
Supplementary Methods 
Capture sets.  
We used two different capture sets in this analysis; first, a capture set consisting of CRC-specific targets 
(capture set of genes mutated in CRC); second, a capture set consisting of  Pold1 and Pole  (capture set of 
polymerase genes, pol DE capture set).  Probes for these capture sets were ordered from IDT, and 
sequences are provided in Dataset S1.    
 
Duplex sequencing library preparation and capture.  
Sequencing library preparation was carried out as previously described with minor modifications1,2. 
Adaptor sequences were prepared as described therein. In brief, DNA was sonicated, end-repaired, and A-
tailed, and ligated to duplex-sequencing adapters using a 10× molar excess of adapters (MWS51 and 
MWS55;  Table S1). Following binding and elution cleanup with 0.8 volumes of AMPure XP beads 
(Agencourt), the adaptor-ligated DNA was PCR-amplified for 9 cycles with the KAPA Biosystems hot-
start high-fidelity kit, using primers MWS13 and MWS20. Following purification with AMPure XP 
beads, iterative capture was performed as described333. Between 250 and 1000 ng of genomic DNA was 
used per sequencing library, with up to 7 µg of DNA per sample to achieve varying sequencing 
depths. Sequences of capture probes used (Integrated DNA Technologies) are given in  Table S2. Final 
PCR-amplification was performed using primers MWS13 and MWS21 for 5 or 6 cycles. Sequencing was 
performed on a HiSeq2500.  
The major limitation of duplex sequencing (and ultradeep sequencing, in general) is the cost of repeatedly 
sequencing thousands of reads. As a result, focused portions of the genome are enriched using iterative 
capture3 rather than interrogating the entire genome.  
 
Subsampling of tumor libraries.  
A tumor library may be computationally subsampled in which all the DNA molecules in the library are 
randomly divided into sub-libraries of desired sizes, never reusing the same DNA molecule (sampling 
without replacement). A single library may be used to generate points along the linear curves here rather 
than performing separate experiments. In figures S1a-e , we display the regression line from the 
experimental libraries (black points line, and shaded 95% confidence interval determined by a 2-sided t 
test with N-2 degrees of freedom, where N is given in Table S3), as well as a set of libraries generated by 
computationally merging the experimental libraries and then computationally splitting them into random 
sub-libraries of similar sizes to the original experimental libraries (red points and symbols).  We see that 
the random sub-libraries from a merged library generate equivalent curves to separate experiments, for 
each tumor. We show only one instantiation of random subsampling, but this procedure was performed 
four times for each tumor with similar results. In 19/20 cases (95%) the subsampled regression line is 
within the 95% confidence interval of the regression line determined by separate experiments. The 
exception is shown in Figure S1e. 
 
Evaluation of signatures.  
We created signatures for polDE-sequenced tumors, associated normal samples, and 5 GBM samples by 
the number of mutations of different types (C>A, C>G, C>T, T>A, T>G, T>C) at each different 
trinucleotide context (NCN or NTN).  These signatures were normalized by dividing the count of 
mutations of a given type at a given context by the number of times that context was sequenced.  
Mutation signatures were compared using cosine similarity, as described in Alexandrov et al.4, and 
comparisons were compared using the aov function in R, with posthoc analysis performed using the 
TukeyHSD function.   Results of these analyses can be found in Figures S3 and S4, and in Table S6. 
 
Code availability.  



Software for Duplex Sequencing is available at https://github.com/loeblab/Duplex-
Sequencing/tree/Duplex-V-1.2.   
 
Data processing.  
Processing of Duplex Sequencing data was performed essentially as previously described.  Data from this 
paper has been uploaded to the Sequence Read Archive under accession SRP135906.  Subclonal 
mutations are defined as mutations present in fewer than 10% of sequencing reads. Mutations are scored 
if complementary and present in both sense and antisense strands at the same position in individual DNA 
molecules.  The frequency of subclonal mutations represents the total number of subclonal mutations 
detected divided by the total number of nucleotides assayed at all positions. To obtain multiple depths for 
each sample, we merged different libraries, with each library being used once.  PicardTools 
CollectHsMetrics was used to determine mean depth, and the CountMuts.py program published with the 
DS pipeline to count numbers of unique positions mutated. 
 
Determination of Mutation Rate and Mutation Burden via Sequencing the Same Sample at 
Different Duplex Depths.  
As it is not possible to sequence every genome present in a tumor, rare mutations (i.e., mutations present 
in one cell or a small number of cells) are infrequently sampled. Due to the branching nature of evolution, 
the earliest mutational events near the trunk of the evolutionary tree are scored in the majority of cells, 
and can be detected at low duplex sequencing depth. As we increase duplex sequencing depth, additional 
recent mutations that are present in a smaller fraction of the cells are also detected. As the number of 
nucleotides sequenced at a given genomic position is nearly always less than the number of cells in the 
tumor, we are unlikely to detect evidence of recent mutational events late in the tumor’s evolution. Thus, 
the full mutation burden in the tumor cannot be directly determined, and the estimate of mutation rates is 
based on an incomplete dataset.  
 
We developed a method to estimate the mutation rate and the full mutation burden in the tumor by 
comparing measurements at several different duplex sequencing depths. Herein, we present the theoretical 
analysis for mutation rate estimation, then evaluate 5 colorectal tumors by Duplex Sequencing at a depth 
of up to 20,000X and an accuracy of <10-7. We then present additional methods for evaluating the full 
mutation burden of a tumor, and theoretical implications for mutational drug resistance. Finally, we 
evaluate the sensitivity of our methods for distinguishing neutral evolution from other mechanisms.  
 
Please see Methods and Table S2 for a definition of terms and concepts. 
 

Explanation and Discussion of Modeling 
In the subsequent sections, the following topics are considered: (1) presentation of the mathematical 
approach, (2) application of the approach to human colon cancers sequenced at multiple depths, (3) 
Methods for estimating mutation frequencies for tumor masses large enough to be clinically diagnosable  
(4) comparison to the related mathematical approaches of Williams et al5 and of Bozic et al6,7  (5) 
discussion of assumptions and approximations of the model , (6) illustration of the dependence of actual 
mutation frequency on the growth pattern, and evaluation of the likely consequences for the estimate of 
tumor mutational burden and for the mutator hypothesis, (7) discussion of the likelihood of existing 
resistance to one or multiple non-cross resistant agents in malignant cells during tumor growth, and 
simulations of the sensitivity of this method for detecting weak selection.  
 
Mathematical approach.  
In order to model the fraction of apparently unmutated single base loci, we integrate over the entire 
history of the tumor, determine the fraction of apparently unmutated single base loci for daughter cells 



born at different times, and obtain the average fraction of apparently unmutated single base loci, weighted 
by the number of daughter cells born at different times. For mutations detected at a given duplex 
sequencing depth, the fraction of apparently unmutated single base loci is constant (independent of n(t)), 
making the average simple to calculate. At early timepoints, when there are few cells, it is less likely that 
a mutation will arise because there are fewer cells dividing at that time. But, if a mutation arises at this 
early time, it will be present in a larger fraction of the cells in the final tumor, because it is closer to the 
trunk of the evolutionary tree, and therefore will be more likely to be detectable.  These two factors (the 
lower likelihood of a mutation at earlier times but greater likelihood of detecting a mutation which does 
occur at an earlier time) exactly counterbalance each other to give a constant number of expected 
detectable mutations arising at any time.  Specifically, at any given time t, we have (# symbolizes 
“number”): 

 
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	#	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑤𝑖𝑡ℎ	𝑛𝑒𝑤	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑎𝑡	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑡𝑜𝑡𝑎𝑙𝑙	𝑜𝑓	𝑎𝑙𝑙 

𝑐𝑒𝑙𝑙𝑠	𝑏𝑜𝑟𝑛	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 𝑘;<=–?@@𝑛(𝑡) 
 (Equation S1) 
 
In equation (S1), we assume that the n(t) cells present at time t undergo effective and synchronous 
divisions, eventually creating a new cell generation of n(t) daughter cells. This may require more than n(t) 
actual cell divisions. Note that expectation values need not be integers, and unlike probabilities, are not 
restricted to values, between zero and one. 
 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑓𝑖𝑛𝑎𝑙	𝑡𝑢𝑚𝑜𝑟	𝑡ℎ𝑎𝑡	𝑤𝑖𝑙𝑙	𝑎𝑟𝑖𝑠𝑒	 

𝑓𝑟𝑜𝑚	𝑎	𝑠𝑖𝑛𝑔𝑙𝑒	𝑐𝑒𝑙𝑙	𝑏𝑜𝑟𝑛	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 	
1
𝑛(𝑡) 

 (Equation S2) 
 
In equation S2, we consider the branching nature of tumor evolution, and the fact that cells born in a 
larger tumor are further out on branches.  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	#	𝑜𝑓	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑎	𝑐𝑒𝑙𝑙	𝑏𝑜𝑟𝑛	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 	
𝐷
𝑛(𝑡) 

 (Equation S3) 
 
Equation S3 follows from equation S2, and the fact that we are randomly sampling the sequences of cells  
from the tumor at depth D. 
 
Multiplying equation S1 by equation S3, we find: 
 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	#	𝑜𝑓	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑎𝑡	𝑎	𝑠𝑖𝑛𝑔𝑙𝑒	𝑏𝑎𝑠𝑒	𝑎𝑟𝑖𝑠𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 	 𝑘;<=F?@@	𝐷 
 (Equation S4) 
 
Further, from equation S4 and the zero term of the Poisson distribution, it follows that the fraction of 
apparently unmutated single base loci Fapparent-unmutated from mutations arising in cells born at any time t is 
given by: 
 

𝐹GHHGI?J=F<J;<=G=?K	𝑓𝑟𝑜𝑚	𝑐𝑒𝑙𝑙𝑠	𝑏𝑜𝑟𝑛	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 	𝑒F	LMNOPQRR		S   
 (Equation S5) 

 
Since (S5) is independent of time, a weighted average over the history of the tumor is given by the same 
expression.  When we take the population-weighted average of equation S5, we integrate over all times in 
the tumor’s history. Since every cell in the tumor was born at some point in the tumor’s history, this 



integral over time is equivalent to integrating over all cells in the tumor. The average is then the time 
integral of (S5) over 0 to T, divided by T: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐹GHHGI?J=F<J;<=G=?K = 	𝑒F	LMNOPQRR	S  
 (Equation S6) 

 
Method for estimating kmut-eff from sequencing at multiple duplex depths.  
Taking the natural logarithm of both sides of (S6), we obtain: 
 

ln 	W𝐹GHHGI?J=F<J;<=G=?KX = 	−	𝑘;<=F?@@	𝐷	 
 (Equation S7) 
 
Thus, plotting the natural logarithm of the fraction of apparently mutated single base loci for several 
different duplex sequencing depths should yield a straight line with slope – kmut-eff. At duplex depth (D) = 
0, no mutations will be observed and the fraction of apparently unmutated single base loci will be 1, 
leading to a natural logarithm of 0. Thus, the origin (0, 0) should also be on the line. 
 
Fraction of unmutated single base loci in every cell in the tumor.  
If we could sequence every single cell in the tumor, we would determine the actual value of this quantity. 
Thus, this number is given by equation S6, when D = N: 

 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓		𝑠𝑖𝑛𝑔𝑙𝑒	𝑏𝑎𝑠𝑒	𝑙𝑜𝑐𝑖	𝑢𝑛𝑚𝑢𝑡𝑎𝑡𝑒𝑑	𝑖𝑛	𝑡ℎ𝑒	𝑒𝑛𝑡𝑖𝑟𝑒	𝑡𝑢𝑚𝑜𝑟 =	 𝑒FLMNOPQRR	Z 

 (Equation S8)  
 
Fraction of single base loci which are newly mutated in m cells in the tumor.  
From equation S8 and the Poisson distribution, we can define this quantity: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑠𝑖𝑛𝑔𝑙𝑒	𝑏𝑎𝑠𝑒	𝑙𝑜𝑐𝑖	𝑛𝑒𝑤𝑙𝑦	𝑚𝑢𝑡𝑎𝑡𝑒𝑑	𝑖𝑛	𝑒𝑥𝑎𝑐𝑡𝑙𝑦	𝑚	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑡𝑢𝑚𝑜𝑟: 
 

(𝑘;<=F?@@𝑁);	𝑒FLMNOPQRR	Z

𝑚!  
 (Equation S9)  
 
Application to 5 tumors sequenced at multiple depths.  
The analysis above predicts that a plot of ln(Fapparent-unmutated) vs D will be linear, with a negative slope 
equal to -kmut-eff, and will go through the origin although this point was not entered into the regression (all 
sites apparently unmutated at a sequencing depth of zero).  
 
We find this is indeed the case for the mismatch repair proficient colorectal cancers that were sequenced 
at 4 depths ranging up to 20,000 (Figures S1a-e, Table S3) ). Linear correlation coefficients R2 ranged 
from 0.953 to 0.999, with a mean +/- 1 standard error of 0.974 +/- 0.017. The percent of variation in data 
explained by the linear model is given by 100 times the square of the correlation coefficient, and ranged 
from a low of 90.8% in one tumor to a high of 99.9%, with a mean +/- 1 standard error of 94.9 +/- 3.3 %.  
 
Only one of 5 estimated y-intercepts is statistically different from zero according to a 2-sided 95% 
confidence interval using the student’s t-test with 2 degrees of freedom, and, for that one, the lower 
boundary of its 95% confidence interval was approximately 15% of the smallest data-point value.  The 
mean+/- one standard error of the estimated y intercepts over the 5 tumors is -4.3 +/- 5.5 X 10-4, 
indicating that the overall estimate of the y intercept is less than one standard deviation from zero. The 
excellent agreement of data with the model using five separate tumors renders more complex models less 
likely. 



 
The estimated effective mutation rates kmut-eff for the 5 tumors ranges from 2.8 X 10-7 to 1.5 X 10-6. The 
mean effective mutation rate (+/- 1 standard error) over 5 tumors is 7.1 +/- 4.4 X 10-7 per base per 
effective cell division. For a genome of 3.1 X 109 bases, this means that each surviving new cell that adds 
to the tumor population has approximately 2,200 new mutations compared to its parent. Since these 
mutations are occurring randomly throughout the genome, only 1% of which is coding, this amounts to 
approximately 22 new mutations in coding segments per daughter cell, some of which will be 
synonymous. Many of these mutations will be private and only detectable if sequencing to single cell 
depth. 
 
Relationship to earlier work5-13.  
There have been many attempts to model tumor progression. Beckman and Loeb10 and Beckman11 
modelled carcinogenesis with selection operating only on dominant and recessive oncogenes, with neutral 
evolution after the formation of the founder cell.  Sottoriva et al12 investigated in depth the similar 
hypothesis that colorectal cancers grow as a single expansion with most selected mutations occurring 
early. Multiparameter profiling of individual clones from diverse locations within these cancers 
demonstrated an absence of selective sweeps. Williams et al5 analyzed the TCGA database and found 
remarkable subclonal diversity and evidence for neutral evolution. Martincorena et al9  also found strong 
support for neutral tumor evolution in a comprehensive analysis of the ratios of synonymous to 
nonsynonymous mutations.  
 
Herein, we compare and contrast the proposed models and methods. 
 
The Williams et al.5 modelling approach and ours are similar in a number of important respects: 

• Both use quantitative analysis of rare mutations to support the theory of neutral evolution. 
• Both parameterize the model in terms of observables such as effective cell divisions, rather than 

on parameters such as actual cell divisions, that are difficult to infer. 
• Both predict a linear relationship between sequencing depth and a quantity related to observed 

genetic diversity, wherein the slope reveals the effective mutation rate, i.e. kmut-eff.  
• For all observations at depths of order of magnitude less than the reciprocal of the mutation rate, 

(in our case less than the order of 1.4 X 106), the predictions of the two approaches are identical.  
A mathematical explanation of why this is the case is given at the end of this section. 

• Both models conclude that significant subclonal diversity might be a source of pre-existing drug 
resistance. 

 
Our approach and that of Williams et al.5 approach differ in several important respects: 

• Purpose: Williams et al.5 examined the TCGA database at low depth utilizing a variety of 
techniques with varying accuracy, and described the statistical distribution of mutation 
frequencies in whole exome sequencing within tumor types. The TCGA database scores 
primarily for clonal mutations. In contrast, we isolated DNA from surgical specimens and used 
an assay that is 10,000-fold more accurate than standard NGS to examine rare subclonal 
mutations at depths of up to 20,000X. 

• Representation of distribution of variants as a function of their frequency: Williams et al.5 
implicitly assume that any new mutation occurring at time t is occurring in only one copy, 
rather than being born new in multiple copies in different cells: “for a new mutation 
occurring at any time t, its allelic frequency (relative fraction) f must be the inverse of the 
number of alleles in the population.” This quote drives equation (5) in the Williams et al.5 paper 
and the rest of the analysis. This assumption, that any new mutation at a particular site occurs 
uniquely, rather than simultaneously in multiple cells, is termed the “infinite sites 
approximation.”13 The assertion is valid for depths less than one over the mutation rate, i.e. the 



subject of the Williams et al.5 analysis and our experimental work. In contrast, our equation (S1) 
describes the expected number of new mutations simultaneously within different cells as the 
product of a mutation rate and the number of cells dividing simultaneously. This is an average 
and does not have to be an integer like 0 or 1. The probability that there will be any given 
integral number of DNA molecules with the variant of interest is then given by the Poisson 
distribution. Below, we will derive the predictions of the mutant allele frequency as a function of 
the number of alleles in the population for our model, which does not rely on the infinite sites 
approximation, and contrast it with other models.  

• Difference between the methods’ predictions at depths less than one over the mutation rate, i.e. 
variant frequencies greater than the mutation rate: in this range, the two methods give very 
similar predictions. This is because at these depths, it is unlikely that there will be more than one 
copy of a given new mutation being formed at any instant. When kmut-eff n(t) << 1, most sites in 
the genome will remain unmutated, and a small minority of sites will have only one copy of a 
new mutation formed at that instant. A very small minority of sites will have 2 or more copies of 
the new mutation simultaneously forming, and thus the Williams et al.5 approximation is 
accurate in this range (Figure 3). 

• Difference between the methods’ predictions at depths much larger than one over the mutation 
rate: in this range, the Williams et al.5 approach, which asserts that the variant frequency will be 
inversely proportional to the depth at all depths, differs from ours. Given the mutation rate of 
approximately 7 X 10-7 per effective cell division, and the fact that the smallest tumor visible on 
CT will contain between 108 and 109 cells14, the product kmut-eff times n(t) will be >> 1 before the 
tumor is diagnosed and this will only increase as the tumor grows. In such cases, we do not 
believe that the variant frequency will be 1/n(t) (or 1/D, given that at depth D we are on average 
observing mutations that occurred when n(t) =D) as asserted by Williams et al.5. Rather the 
expected number of copies of a new mutation formed at a doubling from n(t) to 2n(t) will be as 
given in equation (S1), i.e. kmut-eff n(t). For the case of the tumor with 109 cells, if they all divide 
approximately simultaneously, we expect approximately (7 X 10-7) X 109 or 700 of the newly 
formed 109 daughter cells to contain the same new variant created approximately simultaneously. 
The chance of only one copy of the new variant being created under these circumstances is 
negligible. Thus, at high n(t), the variant frequency does not continue to decrease as 1/n(t), but is 
given by: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑡	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑓𝑜𝑟	𝑐𝑒𝑙𝑙𝑠	𝑏𝑜𝑟𝑛	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 

=
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑝𝑖𝑒𝑠	𝑜𝑓	𝑣𝑎𝑟𝑖𝑎𝑛𝑡	𝑓𝑜𝑟𝑚𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡  

=
𝑘;<=F?@@	𝑛(𝑡)

𝑛(𝑡) = 	𝑘;<=F?@@ 

 (Equation S10) 
 
Thus, the curve of variant frequency versus depth predicted by the two methods is very different 
in this region (Figure 4). The Williams et al.5 curve continually decreases with increasing depth 
with an asymptotic limit of zero, whereas the model we propose has an asymptotic limit of kmut-eff. 
 
In the region where kmut-eff n(t) ≈ 1, there is a transitional zone and the predictions begin to 
diverge. To describe the entire curve precisely, we utilize conditional expectation values for the 
expected number of mutant alleles simultaneously arising at particular site at a time t, when n(t) = 
D cells are each undergoing individual divisions, rather than utilizing an infinite sites 
approximation.  (Note throughout our treatment and that of Williams et al.5, the assumption is that 
at a depth D we are on average sampling cells formed at time t where n(t) =D). The term 
conditional means we will apply the condition that at least one mutant allele has been 
experimentally observed at the site in question. At very low depth relative to the reciprocal of the 



effective mutation frequency, most sites will have no mutant alleles, a small minority will have 
one mutant allele, and increasingly smaller minorities will have higher integral numbers of 
mutant alleles, leading to a non-integral average as described above. At these low depths, if a 
single mutant allele is observed the number of mutant alleles cannot be zero, and one is a much 
more likely value than higher integral values. Thus, the infinite sites approximation, which 
assumes that the mutant allele number is in fact one wherever mutations are observed, is effective 
in this range. If the mutant allele number is one, the mutant allele fraction will be 1/n(t) as 
asserted by Bozic et al.6,7 and Williams et al.5. 
To develop an expression that will be accurate at all depths, we start with an exact expression for 
the total number of mutant alleles expected to be newly formed at a particular site at time t, which 
is a probability weighted average of all possible integral values from 0 to n(t), where pn is the 
probability that there are n simultaneously formed copies of the mutant allele: 
 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑒𝑤	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑎𝑡	𝑎	𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟	𝑠𝑖𝑡𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 =
∑ 𝑛 ∗ 𝑝J			
J(=)
Jbc

∑ 𝑝J
J(=)
Jbc

 

 (Equation S11) 
 
The denominator is equal to 1, since it represents the sum of the probabilities of all mutually 
exclusive possible outcomes.  Thus, 
 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑒𝑤	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑎𝑡	𝑎	𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟	𝑠𝑖𝑡𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 	d 𝑛 ∗	𝑝J

J(=)

Jbc

 

 (Equation S12) 
 
But comparing to equation S12 to equation S4, we see that: 
 

d𝑛 ∗	𝑝J

J(=)

Jbc

= 𝑘;<=F?@@𝐷 

 
 (Equation S13) 
 
We can now compute the conditional expected value of the number of mutant alleles newly 
formed simultaneously at a particular site given that this number is greater than or equal to one, 
i.e. at sites where there has been at least one mutation. We take a weighted average again of 
integral values of 1 or greater, not including zero.    
 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒𝑠	𝑎𝑡	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑠𝑖𝑡𝑒 
	𝑔𝑖𝑣𝑒𝑛	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒 

=	
∑ 𝑛 ∗	𝑝J
J(=)
Jbf

∑ 𝑝J
J(=)
Jbf

 

 (Equation S14) 
 
We note that the sum in the numerator, from 1 to n(t), is the same as the sum from zero to n(t), 
since the zero term is zero. Further the denominator is equal to the sum from zero to n(t) 
(previously noted to be 1) minus the zero term, the probability of no mutant alleles, or p0. Making 
these substitutions, we have: 
 



𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒𝑠	𝑎𝑡	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑠𝑖𝑡𝑒 
	𝑔𝑖𝑣𝑒𝑛	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒 

=
∑ 𝑛 ∗ 𝑝J
J(=)
Jbc
1 − 𝑝c

 

 (Equation S15) 
 
Substituting the value of the numerator from equation S13, and the value of p0 from equation S6 
(p0 and average fapparent unmutated are synonyms), we obtain: 
 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒𝑠	𝑎𝑡	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑠𝑖𝑡𝑒 
	𝑔𝑖𝑣𝑒𝑛	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒 

=	
𝑘;<=F?@@	𝐷

1 −	𝑒FLMNOPQRR	S
 

 
 (Equation S16) 
 
To derive the conditional expectation of the mutant allele fraction, we divide by n (t), setting n(t) 
= D as before: 
 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑎𝑡	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑠𝑖𝑡𝑒 
	𝑔𝑖𝑣𝑒𝑛	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑚𝑢𝑡𝑎𝑛𝑡	𝑎𝑙𝑙𝑒𝑙𝑒 

=
𝑘;<=F?@@

1 − 𝑒FLMNOPQRRS
 

 
 (Equation S17) 
 
 
 
 
 
To evaluate this expression at depths much lower than the reciprocal of the effective mutation 
frequency, we expand the exponential in a Taylor’s series. Taylor’s theorem states that any 
continuous function f(x) may be expanded in the region around f(a): 

 

𝑓(𝑎 + ∆𝑎) = 𝑓(𝑎) +	∆𝑎	𝑓i(𝑎) + j
(∆𝑎)k

2!
m 𝑓ii(𝑎) + j

(∆𝑎)n

3!
m 𝑓iii(𝑎)… 

 (Equation S18) 
 

where f’, f’’, and f’’’ are successive derivatives of f. 
 
At depths much lower than the reciprocal of the effective mutation frequency, the exponent is 
nearly zero, and the exponential term may be approximated by a Taylor’s series with f(a) = ea, a = 
0, Δa = -kmut-eff D, truncated at the linear term, i.e. 
 

𝑒Gqrs = 1 + 𝛥𝑎 +	
(Δa)k

2! +	
(Δa)n

3! + ⋯	≅ 1 + Δa,𝑤ℎ𝑒𝑛	Δa ≪ 1 
 (Equation S19) 
 
Applying this approximation to equation S17, we see that at low depth the conditional expected 
average mutant allele frequency is equal to 1/D ≈ 1/N(t), in agreement with Williams et al.5. 



 
But at high depth, where D is greater than the reciprocal of the mutation rate, the mutant allele 
frequency does not approach zero as in the Williams et al.5 formulation. Rather, examining 
equation S17, the exponential term approaches zero, and the conditional expected average mutant 
allele frequency approaches kmut-eff. 
   
Williams et al.5 have performed a simulation and compared it successfully to their mathematical 
treatment. This shows that the mathematics and simulation are mutually consistent. However, the 
simulation utilized only 106 individual cells, the technical limit of such stochastic simulations, 
and within the range of validity of the infinite sites assumption. The model results were then 
“scaled up” using the same assumption, to a full-size tumor. The infinite sites assumption is, in 
our opinion, not applicable in that range, and therefore one cannot use it to evaluate clinically 
detectable tumors.  
The underestimate of the total burden of mutations in the tumor associated with the infinite sites 
assumption is given by the area between the two predicted curves of mutation frequency versus 
depth at high sequencing depth >> 1/kmut-eff (Figure 4). Although the difference in asymptotic 
limits in the y axis is small, equal to kmut-eff, the x-axis width of this region is three orders of 
magnitude greater at diagnosis (109 cells) than the region of validity of the infinite sites 
assumption (up to 106 cells). Moreover, as the malignancy grows and spreads, it could contain as 
many as 1012 cells in the terminal phase. Thus, the area between the curves represents a 
quantitatively significant difference in the predicted diversity with and without the infinite sites 
assumption (Figure 5).  
 
• Consequence of the two models’ divergent predictions at very high depth: a theoretical 

estimate of the total mutation burden within the tumor, and a calculation of the extent of drug 
resistance to one drug or to multiple non-cross resistant drugs due to mutation(s) within the 
same cell, as given in this work, requires a model which is accurate in the range kmut-eff n(t) 
>>1. Due to the ever-increasing number of cell divisions per cell generation as the tumor 
grows, the discrepancy between the two models is quantitatively significant when the 
problem of the total mutational burden within the tumor is considered.  

• Mathematical form of the predictions: although the Williams et al.5 formulation and ours both 
predict linear relationships of genetic diversity as a function of sequencing depth, the measure 
of genetic diversity on the y axis differs. In Williams et al.5, the y axis is the intuitive quantity 
of number of unique subclones. Because this approximate treatment is accurate within the 
depth range of our experiments, and is intuitive, we have presented it this way in the main 
text. However, our more general formulation presented herein has the y axis as the natural 
logarithm of the unmutated fraction of bases sequenced, i.e. ln(1-x) where x is the fraction of 
the capture set for which a variant sequence is detected. Moreover, the presentation of 
Williams et al.5 has a positive slope proportional to the effective mutation rate, whereas ours 
has a negative slope equal to the effective mutation rate, due to the different quantity on the y 
axis.  

• Near equivalence of the two formulations at low depth: we have given above both a 
qualitative argument and a mathematical argument for the near equivalence of the 
formulations at low depth, the latter focusing on the mutant allele frequency curve as a 
function of depth. We now will again show this near-equivalence at low depth, this time 
focusing on the curve of observed unique subclonal mutations as a function of depth. We 
begin with equation S7, noting that Fapparent-unmutated = 1 – x, where we use x to denote the 
fraction of sites within the capture set at which at least one copy of the mutation has been 
observed. Thus, equation S7 becomes:  

 



ln 	(1 − 𝑥) = 	−	𝑘;<=F?@@	𝐷	 
 (Equation S20) 

 
 

Mathematical equivalence at low depth is shown as follows:  
 
Setting f(x) = ln (1-x), a =1 and Δa = -x, we expand ln(1-x) as a Taylor series 
(Mathematical Tables from the Handbook of Chemistry and Physics, Chemical Rubber 
Company Publishing, Cleveland, Ohio, 1936, pp. 278-279) in powers of x about 1 , 
yielding: 

 

ln(1 − 𝑥) = 	−𝑥 −	
𝑥k

2 −	
𝑥n

3 −⋯ 
 (Equation S21) 

 
At low depth, x << 1, since variants will be detected only in a minority of the capture set loci. 
Thus, the higher order terms in x are negligible, and we have  
 

ln(1 − 𝑥) 	≈ 	−𝑥	𝑓𝑜𝑟	0 < 𝑥 ≪ 1 
 (Equation S22) 

 
But x, the fraction of sites with a variant observed, is proportional to the number of observed 
unique variants, so that plugging equation S22 into equation S20, we see that the number of 
observed unique variants is nearly exactly proportional to the depth, at low depths, as asserted by 
Williams et al5. In summary, our model and that of Williams et al.5 give indistinguishable 
predictions at depths less than 1/kmut-eff, but differ in important ways at higher depths representing 
three orders of magnitude of further tumor growth before the tumor grows to the minimal size at 
which it can be diagnosed clinically. 

 
Bozic et al.6 use a stochastic model to assess neutral evolution, and derive a correction to the Williams et 
al.5 formula, which is significant at low depths (10-100) representing subclones with an apparent 
frequency of 100 to 10-2. Bozic et al.6 validate their approach using data in this range. Stochastic effects 
are more prominent with small numbers of cells, and the Bozic et al. model6 will be more accurate in this 
very low depth range than either the Williams et al.5 approach or ours. The Bozic et al6 model gives two 
correction factors. The first 1/(1- δ) is equal to the b/(b-d) term which normalizes between the actual and 
effective mutation rates, and is present in both the current work and the Williams et al.5 formulation. The 
second correction is factor of (1-(d/b)n(t)+1) which is significant at low n(t). 
 
Importantly, however, the Bozic6 treatment, like Williams et al.5, uses the infinite sites approximation and 
is thus not applicable when the tumor cell number increases beyond the reciprocal of the effective 
mutation rate, or at sequencing depths greater than this number.  
A chart of the regions of validity of the stochastic infinite sites model6 the continuous infinite sites model5 
and the model herein is provided in Figure 3. 
 
We have compared our methods and work to earlier related work, particularly Williams et al.5 and Bozic 
et al.6. Our independently developed work has striking similarities to but important differences from these 
earlier studies. Importantly, all three methods give the same predictions in the range of DNA sequencing 
depths currently explored experimentally, with the exception of very low depths, where the stochastic 
treatment of Bozic et al.6 is more accurate. The other methods utilize the “infinite sites assumption”13, 
which assumes that any mutation is unique at the instant it is formed. This assumption is true as long as 



the product of the effective mutation rate and the number of cells comprising a cell generation is much 
less than one. That condition is met for all experimental work done to date, as well as the conditions of all 
prior simulations. However, our experimental results document a higher effective mutation rate than 
previously considered, of the order of 10-6. We then consider the “thought experiment”, currently not 
feasible, in which every cell in the smallest diagnosable tumor mass, or 109 cells, is sequenced to 
determine the total mutation burden of such a mass. Under these conditions, the “infinite sites 
assumption” will be violated, since it is violated in all cell generations involving on the order of 106 cells 
or higher. Our method is unique in that it accurately quantifies the mutation burden in this situation, 
because it is independent of the “infinite sites assumption” (Figures 3-5). This allows us to make more 
accurate and definitive statements about drug resistance than was previously possible. We conclude that 
within a tumor mass of 109 cells, no DNA locus will be wild type in every cell unless mutations at that 
locus are lethal. While many authors have stated that each tumor cell is distinct (which could be achieved 
with diversity at a limited number of sites), and that pre-existing resistance to a single therapy is likely to 
be common, we can now say that pre-existing resistance to a single therapy in at least one cell from single 
base substitutions alone is universal and inevitable. 
 
 
Discussion of assumptions and approximations of the model5,9,15-25 
We discuss the following caveats to the proposed model: (1). The proposed model assumes that most 
mutations are neutral, (2) the proposed model assumes an average effective mutation frequency kmut-eff can 
be calculated across subclones, which may be mutating at different rates, (3) the proposed model 
estimates the total mutational burden of the tumor by extrapolation from the genes sequenced to the entire 
genome, and (4) the proposed model estimates the total mutational burden of the tumor by extrapolation 
from the maximum sequencing depth to a much larger number: i.e. the total number of cells in the tumor. 
 
 
Assumption of neutrality.  
We have observed a linear curve of the logarithm of the fraction of apparently unmutated bases as a 
function of sequencing depth. If selection associated with partial or complete clonal sweeps reduced or 
eliminated subclonal diversity, the absolute value of the slope should decrease with increased sequencing 
depth, resulting in upward curvature (less negative slope), contrary to observation. Moreover, this upward 
curvature would produce linear regressions with negative y-intercepts, again contrary to observation. 
Thus, there is no evidence from our experimental data for deviation from neutrality.  
 
A variety of experimental and theoretical studies support the notion that, while certain key sites are highly 
selected in carcinogenesis, the majority are neutral. A recent population dynamic analysis of a large 
number of microscopic sectors of a hepatocellular carcinoma biopsy was found to be wholly consistent 
with a neutral model15. An analysis of mutation burden of tumors as a function of depth using the TCGA 
database was published which strongly supports a neutral evolutionary model for colorectal cancer5. 
Moreover, a theoretical study of driver and passenger mutations, supported by bioinformatics analysis of 
observed mutations, has concluded that neutral passenger mutations are more numerous25, and neutral 
Poisson models have been previously employed in the analysis of divergence between metastases and 
primary17, and in the timing and heterogeneity of resistance mutations18.   
 
A comprehensive survey of nonsynonymous/synonymous mutation ratios adjusted for tissue and site-
specific mutation patterns found a maximum of 1,230 positively selected genes in cancer at the 0.05 level 
of significance, and when the significance threshold is adjusted to reduce the false detection rate due to a 
large number of statistical comparisons, the number of definitively positively selected genes reduced to 
4520. This amounts to anywhere between 0.15% and 4% of the approximately 21,000 genes in the human 
genome. Even within a positively selected gene, it is likely that no more than 28% of the amino acids 



within the corresponding protein affect function when mutated21. Overall, therefore, somewhere between 
0.04% and 1% of genomic bases are expected to be positively selected in cancer.  
 
Regarding negative selection, Zhou et al. found between 16 and 326 genes affected, depending on the 
significance threshold, an even smaller percentage of the genome20. A survey of “never mutated” genes in 
the TCGA database, found only 5% of the genes fit into this category22. Even in normal germline cells, no 
more than 11% of mutations are projected to reduce organismal fitness23, but the evolutionary constraints 
on tumor cells are expected to be far less than on multicellular organisms24. Further, Martincorena et al. 9 

performed an extensive analysis of nonsynonymous/synonymous mutation ratios in somatic tissues, both 
cancerous and normal tissues. They concluded that only 0.02% to 0.5% of genes showed evidence of 
negative selection. They estimated that an average of only 0.5 mutations per consensus tumor genome 
were purified out by negative selection.  Thus, only a minor fraction of diversity is expected to be 
removed by negative selection. 
 
Average mutation frequency calculated across subclones mutating at different frequency.  
The evidence so far accumulated indicates that the most prevalent types of mutations in cancer are single-
base substitutions.  This observation was probably unexpected, as these types of mutations are not 
associated with viral or environmental carcinogens.  Viral agents usually insert or delete genomic 
sequences, while many chemical carcinogens act indirectly and form bulky adducts that are removed by 
nucleotide excision repair. Prominent in formation of single-base substitutions are errors in DNA 
replication resulting from misincorporation by DNA polymerases or diminutions by nucleotide-base 
repair.  Major likely sources for single-base substitutions would be the major replicating enzymes, DNA 
polymerases –δ and –ε. These enzymes and interactive proteins are responsible for copying the three 
billion nucleotide base pairs in the human genome with only one or a very few mistakes.  Errors by these 
enzymes or deficits in repair seem a likely cause of mutations as initially postulated in the concept of a 
mutator phenotype. If replicative DNA polymerases are unable to copy past bulky lesions in DNA, human 
cells have an armamentarium of error-prone DNA polymerases (Y – class) that can be brought to a stall to 
bypass the alteration in the DNA. 
 
Data in this manuscript documents mutations in DNA polymerase genes, and, while most of these are not 
known to have functional consequences, it highlights the possibility that subclones may exist with 
differing mutations in the genomic maintenance machinery, resulting in differing rates of evolution.  The 
mathematical treatment herein assumes that the effective mutation frequency is a population-weighted 
average of these different subclones and their mutation frequencies, and that this population weighted 
average is approximately constant at different levels of subclonal frequency.  
 
We have observed a linear relationship between the logarithm of the fraction of apparently unmutated 
bases and sequencing depth. If serial mutator mutations progressively accumulated during tumor growth, 
and these subclones represented a large enough subset to alter the averages, one would expect subclones 
which formed later in tumor growth to have higher mutation rates and to generate more unique variants. 
Due to the branching nature of tumor evolution, these mutator subclones, progressively arising later, 
would correspond to rarer variants and the absolute value of the slope should increase with increasing 
depth, resulting in downward curvature (more negative slope), contrary to observation. Moreover, this 
downward curvature would produce linear regressions with positive y-intercepts, again contrary to 
observation. The data do not rule out the existence of hypermutator clones. However, there is no evidence 
from the data for hypermutator clones being prevalent enough to skew the averages computed by the 
model. A selective advantage for hypermutator clones may appear under selection pressures by therapy, 
which might favor subclones that can more rapidly acquire multiple resistance mutations16. Under those 
circumstances, these hypermutator clones may increase in relative prevalence or even become the 
dominant clone. However, the current study involves samples obtained at diagnosis, and under neutral 
evolution in the absence of therapy the proportion of hypermutator subclones might be expected to remain 



relatively constant. As long as the population weights of the different subclones are stable over time, kmut-

eff can be calculated as a population weighted average.  
 
Extrapolation from the genes sequenced to the entire genome.  
Analyses discussed in the main article saw only minor differences in mutation frequency between the 
various genes sequenced. While there is known sequence variation in the mutation frequency throughout 
the genome, it seems most unlikely that all of the chosen genes with similar mutation frequencies were 
mutation hotspots. Therefore, it is more likely that they represent a reasonable approximation of an 
average mutation frequency.  
 
Extrapolation from the maximum depths achieved to every cell in the tumor.  
The estimate of total mutational burden of the tumor provided, and the conclusions about the likelihood of 
an arbitrarily selected site being mutated, depend on extrapolation of the depth achieved in this study to 
single cell depth representing every cell in the tumor. Although this study achieved unprecedented 
sequencing depth, we cannot rule out the possibility that the linear curves seen in Figure S1 might begin 
to level off (i.e., develop upward curvature) at still greater depth. 
 
Dependence on growth pattern and evaluation of consequences for estimation of actual and 
effective mutation rate in tumors26) 
The results described above correspond to an average mutation frequency of 7.1 X 10-7 mutations per base 
per effective cell division. The actual number of cell divisions and average mutation frequency per base 
per actual cell division cannot uniquely be determined from this analysis, as they depend on the actual cell 
birth and death rates, whether these are constant, and whether the growth pattern is exponential or 
Gompertzian. Table S4 illustrates various scenarios and the numbers of actual cell divisions and mutation 
rates per actual cell division, which would be consistent with the data for the given scenario.  
 
  
As illustrated in row 1 of the table, if there is simple exponential growth and no cell death, actual and 
effective mutation frequencies and actual and effective cell division numbers are identical. The birth and 
death rates from row 2 were estimated from colorectal cancer clinical data26.  As illustrated in rows 2 and 
3, as the birth and death rates become more closely matched, it takes more actual cell divisions to 
successfully increase the cell numbers by 1, and the actual number of cell divisions increases with a 
compensatory decrease in the average mutation frequency per actual cell division to account for the 
observed results.  
In Gompertzian growth, the exponential growth rate exponentially decreases, reaching zero when the 
number of cells in the tumor reaches the carrying capacity C. At any given moment, the growth dynamics 
are given by the Gompertz differential equation: 
 

𝑑𝑛
𝑑𝑡 =	𝑔c𝑛

ln(𝐶) − ln	(𝑛)
ln	(𝐶)	  

 (Equation S23), 
 
where n is the number of cells in the tumor, C is the maximum carrying capacity, and g0 is the initial net 
growth rate. We assume in the calculations and simulations for the table that the carrying capacity is 1010 
cells, 10 cm3, a conservative assumption, since larger lesions are commonly seen, and that the tumor 
grows to 109 cells by the time of diagnosis.  
 
Gompertzian growth dynamics can be implemented in several ways. In row 4, we make the assumption 
that birth and death rates both proportionally decrease with increasing tumor size until they both equal 
zero at the carrying capacity. This maintains a constant ratio of birth to death rates, and, therefore, 



equation 1 Methods can be integrated and equation S6 still holds. In this simplified case, Gompertzian 
growth dynamics is straightforward to analyze (row 4) and produces identical results to the comparable 
exponential case. 
 
However, a more realistic Gompertzian implementation may be a constant death rate and the birth rate 
decreasing to equal it at the carrying capacity. In this case, 
 

𝑏 − 𝑑
𝑏 = 	

ln(𝐶) − ln(𝑛)
ln	(𝐶)  

 (Equation S24), 
 

where the actual number of cell divisions required to produce a new cell is b/(b-d). This case was 
simulated by dividing the growth from a single founder cell to 109 cells into 30 doublings, with each 
doubling requiring more cell divisions, due both to the number of “effective” cell divisions needed to 
double the numbers, and to the increasing value of b/(b-d). The total number of cell divisions is given by: 
 

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙	𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠	 = 	 d
𝑛	𝑏(𝑛)

𝑏(𝑛) − 𝑑(𝑛)

JbZ/k

K�<���J��,Jbf

= 	 d
𝑛	 ln(𝐶)

ln(𝐶) − ln	(𝑛)

JbZ/k

K�<���J��,Jbf

 

 (Equation S25) 
 
It should be noted in Equation S25 that the estimate of total cell divisions is an n-weighted sum and is 
dominated by the larger values of n where more actual divisions are required to create a single new cell. 
In contrast, as shown above by equation S4, the observed mutations from each doubling are equal in 
number. This is because, even though later doublings involve more cells, mutations arising in any single 
cell are in rarer subclones and are less likely to be observed at limited depth. These effects cancel each 
other out. Thus, the total observed mutations are proportional to an unweighted sum of b/(b-d) = 
ln(C)/[ln(C) – ln(n)]. 
 
As a result of this effect, in row 6 for example, the number of actual cell divisions increases relative to 
row 1 by 7.2-fold, potentially implying that the average mutation frequency per actual cell division should 
be 7.2-fold lower than the effective mutation frequency derived from the analysis. However, in this 
scenario, a large fraction of the actual mutation burden is generated later in the process of tumor growth 
when the tumor begins to approach 10% of the carrying capacity and, therefore, there are many actual cell 
divisions per effective cell division. These later mutations are present only in very rare subclones since 
they arise very late in tumor development, and would go largely unobserved, even at the high depths 
achieved in this study. Hence, the effective mutation frequency is 3-fold underestimated in this scenario, 
and, thus, the actual mutation frequency, while 7.2-fold lower than the true effective mutation frequency, 
is only 2.4-fold lower than the apparent effective mutation frequency.  
 
At high enough depth in the scenarios of rows 5 and 6, increasing mutations should be detectable 
corresponding to these rare subclones, leading to downward curvature (increasing negative slope) and an 
apparent positive intercept of the lines in Figures S1a-e. These were not observed, either because the 
Gompertzian models in rows 5 and 6 are not applicable or because the depth was insufficient to 
demonstrate this effect.  
Row 5 utilizes the birth and death rates from Diaz et al.26, as starting values when the tumor is small. Row 
6 assumes a death rate of zero and an exponentially decreasing birth rate.  
 
The effective mutation rate per nucleotide per new cell added to the tumor is the experimental observable 
in this work. The actual mutation rate per nucleotide per actual cell division cannot be determined without 



knowledge of the proliferation history of the tumor. For a given measured effective mutation rate, the 
inferred underlying actual mutation rate will be lower the more closely matched cellular birth and death 
rates are. When cell birth and death rates are closely matched, each effective cell division, i.e. increase in 
cell number by one, reflects more actual cell divisions. 
 
The actual mutation rate per nucleotide per actual cell division reflects the underlying biophysical 
properties of the cell’s DNA repair and replication machinery, and cannot change without a change in 
mutagens in the environment or a change in the DNA repair or replication machinery. We assume the 
actual mutation rate to be constant for much of tumor growth (see assumptions and approximations of 
model above). 
 
In some growth patterns, such as Gompertzian growth, the cell birth and death rates become more closely 
matched as the tumor grows. Given a constant actual mutation rate, the effective mutation rate will thus 
increase over time. However, mutations occurring later in the tumor’s history are rarer and harder to 
detect. Thus, sequencing fewer than every cell in the tumor will, under Gompertzian growth, lead 
preferentially to detection of mutations from earlier timepoints in the tumor’s history, prior to the increase 
in effective mutation rate. This will lead to an underestimate of the average effective mutation rate over 
time, and an underestimate of the mutational burden within the tumor. Our conclusion that no nucleotide 
locus is wild type in every cell will be even more definite under these circumstances. 
 
We have observed, as predicted for exponential growth, a straight line of the curve of the natural 
logarithm of the unmutated fraction of sites when plotted against sequencing depth. Gompertzian growth 
predicts increasing slope, and therefore curvature, as the effective mutation rate continually increases. 
Thus, we find no evidence for Gompertzian growth as far forward as we can see in time. We cannot rule 
out that Gompertzian growth may occur later in tumor development; this would only further increase the 
mutation burden as described above. 
 
Consequences for the mutator hypothesis23,27 

The mutator hypothesis states that the actual mutation frequency per base per cell division in tumors is 
higher than the actual mutation frequency per base per cell division in normal tissues. Lynch (2010) 
reviews a variety of estimates of mutation frequencies in normal tissues23, including studies of the 
development of retinoblastoma in heterozygous carriers, studies of the APC gene in intestinal epithelia, 
studies of the HGPRT genes in cultured lymphocytes and fibroblasts, and studies of the PigA gene in 
cultured lymphocytes. These estimates range from 2.7 X 10-10 to 1.5 X 10-9 mutations per base per actual 
cell division. Roach et al. sequenced whole genomes of a family of four and only 70 mutations were 
identified between generations27.  They estimated a human inter-generational mutation frequency of 1.1 X 
10−8 per nucleotide position per haploid genome. Assuming that by adulthood an individual gamete 
undergoes 100 cell generations, the mutation frequency per cell generation would be 1 X 10−10 per 
nucleotide. 
  
In contrast, the estimated mutation frequencies per single base per actual cell division in colorectal tumors 
in a large variety of tumor growth scenarios including Gompertzian growth are illustrated in Table S4, 
ranging from 2.8 X 10-8 to 7.1 X 10-7, a numerically higher range than estimated for normal tissues. This 
comparison would appear to generally support the mutator hypothesis. However, this conclusion cannot 
be definitive as the actual growth patterns of both normal tissues and tumors are still unknown. 
 
Probability of existence of at least one tumor cell with a mutation at a given base.  
Mathematical models of mutational acquisition of drug resistance in cancer have been created by many 
groups beginning with Goldie and Coldman28. Based on this framework, other modelers29.30 concluded 
that drug resistance to single agent therapy might frequently be pre-existing. Loeb et al31 and Sottoriva et 
al12 pointed out that mutational diversity leading to drug resistance would be further enhanced in the 



presence of a mutator phenotype, while Sottoriva and colleagues5,12 emphasized the point that neutral 
evolution would also enhance diversity.  
 
Bozic et al7 modeled the acquisition of drug resistance using a branching pathways approach, 
demonstrating in detail that single agent therapy would inevitably lead to drug resistance, that the 
probability of pre-existing resistance would continuously increase with tumor size, and that simultaneous 
combinations would outperform successive single agents if the components of the combination could be 
safely given at effective dosages. Beckman, Schemmann, and Yeang16 and Yeang and Beckman32 studied 
this problem in the setting where simultaneous combinations require meaningful dose reduction due to 
toxicity. They found that frequent adaptation with pulses of simultaneous combinations and full dose 
monotherapy governed by an evolutionary model and subclonal tracking greatly outperformed the 
application of simultaneous combinations until failure.    
 
The above authors all discussed the likelihood that many instances of drug resistance are due to pre-
existing resistant subclones at diagnosis, and this idea has been validated in numerous studies where 
resistance mutations found at clinical relapse were detected as minority subclones at diagnosis33. 
However, these studies relied on low depth sequencing. Moreover, many of these approaches relied on the 
infinite sites assumption, leading to underestimates of the total mutational burden in tumors sufficiently 
large to be clinically detected, as discussed above. Based in the current work we conclude that pre-
existing resistance to single agent therapy is universal and inevitable. 
 
The average number of cells harboring any mutation of interest will be kmut-eff N, which for a tumor of 109 
cells means there will be on average 700 cells resistant to any single agent at diagnosis, even if there is 
only one mutational mode of resistance.  Moreover, we can calculate the likelihood of resistance to more 
than one non-cross resistant therapy occurring simultaneously in the same cell, finding it is low at 
diagnosis but that it increases as the tumor grows, in agreement with Bozic et al7. However, given our 
highly accurate sequencing methods, and our theoretical model which is free of the infinite sites 
assumption and therefore applicable to clinically relevant tumor sizes, our estimates of these quantities 
will be more accurate and more generally applicable. These likelihoods correspond only to resistance due 
to mutations alone. As there are other sources of resistance (see below), we can at times see immediate 
resistance to non-cross resistant combinations in the clinic.  
 
From the average value of kmut-eff of 7.1 X 10-7, we determine the likelihood that every cell is unmutated at 
any given neutral single base locus at diagnosis. We assume the tumor burden ranges from 1 cm3, the 
approximate limit of computed tomography detection, to 10 cm3, representing multiple or slightly larger 
lesions at diagnosis. Many authors assume 109 cells/cm3, but a recent study14 suggests there could be as 
few as 108 cells/cm3. Thus, depending on the size of the tumor at diagnosis and their cellular density, a 
patient could have 108 – 1010 malignant cells.  Assuming 109 cells, and applying equation S8, the 
probability that any given locus is unmutated at every cell in such a small lesion is 10-308. Thus, it is 
extremely unlikely that there is any nucleotide in DNA that is wild type in every cell, even at diagnosis. 
This result is robust. If we have overestimated the effective mutation frequency by a factor of 10, the 
probability of a neutral single base locus being unmutated in every cell in the lesion is 10-31. For the 
probability of a neutral single base locus being unmutated in every cell in the tumor being as high as 1%, 
we would have had to have overestimated the effective mutation frequency by 150-fold. The above 
figures become even more striking as a cancer grows from 109 cells at diagnosis to 1011-1012 cells in the 
terminal phase.  
 
It is apparent from the above discussion that any given genomic position that is capable of encoding 
resistance to any therapy is highly likely to be mutated in at least one tumor cell at diagnosis, unless 
mutation of the position confers a significant fitness disadvantage in the absence of therapy. Moreover, it 
is likely in most cases that multiple single base loci in the genome confer resistance; further increasing the 



likelihood that at least one resistant cell will be present. While the number of single base sites in the 
genome conferring a resistance phenotype is unknown, and likely varies depending on the therapy, a 
common assumption is that there are on the order of 100 sites in the genome, mutation of which may 
confer resistance18,26. 
 
These considerations raise the obvious point of the need for more than one non-cross resistant component 
of therapy, whether given as simultaneous combinations7 or as a complex sequence of simultaneous 
combinations and monotherapy pulses16,32.  Assuming complete non-cross resistance, and independence 
of acquisition of the resistance mutations, the probability Pno simultaneous resistance, of having no single cell 
simultaneously resistant to K non-cross resistant agents, for which each has R sites in the genome, 
mutation of which can cause therapy resistance, in a tumor of N cells is approximately,  in analogy with 
equation S8:  
 

𝑃J�	��;<�=GJ?�<�	�I���	I?���=GJ�? = 	𝑒F(�	LMNOPQRR)�	Z 
 (Equation S26) 
 
In table S5, we calculate values of Pno simultaneous resistance for a number of scenarios of treatment with 2, 3, 
and 4 non-cross resistant therapies as a function of tumor burden N (109-1012) and number of single base 
sites in the genome conferring resistance (R), assuming kmut-eff = 7.1 X 10-7 
 
Several generalizations are evident from the table. One is that the required number of non-cross resistant 
agents to ensure no fully resistant cell depends heavily on both the tumor burden and the number of bases 
in the genome that confer neutral fitness resistance mutations. The table suggests that, in the event of a 
single base in the entire genome that confers resistance, 2 non-cross resistant therapies are required for 
low-moderately low tumor burdens (109-1010 cells), whereas 3 non-cross resistant therapies are required 
for higher tumor burdens in the 1011-1012 range. However, if 100 neutral single base loci confer resistance 
to each agent, the number of required non-cross resistant agents rises to 3 and 4 in low/moderate and high 
tumor burdens respectively. 
 
Yet, the challenge is even greater for a variety of reasons3449: 
 

- The above does not consider other genetic mechanisms of resistance such as chromosomal 
rearrangements and copy number variation (CNV). CNV also increases the number of alleles 
available for dominant mutations, while making homozygosity more unlikely in the case of 
recessive mutations. 

- The above does not consider epigenetic changes leading to resistance. 
- The above does not consider non-genetic forms of resistance, such as feedback loops hard-wired 

into cells. Each non-cross resistant therapy may itself consist of several individual agents 
designed to hit several nodes of a signalling network corresponding to only one genetic state. 

- The above does not account for partial effectiveness of therapy, inhomogeneous distribution of 
therapies into tumor tissues, or interactions of tumor cells with each other or with the host 
tissues. 

 
Simulations of unique subclones observed as a function of sequencing depth in the presence and 
absence of selection: sensitivity for ruling out selection model.  
Exact simulations for these cases were performed using deterministic models.  
 
For the neutral evolution case, we use equation S6 above for the fraction of unmutated bases, a capture set 
of 10 kilobases, and kmut-actual of 2.0 X 10-7 per nucleotide per actual cell division, which fits our data given 
the birth and death rates of 0.25/day and 0.18/day estimated based on experimental data17 (line 2, Table 



S4).  The number of mutated sites is calculated from the fraction unmutated at the depths indicated in 
Figure 2 (main text). 
 
In the selection case, we consider three groups of loci, i = 1, 2, 3 where i = 1 is positively selected loci, i = 
2 is neutral loci, and i = 3 is negatively selected loci. 
 
Let s equal the relative advantage of each group over its nearest inferior category. Let ri denote the fitness 
of group i. We assume r2 = 1, r1 = 1 + s, r3 = 1 –s in the simulation although the equations below are more 
general.  
 
Let b be the common birth rate for all these cells, and let di be adjusted death rates calculated from the 
relative fitnesses assumed above. Further, let the age of the tumor from the formation of the founder cell 
to the time of biopsy be T in days, or bT in cell generations, where b is the birth rate in cell 
generations/day. Cells formed at time t with r > 1 are enriched, and cells with r < 1 depleted, according to: 
 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑒(I�Ff)�(�F=) 
 (Equation S27) 
 
For any of the three types of mutations, the number of detectable mutations at depth D is the time integral 
of the instantaneous number of detectable mutations at time t from 0 to T. As demonstrated above, the 
probability of detecting a neutral mutation in a particular locus from a cell formed at time t is a constant, 
kmut-eff D, and therefore may be taken outside of any integral over time. However, for positively and 
negatively selected genes, this constant is multiplied by an enrichment factor that is not constant (equation 
S27), and when integrated over time from 0 to T yields an average enrichment factor: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑓(𝑟�, 𝑇) = 	𝑒(I�Ff)�	� 	
∫ 𝑒F(I�	Ff)	�=�
c 𝑑𝑡

𝑇 =
𝑒(I�Ff)�� − 1
(𝑟� − 1)𝑏𝑇

 

 (Equation S28) 
 
As a check on this, we can show that the limit of the enrichment factor as ri → 1, or as T → 0 is 1, as 
would be expected in the limit of no enrichment (expand the exponential in a Taylor series and truncate at 
the linear term, or apply L’Hôpital’s rule directly to obtain these limits). 
 
With this enrichment factor, and the fact that D and kmut-eff are constants, we observe that: 
 
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒	𝑙𝑜𝑐𝑢𝑠	𝑜𝑓	𝑡𝑦𝑝𝑒	𝑖 = 𝑘;<=–?@@𝑓(𝑟�, 𝑇)𝐷 

 (Equation S29) 
 
Let us further denote the relative prevalence of the three type of sites by 𝑎�, where ∑ 𝑎�n

�bf = 1. Finally, for 
convenience, let us term βi = kmut-eff f (ri, T). 
 
Then, the fraction of unmutated sites of type i is 
 

𝐹GHHGI?J=–<J;<=G=?K� = 𝑒F��S 
 (Equation S30) 
 
and the fraction of unmutated sites overall is 
 



𝐹GHHGI?J=–<J;<=G=?K	��=�	�?�?�=��J =d𝑎�

n

�bf

	𝑒F	��S 

 (Equation S31). 
 
The simulations utilize T = 428 days representing 30 doublings from founder cell formation given the net 
doubling rate of 0.07 (b-d). Thirty doublings is sufficient for the single founder cell to grow to a 
diagnosable lesion with 109 cells.  
 
For the selection coefficient s, we have utilized values from 0.04 to 0.25. Bozic et al25 have modeled the 
selection coefficient based on evaluation of putative passenger and driver mutations in astrocytic 
glioblastoma and pancreatic adenocarcinoma sequences, and validated their conclusions by predicting the 
kinetics of appearance and growth of polyps in familial adenomatous polyposis in two of three datasets. 
They reached the conclusion that, even for APC, s is very small: 0.004. However, the key equation in 
their analysis is equation 2, in which s appears in a ratio with the mutation rate. They then use a mutation 
rate three orders of magnitude lower than what we have determined. Using our mutation rate, their 
equation 2 would give a value of s of nearly 4, which is in accord with the value of 2.76 more recently 
measured by direct observation of colonic stem cell crypt evolution using fluorescently labeled cells in 
genetically engineered mice35. Moreover, since the modeling of polyp appearance kinetics does not 
account for the likelihood of elimination of most nascent polyps by immune surveillance and other factors 
which may confound comparisons of tumor initiation kinetics with clinical observations10, the polyp 
modelling may not further determine their parameters. Williams et al36 have examined bulk sequencing 
data from multiple sources, looking for deviations from neutral evolution in the curve of variant allele 
frequency versus total mutation burden (as a surrogate for time). They have not detected evidence of a 
value of s below 0.2, which they also state as their limit of sensitivity.  
 
We varied a1 from 0.004 to 0.1 and s from 0.04 to 0.25, keeping a1 = a3 for convenience (the value of a3 
does not matter as it is unlikely we have sequenced deeply enough to find mutations at negatively selected 
sites). For each combination of a1 and s, we varied kmut-eff  and the y intercept to obtain the best fit to 
experimental data, plotted as ln (fapparent-unmutated) versus depth. Based on the various population genetic and 
experimental estimates for normal tissue discussed above, kmut-actual must be ≥ 10-10, and since kmut-eff  ≥  
kmut-actual,  we also have kmut-eff  ≥ 10-10.  For both neutral and selection models, best fit absolute residuals 
were evaluated as a fraction of their corresponding datapoint, resulting in an average fractional absolute 
residual and a 95% confidence interval thereof for both the selection model and the neutral model. 
Selection models were considered ruled out when their average fractional absolute residual exceeded the 
upper 95% confidence limit of the comparable statistic for the neutral model. In Figure S2, we see that for 
a1 = 0.015, selection models with s ≥ 0.23 are ruled out.  
 
We thus found, in agreement with Williams et al36, that we could rule out selection of s ≈ 0.2 or stronger, 
as optimal fit to the data required kmut-actual  ≤ 10-10. We note35  that values of s for strong drivers range 
from about 1 to 4. It is difficult to rule out selection if a1 < 0.01 as it determines the amplitude of 
curvature. 
 
The ability to rule out selection models improves if we demand that the graph intersect the origin, a 
theoretical point corresponding to no unique subclones observed at a sequencing depth of zero. Further, if 
we demand that kmut-eff  be that estimated from the linear model, the selection model is more easily ruled 
out. Figure 2 in the main text demonstrates this in that when kmut-eff is constrained to be the same as the 
neutral model, a selection model with a1 = 0.015 and s = 0.125 is easily ruled out by visual inspection. 
Figure 2 in the main text is graphed according to the more intuitive Williams et al5 presentation, an 
approximation that is valid for the sequencing depths utilized in this study.  
 



In principle, exact simulation of the selection model will in general not give a straight line, but a triphasic 
curve with lesser absolute slope with increasing duplex sequencing depth, resulting in curvature (upward 
slope with downward curvature for the Williams et al5 formulation; downward slope with upward 
curvature for our approach). The initial phase at low depth (high variant fractions) is dominated by 
selected loci which accumulate rapidly in the majority of cells. Then a second phase follows representing 
the neutral loci which accumulate more slowly and at lower variant fractions, and thus become visible at 
higher depth. Finally, a third phase representing small numbers of negatively selected genes at still lower 
variant fractions may be observed.   If we had modeled a continuous distribution of fitness, there would 
be a continuous downward curvature rather than 3 phases. However, the ability to observe all three 
phases, or indeed to observe curvature, depends on the parameters and the sequencing depths chosen. We 
can’t rule out very weak selection or selection occurring at a very small fraction of loci. However, these 
latter two selection cases are themselves close to neutral evolution.   
 
  



 

Fig. S1. ln (Fapparent unmutated) versus sequencing depth for tumors 1 – 5 (a – e), Table S3. Black symbols 
represent experimental data. Red symbols represent subsampled data. Line represents regression line 
through points shown. Shaded area is the 2-sided 95% confidence interval of the experimental data as 
determined by the student’s t test with 2 degrees of freedom. Of the total of 20 instantiations of 
subsampling, 19/20 (95%) are within the 95% confidence interval of the experimental data. The exception 
is shown in sub-figure e. 
 
  



 

Fig. S2. Sensitivity threshold for ruling out selection models. Average absolute fractional residual curves 
for best fit neutral (red) and selection (blue) models are plotted (solid lines) along with their 95% 
confidence limits (dashed lines) as a function of the strength of selection s. Reference data was one of the 
5 fresh frozen CRC tumors that we sequenced at multiple depths, plotted according to the approach in 
Online Methods, with the natural logarithm of the unmutated fraction of the capture set plotted against 
depth. For the selection model, a1 was set at 0.015, indicating 1.5% of loci were positively selected (97% 
were neutral and 1.5% negatively selected). For each model kmut-eff and the y intercept value (theoretically 
zero) were varied in a search for the optimal fit. kmut-eff was constrained to be ≥ 10-10. For each point in the 
data, absolute values of the residual as a fraction of the data point itself were recorded. These values were 
averaged across the data points for each model. For s > 0.23 the average absolute fractional residual is 
greater than the upper 95% confidence limit of the same statistic for the neutral model, suggesting that 
this strength of selection is ruled out. Strong drivers typically have s on the order of 1-450. See 
Supplemental Methods for details of simulation. 
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Fig. S3. Signatures of mutation for tumors and associated normal samples used for regression analysis.  
Frequencies represent counts of mutations divided by total number of instances of that context sequenced. 
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Fig. S4. Plot of cosine similarities of mutation signatures, grouped by type of comparison.  These results 
show that, from the context of a tumor sample, there is a significant difference between another tumor 
sample and a GBM sample.  Detailed results of an anova of this data are discussed in Table S6.   
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Table S1. Oligonucleotide sequences used. ID corresponds to Truseq indexes; N = random 
nucleotide sequence; I = inosine. 
 

ID Sequence 
MWS13 AATGATACGGCGACCACCGAG  
MWS20 GTGACTGGAGTTCAGACGTGTGC 
MWS21 CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGC 

MWS51 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT
CT 

MWS55 
TCTTCTACAGTCANNNNNNNNNNNNAGATCGGAAGAGCACACGTCTGAACTCCAG
TCAC 

MWS60 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT
CTIIIIIIIIIIIITGACT 

MWS61 GTCAIIIIIIIIIIIIAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC 
  



Table S2. Parameters used in the core model or in the discussion. Input parameters are experimentally 
measured or inferred (number of cells in a tumor inferred from size). Output parameters are derived from 
the analysis. Several parameters not used in the model are discussed herein to clarify their relationship to 
the model. *Number of effective cell divisions is the net number of events resulting in a net increase in 
the tumor population by 1 cell. For a tumor of N cells originating from a single founder cell, the number 
of effective cell divisions is by definition N-1. Hence the parameter NE is directly estimable from the 
tumor size. **Subclonal mutations are called relative to the tumor clonal reference sequence, not the 
germline sequence. The tumor clonal reference sequence is presumably derived from the founder cell(s). 
 

Parameter Symbol Use in current model 
Number of effective cell divisions* NE Derived output parameter 
Number of actual cell divisions NA Not used in core model 
Cell birth rate b Not used in core model 
Cell death rate d Not used in core model 
Number of cells in tumor at time of analysis N Input parameter 
Number of cells in tumor at earlier time t n(t) Intermediate parameter used 

in mathematical formalism 
Mutation frequency per base per effective cell 
division* 

kmut-eff Derived output parameter 

Mutation frequency per base per actual cell 
division 

kmut-actual Not used in core model 

Duplex Sequencing depth D Input parameter 
Fraction of bases sequenced at which no 
unique subclonal mutation is observed**  

Fapparent-

unmutated 

Input parameter 

  



 

Table S3. Range of depths, number of independent depths sequenced, linear correlation coefficient 
R, square of the linear correlation coefficient (fraction of variation of data explained by linear 
model), estimated kmut-eff (minus the slope), y-intercept, and its two-sided 95% confidence interval 
based on t-test with 2 degrees of freedom for 5 colorectal tumors plotted according to equation 8. 
Results shown graphically in Figures S1a-e. 
 
Tumor Range 

of depth 
Number 
of points 

R R2 kmut-eff y-
intercept 

95% confidence 
interval, y-intercept 

1 1792-
8665 

4 0.953 0.908 6.44 
X 10-7 

-3.12 X 
10-4 

+3.12 to -3.74 X 10-3 

2 1137-
10872 

4 0.979 0.958 6.02 
X 10-7 

-8.89 X 
10-4 

+1.62 to -3.39 X 10-3 

3 2146-
9590 

4 0.967 0.935 5.56 
X 10-7 

-2.21 X 
10-6 

+2.66 to -2.67 X 10-3 

4 895-
6700 

4 0.999 0.999 1.45 
X 10-6 

1.46 X 
10-4 

+7.83 to -4.90 X 10-4 

5 1299-
7639 

4 0.972 0.944 2.77 
X 10-7 

-1.11 X 
10-3 

-2.09 X 10-4  
to -2.09 X 10-3 

 
  



Table S4. Effective and actual cell division numbers and mutation frequencies per base per effective or 
actual cell division for different growth scenarios, including varying cell birth and death rates, 
exponential growth, and several variations of Gompertzian growth. 1Calculated using equations 1 and 8; 
2Birth and death rates as published8; 3 Calculated using equations 1 and 8. 4Simulated using equations 1, 
8, 12, and 13, assuming the carrying capacity (defined below) is 1010 cells and the tumor is sampled at a 
size of 109. 5In the scenarios in the bottom two rows, the effective mutation frequency is an apparent 
effective mutation frequency. The true effective mutation frequency is approximately three fold higher 
as determined by the simulation. 
 

 Model 
Growth 
pattern 

Birth rate 
(b)  

(per day) 

Death rate 
(d)  

(per day) 

Number of 
actual cell 
divisions 

(founder cell 
to 109) 

Net number 
of effective 

cell 
divisions 

(founder cell 
to 109) 

Actual 
mutation 
frequency 

(per base per 
actual cell 
division) 

Effective 
mutation 
frequency 

(per base per 
effective cell 

division)5 

1 Exponential1   0.25 0 109 109 

7.1 X 10-7 
(per base per 

actual cell 
division) 7.1 X 10-7 

2 Exponential1,2   0.252 0.182 3.57 X 109 109 2.0 X 10-7 7.1 X 10-7 

3 Exponential1   0.25 0.24 2.5 X 1010 109 2.8 X 10-8 7.1 X 10-7 

4 
Simplified 
Gompertzian2,3 

b and d 
decreasing 
in 
proportion 
with 
increasing 
tumor size 

0.25, 
decreasing 
to 0 at 
carrying 
capacity 

0.18, 
decreasing 
to 0 at 
carrying 
capacity 3.57 X 109 109 2.0 X 10-7 7.1 X 10-7 

5 Gompertzian2,4 

Relative 
survival 
probability 
(b-d)/b 
decreasing 
with 
increasing 
tumor size  

0.25, 
decreasing 
to 0.18 at 
carrying 
capacity 0.18 2.57 X 1010 109 8.4 X 10-8 7.1 X 10-7 

6 Gompertzian2,4 

Relative 
survival 
probability 
(b-d)/b 
decreasing 
with 
increasing 
tumor size 

0.25, 
decreasing 
to 0 at 
carrying 
capacity 0 7.20 X 109 109 2.9 X 10-7 7.1 X 10-7 

 
  



Table S2. Probability Pno simultaneous cross resistance that no cell in a cancer of N total cells will be resistant 
to all of K non-cross resistant therapies, where in each case there are R neutral single bases in the 
genome, mutation of which confers resistance.  
 

Number of 
cells (N) 

Number of neutral 
single base resistance 
loci (R) 

Number of non-
cross resistant 
therapies (K) 

Probability that no cell in the tumor 
will be resistant to all therapies (Pno 

simultaneous cross-resistance) 
109 1 2 0.999 
109 100 2 6.5 X 10-3 

109 100 3 > 0.999 
1010 1 2 0.995 
1010 100 2 1.3 X 10-22 

1010 100 3 0.996 
1011 1 2 0.951 
1011 1 3 1.000 
1011 100 2 < 1 X 10-100 

1011 100 3 0.965 
1011 100 4 > 0.999 
1012 1 2 0.604 
1012 1 3 > 0.999 
1012 100 3 0.699 
1012 100 4 > 0.999 

  



Table S6. Range and p-values for Tukey HSD ad hoc test based on anova for data in Figure S4. 
GBM signatures are significantly different from those of CRC tumor or surrounding normal tissue. 
Regarding the comparison of CRC and surrounding normal, the uncorrected p value suggests a 
significant difference, but corrected for the multiple statistical comparison the p value is no longer 
significant.   
 

Comparison 
Mean 
Diff. Lower Upper p value 

[GBM-GBM] –  
[GBM-CRC_Normal]  0.1079 -0.0351  0.2509 0.2502 

[GBM-CRC_Normal] –  
[CRC_Normal-CRC_Normal] -0.0939 -0.2369  0.0491 0.4028 

[CRC_Tumor-CRC_Normal] –  
[CRC_Normal-CRC_Normal]  0.0098 -0.1332  0.1527 0.9999 

[CRC_Tumor-CRC_Tumor] –  
[CRC_Tumor-CRC_Normal]  0.1508  0.0078  0.2937 0.0325 

[GBM-CRC_Tumor] –  
[CRC_Tumor-CRC_Tumor] -0.3474 -0.4904 -0.2044 0.0000 

[GBM-GBM] –  
[GBM-CRC_Tumor]  0.2009  0.0579  0.3438 0.0012 
 
  



Dataset S1 (separate file) 
Capture probes used for targeted capture in this study   
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