green represents a 217

positive influence, and red represents a negative influence. Each column represents the 218

transcript or protein that is the source of an influence, and the row represents the 219

transcript or protein that is being influenced. The top left quadrant contains the 220

transcript to transcript influences, the top right quadrant contains the protein to 221

transcript influences, the bottom left quadrant contains the transcript to protein 222

influences, and the bottom right quadrant contains the protein to protein influences. 223

There were 295 relationships detected out of a possible 1540 (19.16% sparse). The full 224

set of relationships and their weights for our model can be found in Table S1. For 225

comparison, Fig 4B shows the equivalent representation of the old model, which just 226

contains the ti → pi relationships. As expected, a positive influence was detected for 227

each transcript to its associated protein (ti → pi). The transcript to transcript and 228

protein to protein influences make up the majority of the remaining influences 229

estimated. There are not many protein to transcript influences detected, suggesting that 230

protein abundances that are altered due to post-transcriptional or post-translational 231

mechanisms may not result in changes at the transcriptional level that you would see 232

with a targeted knockdown of that gene. Such as when the abundance of pCAD1 is 233

decreased in the PtrCCoAOMT3 (Fig 1E), Ptr4CL3 (Fig S4A), or Ptr4CL5 (Fig S4B) 234

knockdowns, but the changes in transcript abundance that occur when PtrCAD1 is 235

knocked down (Fig 1C, Fig S2C) are not observed. 236

To further evaluate how well our model captures these cross-influences affecting the 237

monolignol transcript and protein abundances, we used our model and scenarios 1 and 2 238

of the old model to emulate the five transgenic experiments from our differential 239

abundance analysis. For each of the five targeted experiments, we further described the 240

results from the models for a subset of the untargeted monolignol genes that had a 241

significant change in the abundance of their transcripts, proteins, or both in the 242

differential abundance analysis. 243
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Fig 5. Experimental and estimated abundances of untargeted monolignol
gene transcripts and proteins under PtrC3H3, PtrC4H1, and PtrC4H2
knockdowns. (A) Diagram showing targeted monolignol gene transcripts (purple), the
transcripts and proteins that were found to have a significant change in abundance in at
least one of the experimental lines (∗). (B) Level of knockdown of the targeted gene
transcripts across the experimental lines. Experimental and estimated untargeted
monolignol gene transcript and protein abundances for (C) t4CL5, (D) p4CL5, (E)
tCAld5H2, (F) pCAld5H2, (G) tHCT1, and (H) pHCT1.

PtrC3H3, PtrC4H1, and PtrC4H2 knockdowns 244

Three experimental lines were analyzed where PtrC3H3, PtrC4H1, and PtrC4H2 were 245

knocked down (Fig 5). From the differential abundance analysis, there were 5 246

transcripts and 11 proteins of the untargeted genes that had a significant change in 247

abundance in at least one of the experimental lines, which are signified by an asterisk 248

(Figs 1A, 5A). We include significant changes that occur in at least one of the lines 249

since each line represents a different amount of knockdown of the targeted genes. We 250

selected Ptr4CL5, PtrCAld5H2, and PtrHCT1 transcripts and proteins to compare the 251

simulated results from our model with scenarios 1 and 2 of the old model. Fig 5B shows 252

the levels of knockdown for each of the three lines for the PtrC3H3, PtrC4H1, and 253

PtrC4H2 transcripts. The knockdowns range from ∼65% to ∼10% of wildtype levels for 254

tC3H3 and tC4H1, and ∼110% to ∼25% of wildtype levels for tC4H2. These tC3H3, 255

tC4H1, and tC4H2 abundances were used to emulate these knockdown experiments in 256

our model and scenario 1 of the old model. For scenario 2 of the old model, 257

measurements from all of the monolignol transcripts were used. 258

A slight decrease to ∼80% average wildtype levels was experimentally measured for 259

t4CL5 (Fig 5C), but an increase up to ∼250% was measured for p4CL5 (Fig 5D). Our 260

model captured this behavior, estimating a decrease in t4CL5 to ∼80% of wildtype but 261

an increase in p4CL5 to ∼175% of wildtype levels. Neither scenario of the old model 262

captured the increase in p4CL5, with scenario 2 estimating a small decrease in p4CL5 263

to ∼80% corresponding to the decrease measured in t4CL5. 264

No change from wildtype levels was experimentally measured for tCAld5H2 (Fig 5E). 265

For pCAld5H2 a decrease to ∼70% of wildtype levels was experimentally measured 266

(Fig 5F). For both tCAld5H2 and pCAld5H2, our model over-estimated a decrease in 267

the abundances to ∼70% of wildtype for tCAld5H2 and ∼45% of wildtype for 268

pCAld5H2. While scenario 2 of the old model did not estimate any change in the 269

abundance of pCAld5H2. 270

For all three lines, the measured abundances for tHCT1 remain around wildtype 271

levels (Fig 5G) while an increase in pHCT1 is experimentally measured ranging up to 272

∼180% of wildtype levels (Fig 5H). Our model estimated wildtype level abundances for 273

tHCT1, and an increase up to ∼150% of wildtype levels for pHCT1, which are 274

consistent with the experimentally measured values. Because there was no change in the 275

experimental transcript abundances, scenario 2 of the old model incorrectly estimates 276

no change in the abundance of pHCT1. 277

Neither scenario of the old model captured the increase in the Ptr4CL5 and 278

PtrHCT1 proteins or the decrease in the PtrCAld5H2 protein. Alternatively, our new 279

model successfully estimated these changes in the three proteins, estimated the decrease 280

in t4CL5 and estimated tHCT1 to remain around wildtype levels. It did, however, 281

predict a slight decrease in tCAld5H2 abundance, which was not observed 282

experimentally. 283
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Fig 6. Experimental and estimated abundances of untargeted monolignol
gene transcripts and proteins under PtrCAld5H1 and PtrCAld5H2
knockdowns. (A) Diagram showing targeted monolignol gene transcripts (purple), the
transcripts and proteins that were found to have a significant change in abundance in at
least one of the experimental lines (∗). (B) Level of knockdown of the targeted gene
transcripts across the experimental lines. Experimental and estimated untargeted
monolignol gene transcript and protein abundances for (C) tPAL2, (D) pPAL2, (E)
tC3H3, (F) pC3H3, (G) tHCT6, and (H) pHCT6.

PtrCAld5H1 and PtrCAld5H2 knockdowns 284

Three experimental lines were analyzed where PtrCAld5H1 and PtrCAld5H2 were 285

targeted, knocking them down to values seen in experimental constructs (Fig 6). From 286

the differential abundance analysis, there were 3 transcripts and 4 proteins of 287

untargeted genes that showed significant changes in abundance in at least one of the 288

experimental lines (Figs 1B, 6A). From these, we selected the PtrPAL2, PtrC3H3, and 289

PtrHCT6 transcripts and proteins to compare the simulated results from our model 290

with scenarios 1 and 2 of the old model. Fig 6B shows the levels of knockdown, ranging 291

from ∼80% to ∼20% of wildtype levels, for each of the three lines for the PtrCAld5H1 292

and PtrCAld5H2 transcripts. These tCAld5H1 and tCAld5H2 abundances were used to 293

emulate these knockdown experiments in our model and scenario 1 of the old model. 294

For scenario 2 of the old model, measurements from all of the monolignol transcripts 295

were used. 296

Increases up to ∼150% of wildtype levels and ∼200% of wildtype levels were 297

experimentally measured for tPAL2 (Fig 6C) and pPAL2 (Fig 6D) respectively. Our 298

model estimated increases in abundance up to ∼140% of wildtype levels for tPAL2 and 299

∼185% of wildtype levels for pPAL2, which are consistent with the experimentally 300

measured abundances. Scenario 2 of the old model was also consistent with the 301

experimentally measured pPAL2 abundances, estimating an increase up to ∼175% of 302

wildtype levels. 303

Our model estimated wildtype level abundances for tC3H3 which is consistent with 304

the experimentally measured abundances (Fig 6E). For pC3H3 an increase up to ∼210% 305

of wildtype levels was experimentally measured (Fig 6)F. Our model was consistent 306

with these results, estimating an increase up to ∼200% of wildtype levels. Scenario 2 of 307

the old model, however, was not consistent with the experimental measurements, and 308

estimated wildtype levels for pC3H3. 309

Our model estimated wildtype level abundances for tHCT6 which is consistent with 310

the experimentally measured abundances (Fig 6G). For pHCT6 an increase up to 311

∼280% of wildtype levels was experimentally measured (Fig 6H). Our model was 312

consistent with these results, estimating an increase up to ∼265% of wildtype levels. 313

Scenario 2 of the old model did not capture this increase in pHCT6, estimating wildtype 314

levels for all three lines. 315

Overall, our model captured the increase from wildtype in all three of the proteins, 316

while neither scenario of the old model captured the increase in pC3H3 and pHCT6. 317

Scenario 2 of the old model estimated the increase in pPAL2 similar to the estimates 318

from our model. The estimates from our model were consistent with the experimental 319

tC3H3 and tHCT6 which were measured to remain around wildtype levels, and the 320

measured increase in tPAL2. 321
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Fig 7. Experimental and estimated abundances of untargeted monolignol
gene transcripts and proteins under PtrCAD1 and PtrCAD2 knockdowns.
(A) Diagram showing targeted monolignol gene transcripts (purple), the transcripts and
proteins that were found to have a significant change in abundance in at least one of the
experimental lines (∗). (B) Level of knockdown of the targeted gene transcripts across
the experimental lines. Experimental and estimated untargeted monolignol gene
transcript and protein abundances for (C) t4CL3, (D) p4CL3, (E) tC4H1, (F) pC4H1,
(G) tCAld5H1, and (H) pCAld5H1.

PtrCAD1 and PtrCAD2 knockdowns 322

Three experimental lines were analyzed where PtrCAD1 and PtrCAD2 were knocked 323

down (Fig 7). From the differential abundance analysis, there were 18 transcripts and 324

12 proteins of untargeted genes that showed significant changes in abundance in at least 325

one of the experimental lines (Figs 1C, 7A). We selected the Ptr4CL3, PtrC4H1, and 326

PtrCAld5H1 transcripts and proteins to compare the simulated results from our model 327

with scenarios 1 and 2 of the old model. Fig 7B shows the amount that tCAD1 and 328

tCAD2 were knocked down in the three experimental lines. For all three of these lines, 329

tCAD1 was knocked down to ∼5% of wildtype levels while tCAD2 ranged from no 330

change from wildtype to ∼25% of wildtype. These tCAD1 and tCAD2 abundances were 331

used to emulate these knockdown experiments in our model and scenario 1 of the old 332

model. For scenario 2 of the old model, measurements from all of the monolignol 333

transcripts were used. 334

t4CL3 was experimentally measured in the range of ∼80% to ∼15% of wildtype 335

levels (Fig 7C) and p4CL3 was experimentally measured in the range of ∼85% to ∼5% 336

of wildtype levels (Fig 7D). Our model estimated a decrease to ∼40% of wildtype levels 337

for t4CL3 and a decrease to ∼50% of wildtype levels for p4CL3 for all three lines, 338

roughly consistent with the experimental measurements, though they do not capture the 339

variation across the three lines. Scenario 2 of the old model estimated abundances of 340

p4CL3 ranging from ∼90% to ∼15% of wildtype which is also consistent with the 341

experimentally measured abundances. 342

For tC4H1 a decrease in abundance was experimentally measured ranging from 343

∼85% to ∼50% of wildtype levels (Fig 7E). A decrease in pC4H1 was experimentally 344

measured ranging from ∼100% to ∼40% of wildtype levels (Fig 7F). Our model 345

estimated a decrease to ∼60% of wildtype levels for tC4H1 and a decrease to ∼70% of 346

wildtype levels for pC4H1 for all three lines, roughly consistent with the experimental 347

measurements, though again, they do not capture the variation across the three lines. 348

Scenario 2 of the old model estimated a decrease in the abundances of pC4H1 ranging 349

from ∼80% to ∼50% of wildtype levels which are also consistent with the 350

experimentally measured abundances. 351

A decrease in the abundance tCAld5H1 was experimentally measured ranging from 352

∼60% to ∼20% of wildtype levels (Fig 7G), and a decrease in pCAld5H1 was 353

experimentally measured ranging from ∼50% to ∼15% of wildtype levels (Fig 7H). Our 354

model estimated a decrease to ∼45% of wildtype levels for tCAld5H1 and a decrease to 355

∼40% of wildtype levels for pCAld5H1 for all three lines, consistent with the 356

experimental measurements. Scenario 2 of the old model estimated decreases in 357

pCAld5H1 ranging from ∼55% to ∼20% of wildtype levels, also consistent with the 358

experimentally measured abundances. 359

Overall, scenario 2 of the old model did the best at estimating all three of the 360

proteins because the decrease was captured in the transcript abundances. However, our 361

model still captured the decrease from wildtype in both the transcripts and proteins 362

despite only using the PtrCAD1 and PtrCAD2 transcript abundances as inputs to the 363
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Fig 8. Experimental and estimated abundances of untargeted monolignol
gene transcripts and proteins under Ptr4CL3 and Ptr4CL5 knockdowns.
(A) Diagram showing targeted monolignol gene transcripts (purple), the transcripts and
proteins that were found to have a significant change in abundance in at least one of the
experimental lines (∗). (B) Level of knockdown of the targeted gene transcripts across
the experimental lines. Experimental and estimated untargeted monolignol gene
transcript and protein abundances for (C) tCAld5H2, (D) pCAld5H2, (E) tCCoAOMT3,
(F) pCCoAOMT3, (G) tHCT1, and (H) pHCT1.

model. The estimates from our model for the transcripts and proteins are very similar 364

across the three experimental lines. This is due to the sparse maximum likelihood 365

algorithm identifying PtrCAD1, which was knocked down similarly for all three lines, as 366

a stronger influence on the other transcripts and proteins than PtrCAD2. 367

Ptr4CL3 and Ptr4CL5 knockdowns 368

Three experimental lines were analyzed where Ptr4CL3 and Ptr4CL5 were knocked 369

down (Fig 8). The differential abundance analysis identified 18 transcripts and 18 370

proteins of untargeted monolignol genes that showed significant changes in abundance 371

in at least one of the experimental lines (Figs 1D, 8A). We selected the PtrCAld5H2, 372

PtrCCoAOMT3, and PtrHCT1 transcripts and proteins to compare the simulated 373

results from our model with scenarios 1 and 2 of the old model. Fig 8B shows the 374

different levels that t4CL3 and t4CL5 were knocked down for the three experimental 375

lines. For all three of the lines, the transcripts were knocked down to around the same 376

levels, ∼5%-10% of wildtype levels. These t4CL3 and t4CL5 abundances were used to 377

emulate these knockdown experiments in our model and scenario 1 of the old model. 378

For scenario 2 of the old model, measurements from all of the monolignol transcripts 379

were used. 380

A decrease in abundance was experimentally measured in all three lines of tCAld5H2 381

ranging from ∼50% to ∼10% of wildtype levels (Fig 8C), and in pCAld5H2 ranging 382

from ∼30% to ∼10% of wildtype levels (Fig 8D). Our model estimated a decrease to 383

∼55% of wildtype levels for both tCAld5H2 and pCAld5H2 for all three lines. The 384

decrease from wildtype in the estimated abundances is consistent with the experimental 385

measurements, though the estimates from our model are not as low as the experimental 386

values. Scenario 2 of the old model estimated a decrease in pCAld5H2 ranging from 387

∼40% to ∼10% of wildtype levels which is consistent with the experimentally measured 388

abundances. 389

There was a large amount of variation in the experimentally measured tCCoAOMT3 390

abundances across the three lines, ranging from an average of ∼150% of wildtype to 391

∼45% of wildtype levels (Fig 8E). For pCCoAOMT3 a decrease in abundance was 392

measured ranging from ∼55% to ∼10% of wildtype levels (Fig 8F). Our model 393

estimated wildtype levels for tCCoAOMT3 and a decrease to ∼55% of wildtype levels 394

for pCCoAOMT3, consistent with the experimentally measured pCCoAOMT3. Due to 395

the wide range in the measured transcript abundances, scenario 2 of the old model 396

estimates protein abundances ranging from ∼130% of wildtype to ∼40% of wildtype 397

levels. The estimates from scenario 2 of the old model for line i15-03 are consistent with 398

the experimental measurements from that line, but its estimates from the other two 399

lines, i15-02 and i15-01, are not consistent with the experimental measurements. 400

For two of the experimental lines, i15-02 and i15-01, tHCT1 was experimentally 401

measured to be around wildtype levels. For the third line, i15-03, a decrease to ∼25% of 402

wildtype levels was measured (Fig 8G). However, a decrease in abundance was 403

experimentally measured for pHCT1 in all three lines to ∼30% of wildtype levels for 404
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Fig 9. Experimental and estimated abundances of untargeted monolignol
gene transcripts and proteins under PtrCCoAOMT3 knockdowns. (A)
Diagram showing targeted monolignol gene transcripts (purple), the transcripts and
proteins that were found to have a significant change in abundance in at least one of the
experimental lines (∗). (B) Level of knockdown of the targeted gene transcripts across
the experimental lines. Experimental and estimated untargeted monolignol gene
transcript and protein abundances for (C) t4CL3, (D) p4CL3, (E) tCAD1, (F) pCAD1,
(G) tHCT1, and (H) pHCT1.

lines i15-02 and i15-01 and to ∼10% of wildtype levels for line i15-03 (Fig 8H). Our 405

model estimated a slight decrease in tHCT1 to ∼80% of wildtype levels for all three 406

lines, and a decrease in pHCT1 to ∼40% of wildtype levels in all three lines. The 407

estimates for tHCT1 are roughly consistent with the experimental measurements for 408

lines i15-02 and i15-01, but not for i15-03 which was much lower. The estimates for 409

pHCT1 are consistent with the experimentally measured abundances for pHCT1 for all 410

three lines. Because a decrease in tHCT1 abundance was only measured in line i15-03, 411

scenario 2 of the old model estimated a decrease in pHCT1 only for that line, to ∼20% 412

of wildtype levels, consistent with the experimental measurements for that line. 413

However, for the other two lines i15-02 and i15-01, scenario 2 of the old model estimated 414

wildtype levels which are not consistent with the experimentally measured abundances 415

from those two lines. 416

Scenario 2 of the old model did the best at estimating the PtrCAld5H2 protein, but 417

only estimated a decrease in the PtrCCoAOMT3 and PtrHCT1 proteins for the third 418

line, i15-03. Our model, however, estimated a decrease in the abundances of all three 419

proteins for all three of the lines. Our model also captured the decrease in tCAld5H2, 420

and its estimates for tCCoAOMT3 and tHCT1 are reasonable considering the range of 421

the measured abundances across the three lines. 422

PtrCCoAOMT3 knockdowns 423

Three experimental lines were analyzed where PtrCCoAOMT3 was knocked down 424

(Fig 9). The differential abundance analysis identified 3 transcripts and 16 proteins of 425

untargeted monolignol genes that had significant changes in abundance in at least one 426

of the experimental lines (Figs 1E, 9A). We selected the Ptr4CL3, PtrCAD1, and 427

PtrHCT1 transcripts and proteins to compare the simulated results from our model 428

with scenarios 1 and 2 of the old model. Fig 9B shows the range that tCCoAOMT3 was 429

knocked down over the 3 experimental lines. In the first line, i21-03, tCCoAOMT3 was 430

not knocked down from wildtype. In the other two lines it was knocked down to ∼20% 431

of wildtype levels. These tCCoAOMT3 abundances were used to emulate these 432

knockdown experiments in our model and scenario 1 of the old model. For scenario 2 of 433

the old model, measurements from all of the monolignol transcripts were used. 434

A decrease in abundance was experimentally measured for t4CL3 ranging from 435

wildtype levels to ∼40% of wildtype levels (Fig 9C). However there is a large amount of 436

variation between replicates, especially for lines i21-06 and i21-08. Our model did not 437

estimate any change from wildtype levels for all three lines. A decrease in p4CL3 was 438

experimentally measured ranging from ∼35% to ∼20% of wildtype levels (Fig 9D). Our 439

model only estimated a decrease to ∼75% of wildtype levels and scenario 2 of the old 440

model estimated a decrease ranging from no change from wildtype to ∼50% of wildtype, 441

neither of which are very consistent with the decrease that was experimentally 442

measured. 443

A decrease in abundance was experimentally measured for tCAD1 ranging from 444

wildtype levels to ∼60% of wildtype levels (Fig 9E). However there is, again, a large 445
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amount of variation between replicates, especially for lines i21-06 and i21-08. Our model 446

did not estimate any change from wildtype levels for all three lines. A decrease in 447

pCAD1 was experimentally measured ranging from ∼45% to ∼25% of wildtype levels 448

(Fig 9F). For the two lines where tCCoAOMT3 was decreased, i21-06 and i21-08, our 449

model estimated a decrease in pCAD1 to ∼55% of wildtype levels, consistent with the 450

expermental values. For the same lines, scenario 2 of the old model estimated a decrease 451

in pCAD1 ranging from ∼75% to ∼55% of wildtype levels. 452

A decrease in abundance was experimentally measured for tHCT1 ranging from 453

∼120% to ∼50% of wildtype levels (Fig 9G). Again, there is a large amount of variation 454

between replicates, especially for lines i21-06 and i21-08. Our model did not estimate 455

any change from wildtype levels for tHCT1 for all three lines. A decrease in pHCT1 was 456

experimentally measured ranging from ∼45% to ∼15% of wildtype levels (Fig 9H). Our 457

model did not estimate any change from wildtype levels for all three lines, while 458

estimates from scenario 2 of the old model ranged from ∼120% to ∼50% of wildtype 459

levels, neither of which are very consistent with the decrease that was experimentally 460

measured. 461

Overall, neither our model, nor the old model, did a good job at estimating the 462

experimentally observed changes for the Ptr4CL3 and PtrHCT1 transcripts and 463

proteins. However, our model was able to better capture the decrease in pCAD1 than 464

scenario 2 of the old model. 465

Discussion 466

Significant work has been done in recent years to understand the transcriptional 467

regulation of monolignol biosynthesis and wood formation [12,41,42]. Chen et al., [12] 468

recently constructed a heirarchical transcriptional regulatory network for wood 469

formation in P. trichocarpa. They identified 7 transcription factors (TFs) that regulated 470

10 of the monolignol specific genes: PtrPAL2, PtrCCoAOMT1, PtrCCoAOMT2, 471

PtrCAld5H1, PtrCAld5H2, PtrAldOMT2, PtrCAD1, PtrHCT1, PtrHCT6, and 472

PtrC4H1 [12]. In the PtrCAD1 and PtrCAD2 transgenics (Fig 1C) we found these 10 473

transcripts, among others, to be differentially expressed. Many of the TFs that Chen et 474

al., identified as regulators of these genes were also found to be differentially expressed 475

in these transgenics (Fig S5), further supporting that the cross-influences impacting the 476

abundances of these transcripts are occuring through TF regulation. 477

In addition to changes in transcript abundance, we also observed several cases where 478

monolignol protein abundances were significantly altered when their transcripts were 479

not. This behavior has previously been observed in secondary cell wall proteins of 480

Arabidopsis [37, 38] and in tobacco during cell differentiation [39]. Compared to 481

transcriptional regulation, less is known about the role of post-transcriptional and 482

post-translational regulatory mechanisms on monolignol biosynthesis. Phosphorylation 483

of the PtrPAL protein was proposed for monolignol biosynthesis over two decades ago, 484

though the role of this phosphorylation is unknown [43,44]. Wang et al., [15] 485

characterized the phosphorylation of the PtrAldOMT2 protein in P. trichocarpa. This 486

post-translational modification was found to impact the activity of the PtrAldOMT2 487

protein but not its abundance. Loziuk et al., identified 12 monolignol proteins that 488

contain motifs for potential glycosylation in P. trichocarpa [16]. The proteins they 489

identified include pPAL1, pPAL3, pPAL4, pPAL5, pC3H3, p4CL3, pCAD2, pCAld5H2, 490

pCCoAOMT1, pCCoAOMT2, pCCR, and pHCT1. Like phosphorylation, glycosylation 491

can regulate protein localization, functional activity, ability to form multienzyme 492

complexes, and stability [16]. 493

Glycosylation could explain some of the behavior we observed in the protein 494

abundance data. In the PtrC3H3, PtrC4H1, and PtrC4H2 knockdowns (Fig 1A) and 495

June 12, 2019 13/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2019. ; https://doi.org/10.1101/677047doi: bioRxiv preprint 

https://doi.org/10.1101/677047
http://creativecommons.org/licenses/by/4.0/


the PtrCAld5H1 and PtrCAld5H2 knockdowns (Fig 1B) we observed significant changes 496

in the PtrPAL, PtrHCT, PtrCCoAOMT2, PtrCAld5H, PtrC3H3, and Ptr4CL proteins. 497

At least one protein in each of those families was found to have glycosylation motifs [16]. 498

The PtrHCT proteins, particularly, had significant changes in their protein abundances, 499

which were not observed in their transcripts across multiple transgenic knockdowns 500

(Fig 1A,B,D,E, Fig S4A,B), or where their transcripts were differentially expressed but 501

the proteins were not significantly different from wildtype (Fig 1C, Fig S2B). Further, 502

there appear to be relationships among the PtrHCT, Ptr4CL, PtrCCoAOMT3, and the 503

PtrCAD1 proteins (Fig 1D,E, Fig S4A,B), with reciprocal indirect influences between 504

the Ptr4CL and PtrCCoAOMT3 proteins, suggesting a potential feedback mechanism. 505

The sparse maximum likelihood estimator detected several connections among these 506

proteins, including positive influences from p4CL3, p4CL5, pCAD1 and pHCT1 on 507

pCCoAOMT3, from p4CL5, pCCoAOMT3, and pHCT1 on pCAD1, from the p4CLs 508

and pCCoAOMT3 on the pHCTs, and from pCCoAOMT3 and the pHCTs on the 509

p4CLs (Fig 4A). Further experiments are needed to identify the specific regulatory 510

mechanisms that are responsible for these cross-influences. 511

We used the connections identified by the sparse maximum likelihood estimator to 512

define our new transcript-protein model for monolignol biosynthesis. Using this model, 513

we emulated the 225 wildtype and transgenic knockdown experiments using only the 514

measured transcript abundances from the targeted monolignol genes as an input and 515

estimating the abundances of the other, untargeted, transcripts and proteins. We 516

compared these estimates to those found using the old model [4], which assumes the 517

protein abundances are linearly proportional to the transcript abundance of the same 518

monolignol gene. We performed a 10x10-fold cross-validation and compared the 519

resulting RMSE distributions from the old model and our new model. The mean RMSEs 520

for 14 of the 20 transcripts and 11 of the 20 proteins were found to be statistically lower 521

in our new model than the old model. We then simulated the transgenic experiments 522

from our differential abundance analysis using our model and scenarios 1 and 2 of the 523

old model, and compared the estimated transcript and protein abundances of selected 524

untargeted genes of interest. As expected, scenario 2 of the old model, which uses the 525

full transcript abundance profiles, did the best at estimating the proteins whose 526

abundance levels tracked the abundance levels of its transcripts, such as Ptr4CL3, 527

PtrC4H1, and PtrCAld5H1 in the PtrCAD1 and PtrCAD2 knockdown experiments 528

(Fig 7C-H), and PtrCAld5H2 in the Ptr4CL3 and Ptr4CL5 knockdowns (Fig 8C-D). 529

However, using only the targeted PtrCAD1 and PtrCAD2 or Ptr4CL3 and Ptr4CL5 530

transcripts respectively, our model was still able to estimate the decreases in both the 531

transcripts and proteins for all four of these genes. Additionally, our model was able to 532

capture several changes in protein abundances that the old model was not, including 533

Ptr4CL5, PtrCAld5H2, and PtrHCT1 in the PtrC3H3, PtrC4H1, and PtrC4H2 534

knockdowns; PtrC3H3 and PtrHCT6 in the PtrCAld5H1 and PtrCAld5H2 knockdowns; 535

and PtrCCoAOMT3 and PtrHCT1 in the Ptr4CL3 and Ptr4CL5 knockdowns. 536

Neither model was able to estimate the changes in abundance of the Ptr4CL3 and 537

PtrHCT1 proteins in the PtrCCoAOMT3 transgenics. Our model includes relationships 538

from pCCoAOMT3 to p4CL3 and pHCT1. Despite this, our model does not capture the 539

size of the decrease in the abundances of these proteins. One explanation for why the 540

extent of these regulatory influences are not captured in our simulations could be due to 541

constraining the regulatory influences to additive linear relationships. Some of the 542

shortcomings of an additive linear model include not allowing for nonlinear relationships 543

and not being able to capture synergistic influence behaviors (i.e., when multiple 544

components are needed to see an effect). 545

The monolignol proteins are the driving forces in the biosynthesis pathway, so being 546

able to accurately understand and estimate how they change under different 547
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combinations and degrees of targeted genetic modifications is important for the accuracy 548

of predictive models. Regulatory influences that occur after transcription appear in the 549

monolignol data of stem differentiated xylem tissue in P. trichocarpa, and we have 550

developed a computational model that incorporates influences on both the monolignol 551

transcripts and proteins. We have demonstrated specific examples where our model 552

produces better estimates of experimental monolignol gene proteins than the old model 553

when both models use only the targeted monolignol transcript abundances as input. In 554

several cases our model, using only the targeted transcript abundances, produced better 555

estimates than scenario 2 of the old model where all of the experimental transcript 556

abundances were used. By incorporating these indirect regulatory influences, we believe 557

our model has improved ability to explore the cascaded impact of genetic modifications 558

on resulting lignin and wood characteristics. Future work will evaluate how our model 559

performs on independent data, incorporate the model into the multi-scale model in [4], 560

and use the multi-scale model to explore the possible changes in lignin and wood 561

characteristics under combinations of lignin gene modifications. 562

Methods 563

Monolignol transcript-protein model 564

The multi-scale lignin biosynthesis model presented in [4] spans multiple biological 565

layers from the genome to observed lignin and wood physical and chemical traits. 566

However, that model [4] makes the simplifying assumption that each monolignol gene’s 567

protein abundance is dependent only on its transcript abundance. This does not reflect 568

any changes that are observed in the abundance of the non-targeted genes. Here, we 569

present a new model that incorporates the observed influences that estimate the 570

production of untargeted monoligninol transcripts and proteins. The code associated 571

with this model can be found at 572

https://github.ncsu.edu/mlmatth2/Monolignol-Cross-Regulation-Model. 573

Because we are interested in identifying regulatory influences at not only the 574

transcriptional level, but also the translational level, we combined the two datasets, 575

such that we are now looking at each of the 20 transcripts and 20 proteins as 40 total 576

variables in our model. 577

Model development 578

The goal of the model development is to find the underlying influences on each 579

monolignol gene product (its transcripts and proteins) when the expression of other 580

monoligninol genes are modified. We describe each transcript and protein as a linear 581

combination of the other transcripts and proteins as shown in Eq (1). 582

yi = µi +Bi1y1 + · · ·+Bijyj + · · ·+BiMyM + ε ∀j 6= i (1)
Where yi is the abundance of the ith gene product, and we have M total gene 583

products (M2 transcripts and M
2 proteins). Bij is a constant term that reflects the 584

influence of gene product j on gene product i, µi is a constant that represents the 585

portion of yi that is not described by the other lignin gene products, and ε is the error. 586

The influences described by Bij should be consistent across multiple experiments, so we 587

can describe Eq (1) over a collection of experiments as shown in Eq (2). 588

yT
i = µi1

T +Bi1y
T
1 + · · ·+Bijy

T
j + · · ·+BiMyT

M + εT ∀j 6= i (2)

Where yi ∈ <N is the abundances of ith gene product over N experiments. We can 589

combine this into one model for all the transcripts and proteins as shown in Eq (3). 590
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Y = BY + µ1T +E (3)

Where Y =

[
T
P

]
∈ <M×N is a matrix composed of the abundances for the M

2 591

transcripts (T) and associated M
2 proteins (P) for each of the N experiments. 592

B ∈ <M×M is the collection of influence terms Bij . Because each yi is a function of the 593

other gene products yj ∀j 6= i, the diagonal elements of B, Bii = 0 ∀i. Additionally, we 594

also enforce a constraint that a transcript cannot be influenced by its associated protein 595

(pi 6→ ti). µ ∈ <M is a vector containing a constant term for each gene product, and 596

1 ∈ <N is a vector of all ones. E =
[
ε1 ε2 · · · εN

]
represents the error where 597

εj ∼ N (0, σ2I) and is considered independent and identically distributed. 598

We used a sparse maximum likelihood (SML) estimator [29] adjusted for our model 599

and data structure (S1 Text) to solve for B and µ. SML adds an `1-norm regularization 600

term to the maximum likelihood, encouraging elements of B to be zero if they are not 601

sufficiently useful to describing Y. A coordinate-ascent algorithm is used, allowing us to 602

solve for the influences defined in B and µ on a row-by-row basis as described in Eq (2). 603

This allows us to control which experiments are used to solve for the ith row of B and 604

µ, bT
i and µi respectively. This is important because we do not want to include the 605

experiments where component i was targeted. In those experiments, an outside 606

influence that is not included in the model is impacting its abundance. Only transcripts 607

were considered to be targets at this stage, as those are what is directly modified in the 608

knockdown experiments. See S1 Text for more details on the model development and 609

SML approach. 610

Estimating monolignol transcripts and proteins 611

We can use the influences B and µ solved for in the model development stage and 612

Eq (4) to estimate how knocking down a single or combination of monolignol genes 613

alters the abundances of the untargeted monolignol transcripts and proteins. 614

ypred = (I−KtargB)−1(Ktargµ+ xtarg). (4)

We set the abundance of our targeted components to the desired knocked down 615

amount using the vector xtarg ∈ <M , and remove the model influences that would alter 616

these set abundances using Ktarg ∈ <M×M . Where xtarg =
∑

i∈targ xiei and 617

Ktarg = I−
∑

i∈targ eie
T
i . ei is the ith unit vector. This configuration allows us to set 618

the targeted monolignol gene components to a desired value while keeping the 619

relationships that influence the untargeted monolignol transcripts and proteins. 620

A drawback of using the additive linear model to describe both the monolignol 621

transcripts and proteins, is that a complete knockout of a targeted transcript may not 622

result in our model estimating its protein to be completely knocked out as well. This 623

presents an issue if the goal is to examine the impact of complete knockouts of targeted 624

monolignol genes. To get around this issue, we assume that the targeted change in a 625

transcript results in a proportional change to its protein abundance. For example, if we 626

want to see what happens when we knock transcript 1, t1 down to 10% of its wildtype 627

abundance, then xT
targ =

[
0.1 · twt

1 0 · · · 0.1 · pwt
1 0 · · · 0

]
and 628

Ktarg = I− e1e
T
1 − e1+M/2e

T
1+M/2. 629

Differential abundance analysis 630

We performed the differential abundance analysis for the monolignol gene transcripts [4] 631

using the R package DESeq2 [45] for each batch individually using the RNA-seq 632

libraries available under GEO accession number GSE78953. The proteomics data [4] 633
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was log2 transformed and the limma package [46, 47] was used for each batch to identify 634

significant differential abundance [48]. The proteomics data set is available on CyVerse 635

(http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/LigninSystesmDB). 636

Missing data imputation 637

In the proteomics data set, 83 out of the 4500 proteins measured (1.8%) could not be 638

quantified. We employed a series of rules to estimate these missing values: 1) If the 639

protein was successfully measured for at least one other replicate in the same line, then 640

the missing value was replaced with the average abundance of the protein from the 641

other replicates of that line. This accounted for 42 of the missing values. 2) If a protein 642

was not quantified for all replicates of an experimental line, then 2a) if the missing value 643

is for a protein associated with the monolignol gene targeted for knockdown, we 644

replaced the missing value with the fraction of its average wildtype abundance that its 645

associated transcript was knocked down. For example, if the associated transcript was 646

knocked down to 10% of its average wildtype value, then the missing protein value was 647

replaced with 10% of its average wildtype value. This accounted for 30 of the missing 648

values. 2b) The remaining missing values were replaced with the average wildtype value 649

of that protein. This accounted for 11 of the missing values. 650

Supporting information 651

S1 Text. Supporting information. 652

S1 Fig. Monolignol gene transcript and protein differential abundance 653

(cont.). (A) PtrPAL1 knockdown experiments (Construct a1). (B) PtrPAL2, PtrPAL4, 654

and PtrPAL5 knockdown experiments (Construct i7). (C) PtrPAL4 knockdown 655

experiments (Construct a3). (D) PtrPAL5 knockdown experiments (Construct a4). (E) 656

PtrPAL2 knockdown experiments (Construct a5). (F) PtrPAL1 and PtrPAL3 657

knockdown experiments (Construct i6). Gray boxes are due to missing data. Rows are 658

the monolignol gene names, with the targeted genes for each experiment in purple. 659

Columns are the experimental lines. ∗ indicates padj<0.05. 660

S2 Fig. Monolignol gene transcript and protein differential abundance (cont.). 661

(A) PtrPAL1-PtrPAL5 knockdown experiments (Construct i8). (B) PtrC3H3 knockdown 662

experiments (Construct i20). (C) PtrCAD1 knockdown experiments (Construct i33). (D) 663

PtrC4H2 knockdown experiments (Construct a9). (E) PtrC4H1 knockdown experiments 664

(Construct a10). (F) PtrCCR2 knockdown experiments (Construct i26). Gray boxes are due to 665

missing data. Rows are the monolignol gene names, with the targeted genes for each 666

experiment in purple. Columns are the experimental lines. ∗ indicates padj<0.05. 667

S3 Fig. Monolignol gene transcript and protein differential abundance (cont.). 668

(A) PtrHCT1 knockdown experiments (Construct a17). (B) PtrHCT6 knockdown experiments 669

(Construct a18). (C) PtrCCoAOMT1 knockdown experiments (Construct a22). (D) 670

PtrCAld5H1 knockdown experiments (Construct a27). (E) PtrCAld5H2 knockdown 671

experiments (Construct a28). (F) PtrHCT1 and PtrHCT6 knockdown experiments (Construct 672

i19). Gray boxes are due to missing data. Rows are the monolignol gene names, with the 673

targeted genes for each experiment in purple. Columns are the experimental lines. ∗ indicates 674

padj<0.05. 675

S4 Fig. Monolignol gene transcript and protein differential abundance (cont.). 676

(A) Ptr4CL3 knockdown experiments (Construct a12). (B) Ptr4CL5 knockdown experiments 677

(Construct a13). (C) PtrCCoAOMT1 and PtrCCoAOMT2 knockdown experiments (Construct 678

i24). (D) PtrAldOMT2 knockdown experiments (Construct i30). Gray boxes are due to 679
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missing data. Rows are the monolignol gene names, with the targeted genes for each 680

experiment in purple. Columns are the experimental lines. ∗ indicates padj<0.05. 681

S5 Fig. Transcription factor expression in PtrCAD1 and PtrCAD2 knockdowns. 682

Rows are the TFs identified in [12] that regulate the monolignol genes. Columns are the 683

experimental lines. ∗ indicates padj<0.05. 684

S1 Table. Table of relationships identified using SML approach. 685
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