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Materials and Methods 
 
Overview of the SLiM non-Wright-Fisher model 
 
We conducted non-Wright-Fisher (nonWF) simulations using SLiM 3 (Haller & Messer, 2019). 
The impetus for this model was to create a population genetic simulation framework that could 
handle more ecologically-realistic scenarios by relaxing many of the unrealistic assumptions of 
the Wright-Fisher model (Haller & Messer, 2019). These include the use non-overlapping 
generations and the assumption of a fixed population size that is not influenced by fitness, both 
of which can be limiting when trying to model the extinction of a population due to genetic 
factors.  
 
To avoid making these assumptions, the SLiM nonWF model instead models population size (N) 
as an emergent property of individual absolute (rather than relative) fitness and a user-defined 
carrying capacity (K). Thus, if individual fitness declines, a population can go extinct in a manner 
that is more biologically realistic. In this framework, there are overlapping generations, such 
that individuals with high fitness are likely to live and reproduce for multiple generations. At the 
start of each generation, each individual randomly mates with another individual in the 
population, with one offspring being produced for each mating. At the conclusion of each 
generation, individuals die off with a probability given by their absolute fitness (ranging from 0 
to 1), which is scaled by K / N to model the effects of density dependence.  
 
 
Demographic scenarios used in the simulations 
 
We explore two main demographic scenarios in our simulations: a population contraction 
scenario and a genetic rescue scenario. For the population contraction scenario, we tested four 
ancestral carrying capacities of Kancestral = {1,000, 5,000, 10,000, 15,000}. After a-burn in of 
10*Kancestral ƎŜƴŜǊŀǘƛƻƴǎΣ ǿŜ ŎƻƴǘǊŀŎǘŜŘ ǘƘŜǎŜ ǇƻǇǳƭŀǘƛƻƴǎ ǘƻ ŀ ǎƳŀƭƭ ΨƳƻŘŜǊƴΩ ǇƻǇǳƭŀǘƛƻƴ ǿƛǘƘ 
carrying capacity Kmodern = {25, 50, 100}. For each contraction event, we randomly sampled 
Kmodern number of individuals from the ancestral population to seed the modern population. We 
ran 25 simulation replicates for each combination of ancestral and modern carrying capacities.  
 
For the genetic rescue scenario, we used the same basic mechanics of the population 
contraction scenario of a large ancestral population contracting to a small modern population. 
Here, however, we fixed the ancestral carrying capacity to 10,000 and the modern carrying 
capacity to 25. Prior to the contraction, we split off the following source populations for genetic 
rescue: 1) a large source population remaining at the ancestral size (K=10,000); 2) a moderate-
sized source population with long-term isolation (K=1,000 for 1,000 generations); 3) a small 
source population with relatively recent isolation (K=100 for 100 generations); and 4) a very 
small source population with very recent isolation (K=25 for 10 generations). Genetic rescue 
was the conducted by sending five randomly-selected migrants from each source population to 
the small modern population after it decreased in size to five or fewer individuals. Importantly, 
the exact number of generations of isolation for these source populations depended on the 
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number of generations before genetic rescue, which varied for each simulation replicate 
depending on the stochastic trajectory of the modern population. We ran 25 simulation 
replicates for each source population.  
 
Given the mechanics of the nonWF model, translating the carrying capacity of these 
populations to the corresponding Wright-Fisher effective size is not entirely straightforward, for 
two main reasons. First, when deleterious mutations are simulated, the size of the simulated 
population declines to an equilibrium that is below its carrying capacity, reflecting the decline in 
fitness of the population due to its mutational load (Table S1). Second, the stochastic 
fluctuations in the population size and use of overlapping generations lead to a further 
reduction in its effective size relative to the census size. Overall, we find that the effective size 
of a population given our simulation parameters is approximately 70% of its carrying capacity, 
as estimated from the neutral heterozygosity of these populations using the expectation under 

the Wright-Fisher model that Ne = p/4m (Table S1).  
 
 
Stochastic population dynamics 
 
To capture the non-genetic factors that can contribute to extinction in small populations 
(Caughley, 1994), our model includes three sources of ecological stochasticity. First, 
demographic stochasticity was modelled using the built-in mechanics of the SLiM nonWF 
model, in which survival from one generation to the next is determined by a random draw 
based on the absolute fitness of an individual (Haller & Messer, 2019). Next, we incorporated 
the effects of environmental stochasticity in our simulations by modelling the carrying capacity 
of the modern population as an Ornstein-Uhlenbeck process, in which the carrying capacity in a 
generation is given by:  
 

log(Kόǘ Ҍмύύ Ґ όмҍ˒ύKmeanҌ˒ƭƻƎόYόǘύύҌ ǿόлΣˋύ 
 

where ˒  = 0.9, Kmean Í {25,50,100} and ̀  = log10(1.3) (Fig S10). ¢ƘŜ ǾŀƭǳŜǎ ƻŦ ˒ ŀƴŘ ˋ ǿŜǊŜ ǎŜǘ 
arbitrarily to model environmental stochasticity with a moderate amount of variation and a 
high degree of auto-correlation. Finally, we modelled the effects of random natural 
catastrophes in our simulations by drawing a probability of mortality due to a catastrophe each 

generation from a beta distribution with a = 0.5 and b = 8 (Fig S11). In each generation, deaths 
due to a catastrophe are then determined by the outcome of a Bernoulli trial for each individual 
with the probability given by the Beta distribution as the input. The effects of environmental 
stochasticity and natural catastrophes were only modelled in the small modern population. 
 
Importantly, these stochastic population dynamics can drive extinction even when genetic 
factors are not in play. However, the probability of extinction due to these factors is highly 
dependent on the mean carrying capacity of the population. For example, populations with 
Kmodern = 25 typically go extinct in a median of 1000 generations, whereas populations Kmodern = 
50 or 100 rarely go extinct within 5000 generations (Fig S6).  
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Genomic parameters  
 
We set the genomic parameters in our simulations to model the exome of a wolf-like organism. 
To do this, each diploid individual in our simulation has 20,000 genes of length 1500 bp, which 
occur on 38 chromosomes with the number of genes on each chromosome determined by the 
ratios observed in the dog genome (Lindblad-Toh et al., 2005). Recombination between these 
genes occurs at a rate of 1 x 10-3, with no recombination within genes and free recombination 
between chromosomes. These genes accumulate neutral and recessive deleterious mutations 
at a rate of 1 x 10-8, with the ratio of nonsynonymous to synonymous set to 2.31:1 (Huber, Kim, 
Marsden, & Lohmueller, 2017; Kim, Huber, & Lohmueller, 2017). The selection coefficients for 
these deleterious mutations were drawn from a distribution of fitness effects estimated from a 
large sample of humans (Kim et al., 2017). We assumed that deleterious mutations have 
recessive effects on fitness, unless otherwise stated.  
 
During the simulations, we kept track of several summaries of the genetic state of the 
population. These include ǘƘŜ ǇƻǇǳƭŀǘƛƻƴΩǎ mean heterozygosity, mean inbreeding coefficient 
(FROH with the minimum ROH length of 1Mb), the mean fitness, and the average number of 
deleterious alleles per individual binned into weakly (-0.001 < s < -0.00001), moderately (-0.01 < 
s < -0.001), strongly (s < -0.01), and very strongly (s < -0.05) deleterious classes. These statistics 
were calculated from a sample of 30 individuals every 1000 generations during the burn-in and 
every generation following the contraction.  
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Table S1 Carrying capacity, population size, and effective population size 

Carrying 
capacity 

N at equilibrium 
with deleterious 
mutations*  

Neutral 
heterozygosity 

(p)** 

Ne 

(p/4m) Ne/K 

15,000 13,367 4.22E-04 10551 0.7034 

10,000 8,891 2.80E-04 6988.88 0.698888 

5,000 4,394 1.41E-04 3524.23 0.704846 

1,000 876 2.82E-05 704.689 0.704689 
*Averaged from 5 replicates with deleterious variation 
**Averaged from 5 replicates without deleterious variation 
 
 

 
Figure S1 Time to extinction assuming additive mutations following contraction to a modern 
carrying capacity of 25. Replicates with recessive deleterious  mutations as well as replicates 
with only  neutral mutations are included for comparison.   
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Figure S2 Heterozygosity and number of strongly deleterious alleles (s < -0.01) per individual in 
ancestral populations of varying size assuming deleterious mutations are additive.  
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Figure S3 Population trajectory of individual simulation replicates following contraction to 
modern carrying capacity of 25 from ancestral carrying capacity of (A) 1,000, (B), 5,000), (C), 
10,000, (D), 15,000. Three replicates are shown for each combination of parameters. Note the 
quicker time to extinction (denoted by the shorter x-axis) for the replicates with larger ancestral 
carrying capacities. 
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Figure S4 Population trajectory of individual simulation replicates following contraction to 
modern carrying capacity of 50 from ancestral carrying capacity of (A) 1,000, (B), 5,000), (C), 
10,000, (D), 15,000. Three replicates are shown for each combination of parameters. Note the 
quicker time to extinction (denoted by the shorter x-axis) for the replicates with larger ancestral 
carrying capacities. 
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Figure S5 Population trajectory of individual simulation replicates following contraction to 
modern carrying capacity of 100 from ancestral carrying capacity of (A) 1,000, (B), 5,000), (C), 
10,000, (D), 15,000. Three replicates are shown for each combination of parameters. Note the 
quicker time to extinction (denoted by the shorter x-axis) for the replicates with larger ancestral 
carrying capacities. 
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