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Summary: SPsimSeq is a semi-parametric simulation method for bulk and single cell
RNA sequencing data. It simulates data from a good estimate of the actual distribution of
a given real RNA-seq dataset. In contrast to existing approaches that assume a particular
data distribution, our method constructs an empirical distribution of gene expression data
from a given source RNA-seq experiment to faithfully capture the data characteristics of real
data. Importantly, our method can be used to simulate a wide range of scenarios, such as
single or multiple biological groups, systematic variations (e.g. confounding batch effects),
and different sample sizes. It can also be used to simulate different gene expression units
resulting from different library preparation protocols, such as read counts or UMI counts.
Availability and implementation: The R package and associated documentation is
available from https://github.com/CenterForStatistics-UGent/SPsimSeq.
Supplementary information: Supplementary data are available at bioRyiv online.

Introduction

The number of computational tools for the analysis of bulk and single cell RNA sequencing
(scRNA-seq) data is growing rapidly [8]. Several methods have been introduced for a single
task, e.g. testing for differential gene expression (DGE). These tools typically pass through
an evaluation process, often focusing on false discovery rate control and sensitivity. While
such an evaluation often relies on simulated data with a built-in truth, to realistically assess
the performance of these data analysis tools, the simulated data must faithfully recapitulate
the data characteristics of real data [6, 5].
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Various methods have been proposed for simulating either bulk or single cell RNA-seq
data. The starting point is typically a distributional assumption of the gene expression data,
for example the (zero inflated) negative binomial distribution [7]. While these parametric
simulation methods are flexible and allow simulating various scenarios by generating syn-
thetic data with good fit to the real data [5], such strong distributional assumptions do not
hold in general. Due to the intrinsic biological variability and technical noise, scRNA-seq
data sometimes show multimodal distributions [2]. There are also fully non-parametric ap-
proaches that employ subsampling from real data [3]. Although non-parametric simulators
generate realistic synthetic data, they have limited flexibility and require a large source
dataset to subsample from [1].

Here, we present a new simulation procedure for simulating bulk and single cell RNA-
seq data. It is designed to maximally retain the characteristics of real RNA sequencing
data with reasonable flexibility to simulate a wide range of scenarios. In a first step, the
logarithmic counts per million (log-CPM) values from a given real data set are used for
semi-parametrically estimating gene-wise distributions. This method is based on a fast
log-linear model estimation approach developed by [4]. Arbitrarily large datasets, with
realistically varying library sizes, can be sampled from these distributions. Our method
has an additional step to explicitly account for the high abundance of zero counts, typical
for scRNA-seq data. This step models the probability of zero counts as a function of the
mean expression of the gene and the library size (read depth) of the cell (both in log scale).
Zero counts are then added to the simulated data such that the observed relationship (zero
probability to mean expression and library size) is maintained. In addition, our method
simulates DGE by separately estimating the distributions of the gene expression from the
different populations (for example treatment groups) in the source data, and subsequently
sampling a new dataset from each group.

Our simulation procedure enables benchmarking of statistical and bio-informatics tools
with realistic simulated data. In the result section, we demonstrate that the simulated data
from our method retains the characteristics of the source data in terms of variability, distri-
bution of mean expression, fraction of zero counts, and the relationship to each other (Figure
1). The details of the procedures and implementations can be found in the supplementary
file. Data simulated with our procedure are compared with the original real source data and
with data simulated with the parametric Splat procedure [7], which uses a gamma-Poisson
hierarchical model (splatter R Bioconductor package, version 1.6.1, [7]).

Results

Using three different source RN A-seq datasets (one bulk and two single cell) we benchmarked
the novel SPsimSeq simulation method. In particular, we compared the simulated data (us-
ing SPsimSeq and Splat) with the real data with respect to various gene and sample (cell)
level characteristics as used by [5] and [7]. To simulate bulk RNA-seq data using Splat,
we disabled its feature for adding dropouts (dropout.type="none”), which is specifically
designed for scRNA-seq data simulation. The results generally show that our simulation
procedure sufficiently captured the properties of the real data both for bulk and single cell
RNA-seq (Figure 1 and supplementary file). The coefficients of variation, variability, dis-
tribution of mean expression and fraction of zero counts (per gene and sample/cells) in
SPsimSeq simulated data resemble that of the real datasets. Compared with Splat, SPsim-
Seq generates more realistic data with respect to the majority of the considered metrics. In
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Figure 1: (A) Distribution of the coeflicients of variations (CV) from the real and simu-
lated (SPsimSeq and Splat) bulk RNA-seq datasets. (B) The relationship between the gene
specific mean expression (in log-CPM) and three characteristics (fraction of zeroes, vari-
ance, and CV of each gene) from the real and simulated scRNA-seq datasets (read-counts).
The curves show the smoothed relationship using LOESS regression. (C) The cumulative
distribution of fraction of zero counts per gene.

the supplementary file, we present the detailed benchmarking results including the applica-
tion of SPsimSeq for simulating scRNA-seq data with read-counts and UMI-counts (unique
molecular identifier).
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