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Abstract In each environment, living cells can express

different metabolic pathways that support growth. The

criteria that determine which pathways are selected re-

main unclear. One recurrent selection is overflow meta-

bolism: the seemingly wasteful, simultaneous usage of

an efficient and an inefficient pathway, shown for exam-

ple in E. coli, S. cerevisiae and cancer cells. Many differ-

ent models, based on different assumptions, can repro-

duce this observation. Therefore, they provide no con-

clusive evidence which mechanism is causing overflow
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metabolism. We compare the mathematical structure

of these models. Although ranging from Flux Balance

Analyses to self-fabricating Metabolism and Expres-

sion models, we could rewrite all models into one stan-

dard form. We conclude that all models predict overflow

metabolism when two, model-specific, growth-limiting

constraints are hit. This is consistent with recent the-

ory. Thus, identifying these two constraints is essential

for understanding overflow metabolism. We list all the

imposed constraints by these models, so that they can

hopefully be tested in future experiments.
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1 Introduction

Many cells show overflow metabolism: the simultaneous

metabolism of nutrients by an efficient and a less effi-

cient pathway. For example, E. coli, S. cerevisiae and

cancer cells fully oxidize carbon sources to CO2 when

growing slowly. Above a species-specific critical growth

rate, a partial oxidation pathway kicks in, resulting in

the production of overflow metabolites: acetate, ethanol

and lactate, respectively [1–3]. L. lactis shows a similar

metabolic shift from mixed-acid fermentation (3 ATP

per glucose) to lactic-acid fermentation (2 ATP per glu-

cose) under anaerobic conditions [4].

Overflow metabolism seems wasteful because two

metabolic pathways are used that independently sup-

port growth, and one of them is more efficient (it has a

higher ATP yield per glucose molecule) than the other.

Since cells need energy for growth, efficient usage of nu-

trients is expected to be favourable. One would there-
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fore expect that cells using the efficient growth strategy

exclusively would be selected during evolution.

The counterintuitive occurrence of overflow metabo-

lism is in many studies explained using constraint-based

optimization approaches. These assume cellular growth

is constrained by physical and chemical limits, and that

cells are driven towards these limits when evolutionary

fitness is maximized. Accordingly, the behavior of cells

results from maximizing their growth rate given a set

of constraints.

Since many models reproduce the experimental data

while using different biological assumptions, it is un-

clear what exactly causes overflow metabolism. There-

fore, we need a way to analyze and compare these dif-

ferent models to find the cause of overflow metabolism.

Minimal, growth-supporting metabolic modes are char-

acterized mathematically by identifying the smallest

subnetworks of the entire metabolic network that can

support growth. Such subnetworks are called Elemen-

tary Flux Modes in metabolic models [5], and Elemen-

tary Growth Modes in self-fabrication models [6] (see

SI1 for a short introduction to Elementary Modes). The

observed gradual transition from the usage of one effi-

cient metabolic subnetwork to the mixed usage of an

efficient and an inefficient subnetwork indicates the si-

multaneous usage of two different Elementary Modes

[6, 7].

In recent theoretical work [6,7] we derived that cells

that maximize their growth rate will only use two Ele-

mentary Modes if they are confronted with at least two

constraints. The identification of these constraints is

therefore an important step towards finding the mech-

anistic cause of overflow metabolism. In this review, we

use this theory to compare the various models of over-

flow metabolism by making the growth-limiting con-

straints explicit.

Although the models range from relatively simple

Flux Balance Analyses to genome-scale self-fabrication

models, we will show that they can all be written in

the same concise standard form. Thus, the models are

highly similar: a (proxy for) the cellular growth rate is

maximized subject to at least two constraints. The bio-

logical assumptions underlying the imposed constraints

differ between those models. Hence, the success of these

models is dependent on the existence of two constraints

and not on the precise biological interpretation of those

constraints. Finding the causes of overflow metabolism

therefore amounts to identifying the two active growth-

limiting constraints and experimentally testing them.

We shall conclude that the models each offer a hypoth-

esis that needs to be tested in falsification experiments

in the future.

2 A standard form for overflow metabolism

models

We will show that, to our knowledge, all existing models

that use growth rate maximization to explain overflow

metabolism, can be rewritten in a standard form.

We will assume that a cell adapts its state to grow

as fast as possible whenever it encounters a new envi-

ronment. The cellular state is specified by optimization

variables, for example the reaction rates (v) or the en-

zyme concentrations (e). We will denote the optimiza-

tion variables by the vector x, the ith entry of which is

denoted by xi. The growth rate is modeled as a linear

function: the objective function:

objective(x) =

n∑
i=1

wixi,

where wi is the weighting factor of variable i. The growth

rate maximization of the cell is modeled mathemati-

cally by searching for the set of optimization variables

that maximizes the objective function, given constraints

to be specified later. Because the objective function is

linear, there is a certain direction in the space of op-

timization variables in which the objective always in-

creases. The optimal solution is the set of optimization

variables that is as far in that direction as possible.

Not all combinations of optimization variables can

be chosen due to constraints, for example a limited up-

take rate, or a limited available area for membrane pro-

teins. These constraints are formalized by inequalities

acting on a weighted sum of the variables:

n∑
j=1

ajxj ≤ b,

where aj determines the ‘cost’ of increasing the jth vari-

able. In the special case that aj = 0, xj is not bounded

by this constraint. In general, we could have several,

say m, constraints. These constraints can be collected

in an m×n matrix A, where the ith row captures the ith

constraint. All constraints can then be written together

as:

A · x ≤ b.

The constraints can be viewed as planes bounding the

feasible combinations of variables (see Figure 1). After

all constraints have been implemented, we are left with

an angular space called the solution space. Solving the

optimization problem amounts to selecting the point

in this space that maximizes the objective function. It

can be shown that there is always a corner point of the

solution space (called vertex) in which this optimum is

attained.
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Fig. 1 A general view on overflow metabolism and how it is modeled. In general, overflow metabolism is the
simultaneous usage of two independent growth-supporting subnetworks with different efficiencies. In the top left subfigure,
the blue pathway produces more energy equivalents per gram nutrient than the red pathway. Together with the non-depicted
rest of the metabolic network, the blue and red pathway can lead to steady state growth. In the top right subfigure, we illustrate
that imposing homogeneous constraints, in this case a steady state assumption, gives rise to relations between optimization
variables. The optimization variables can for example be reaction rates or enzyme concentrations, but for simplicity, we only
show one variable here. The model objective is here visualized along the y-axis, so that the combination of variables that gives
the highest y-coordinate is optimal. In the bottom figures, we add inhomogeneous constraints on the optimization variables.
These affect which combination of variables is optimal. Under one constraint, exclusive usage of the high-yield pathway is
optimal. Adding the second constraint leads to a combination of the two pathways.

In this review, we will use these concepts to extract

the mathematical cores of all overflow metabolism mod-

els (that we could find) and rewrite them in the follow-

ing standard form.1

maximize
x

n∑
i=1

wixi

subject to A · x ≤ b (1)

xi ≥ 0.

The constraints in A can be homogeneous and inhomo-

geneous, see Figure 1 and its caption. A constraint is

called homogeneous when the corresponding weighted

sum of the variables equals zero, i.e., b = 0, and inho-

mogeneous otherwise. Examples of homogeneous con-

straints that we will define later in this review are the

steady state constraint and irreversibility constraints.

1 We use a different standard form than the standard form
that is used in Linear Programming. We found that our form
better serves our purposes, but in SI2 we show that the two
forms are equivalent.

When all constraints of A are homogeneous, the solu-

tion space is unbounded; it can be visualized as an in-

finitely stretched angular cone. The optimization prob-

lem will in this case not have a finite maximum. In-

homogeneous constraints are required to possibly make

the cone bounded; inhomogeneous constraints will be

especially important in modeling overflow metabolism.

We will therefore highlight them by presenting them

separated from the rest of the constraints.

3 Current explanations of mixed behaviour and

their mathematical background

Next, we will discuss published models made to explain

overflow metabolism that use growth rate maximiza-

tion. We will start with the modeling approaches that

are the easiest to understand, and gradually build up

complexity, ending with self-fabrication models.
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3.1 Flux Balance Analysis models

Flux Balance Analysis studies the sets of reaction rates

(fluxes) through a metabolic network (say withmmetabo-

lites and r reactions) that can reach a steady state. A

steady state is attained when the net rate of produc-

tion of each metabolite is equal to the net rate of its

consumption. The stoichiometry of all reactions is de-

scribed by the stoichiometric matrix, N , which has m

rows and r columns. Each row corresponds to the mass

balance of a metabolite and contains the stoichiometric

coefficients of this metabolite in all reactions. When N

is multiplied by the rate vector, we recover the following

‘mass-balance constraints’:

N · v = 0.

In this review we will consider all reactions to be ir-

reversible; we can always split up a reversible reaction

into one forward and one backward reaction, resulting

in:

vi ≥ 0.

These steady state and irreversibility constraints are

the homogeneous constraints. As mentioned before, the

space of flux vectors that satisfy these constraints is

unbounded.

In addition, flux bounds can be imposed. Upper

bounds, denoted ubi, are for example imposed to model

a limited capacity of the cell for the corresponding re-

action. Lower bounds, denoted lbi, are for instance used

to model the production of ATP for non-growth asso-

ciated maintenance. This gives

lbi ≤ vi ≤ ubi.

In FBA, we are mostly interested in those flux vectors,

v, that maximize some proxy for the growth rate. For

this, the so-called biomass reaction, vBM [8], is added

to the model: a phenomenological reaction that pro-

duces all cellular compounds in the right proportions,

and thereby approximates all demands for cell synthe-

sis.

The full problem can now be written as

maximize
v

vBM

subject to N · v = 0 (2)

vi ≥ 0

lbi ≤ vi ≤ ubi,

which is equivalent to the standard form that we intro-

duced in Equation (1) (see the Supporting Information

for the appropriate choice of w, A,x, b).

FBA models have been used to explain overflow meta-

bolism, mathematically capturing the reasoning of An-

dersen and von Meyenburg in 1980 [9]: ”If, however,

respiration is limited, by-product formation can lead

to extra ATP production and to faster growth, pro-

vided the by-product can be generated with a net gain

of ATP.” The imposed flux bounds differ between the

models, although all models consider a limited uptake

rate for the carbon source. For example, Majewski and

Domach [10] further propose that E. coli might have

a limited electron transfer capacity, while Varma and

Palsson [11] assume that oxygen uptake is limited, and

that a certain amount of ATP should be produced even

if the cell is not growing, leading to the following FBA

problem:

maximize
v

vBM

subject to N · v = 0 (3)

vi ≥ 0

vO2,uptake ≤ 15

vGlc,uptake ≤ 10.5

vATP,maintenance ≥ 7.6.

3.2 FBA models with thermodynamic constraints

FBA models can be refined by adding thermodynamic

constraints [12, 13]. The laws of thermodynamics dic-

tate that a chemical reaction can only have a positive

rate if the Gibbs free energy of the reaction substrates

is higher than the reaction products, i.e., if the free en-
ergy change due to the reaction is negative, denoted

by: ∆rG
′ < 0. By using this, one for example excludes

cycles like A → B → C → A from carrying a positive

flux, since such a cycle has zero thermodynamic driving

force [14].

The free energy change due to a reaction depends

on the concentrations of the involved metabolites, but

these are usually not modelled in FBA approaches. Most

thermodynamic FBA approaches thus need some way

to estimate either these metabolite concentrations, or

the ∆rG
′-values directly. There are also some methods

where this estimation step can be avoided, at the ex-

pense of the thermodynamic constraints becoming less

restrictive (see [13] for an overview of thermodynamic

FBA methods).

Some researchers not only use thermodynamic con-

straints, but predict fluxes by maximizing the entropy

production in the model at a given growth rate [15], in-

stead of maximizing the growth rate itself. Others use

thermodynamic arguments to search for rate-limiting
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steps in a given subnetwork [16]. These approaches,

although interesting, are not examples of growth rate

maximization, and are therefore beyond the scope of

our review.

Recently, Niebel et al. did combine growth rate max-

imization and thermodynamic principles to describe over-

flow metabolism [17]. In their approach, the metabolite

concentrations and the reaction rates are free variables,

although the metabolite concentrations are provided

with an upper and lower bound based on experimen-

tal measurements. The authors search for the optimal

concentrations and rates so that the biomass produc-

tion rate is maximized. This search is constrained by

the second law of thermodynamics, implying that the

free energy change induced by an active reaction should

be negative: ∆rG
′
j(c) < 0 for reactions with vj > 0.

These homogeneous constraints take the place of the

irreversibility constraints that were used in FBA mod-

els, where the directionality is now based on the sign of

the Gibbs free energy change.

If we add up all these free energy changes induced

by the chemical reactions, we get the total dissipated

Gibbs energy per unit time: gdiss = −
∑
j ∆rG

′
j(c)vj .

This dissipation function appears to have a maximum

at the onset of overflow metabolism; the authors then

propose that the dissipated energy might be limited by

an upper bound,

gdiss ≤ gdisslim . (4)

In addition, another constraint is imposed ensuring that

the free energy dissipated by internal reactions equals

the free energy that is extracted from external nutri-

ents. However, after a careful examination of the math-

ematics used in [17] (see SI4), we believe that this con-

straint should be equivalent to the steady state assump-

tion, so that we could ignore it here. If it turns out

that we are wrong, the constraint can be added to the

problem below, without affecting the conclusions of this

review.

This modeling approach is no longer linear in the

variables because the ∆rG
′
j(c)-values can depend non-

linearly on the metabolite concentrations. However, for

any fixed set of metabolite concentrations, c = c0, the

model reduces to a Linear Program that can be writ-

ten in our standard form (see SI3.2 for the appropriate

choice of the variables w, A,x, b used in (1)).

maximize
v

vBM

subject to N · v = 0 (5)

vj ≥ 0

∆rG
′
j(c) < 0 for reactionsvj 6= 0

vGlc,uptake ≤ bGlc

−
∑
j

∆rG
′
j(c)vj ≤ gdisslim .

3.3 Resource-allocation models

Reaction rates can almost always be increased by in-

creasing the concentration of the catalyzing enzyme

[18]. A constraint on a reaction rate can therefore not

reflect the mechanistic cause of metabolic phenomena:

if a cell would be confronted with such a constraint,

the concentration of the corresponding enzyme could

be increased, unless the enzyme concentration itself is

constrained. In that case however, it is the constraint

on enzyme concentrations that is the mechanistic cause.

In the past decade, many researchers shifted per-

spective by taking enzyme concentrations as the opti-

mization variables instead of the reaction rates. These

models are called resource allocation models [19–30].

Resource allocation models also maximize the biomass

reaction vBM, while metabolism is at steady state: N ·
v = 0. The rate of the objective reaction can thus only

be increased if the rates of all reactions in a complete

growth-supporting subnetwork are increased. Unlike in

FBA models however, each reaction rate is now coupled

to the concentration of a catalyzing enzyme,

vi = eikcat,ifi(x), (6)

where vi is the ith reaction rate and ei is the concentra-

tion of the corresponding enzyme. The activity of an

enzyme is determined by its catalytic rate kcat,i, and

the ’saturation’ of the enzyme fi(x) with its substrates

x. This saturation term is in reality a nonlinear func-

tion of the metabolite concentrations x, that also in-

cludes product inhibition. However, we split reversible

reactions, product inhibition is almost always ignored,

and fi(x) is often simplified to be constant, such that

vi = eikcat,i where kcat,i is now an effective rate con-

stant. The only way to increase the reaction rates is

then to increase the enzyme concentrations. However,

resources are limited: various limits on enzyme concen-

trations exist, which take the form of (weighted) sums

that are bounded:∑
i

ciei ≤ ub, (7)
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where ci is a weighting factor, and should not be con-

fused with the metabolite concentrations that were used

earlier. All enzymes for which the weighting factor is

nonzero, ci > 0, contribute to the sum. These weighting

factors can be adjusted to capture various constraints.

For example, if the membrane area is constrained, the

weight ci would reflect the area taken up by one unit

of protein i, and ci would thus be zero for all non-

membrane proteins. Since the sum is bounded, an in-

crease in the concentration of protein imust be compen-

sated by a decrease in the concentration of others. The

available resources should thus be carefully allocated in

order to maximize the biomass production rate. These

approaches can be written in a form equivalent to our

standard form (see SI3.3 for the appropriate choice of

w, A,x, b in (1))

maximize
v,e

vBM

subject to N · v = 0 (8)

vi = eikcat,i

ei ≥ 0

∑
i

c1i ei ≤ ub1

...∑
i

cni ei ≤ ubn.

With the help of Equation (6) this problem can be

solved with the reaction rates or with the enzyme con-

centrations as the optimization variables, as we show in

SI3.3.

Basan et al. [26] made a core model that shows overflow

metabolism in E. coli by dividing the proteome into

three fractions: ϕf , ϕr and ϕBM , that thus sum up to

one. These denote the fractions of the proteome catalyz-

ing a fermentation, respiration and cell synthesis reac-

tion, respectively, according to the relations: vf = εfϕf ,

vr = εrϕr, and vBM = 1
b (ϕBM − ϕ0). We will not de-

fine all unknown symbols in these and the following

relations, since their interpretation is not relevant for

this review. Note that the relation between the biomass

reaction and the associated proteome fraction is non-

standard, to include a non-growth associated mainte-

nance term. Further, reactions for the uptake of a car-

bon source and the excretion of acetate2 are included,

but these do not have an associated proteome fraction.

2 The acetate excretion reaction was not explicitly men-
tioned in [26], but must have been included. We have made it
explicit to be able to write a consistent stoichiometry matrix.

This gives the following steady state assumption

N · v =

carbon

energy

acetate

1 −1 −1 0 −β
0 nr nf 0 −σ
0 0 Sac −1 0

 ·

vuptake
vr
vf

vexcretion
vBM

 = 0.

In addition, the authors include an upper bound on the

uptake rate of nutrient vuptake ≤ cuptake. Together, this

gives a form equivalent to our standard form (see SI3.4

for the appropriate choice of w, A,x, b in (1) in (1)):

maximize
v,ϕ

vBM

subject to N · v = 0 (9)

vf = εfϕf , vr = εrϕr, vBM =
1

b
(ϕBM − ϕ0)

vi ≥ 0

vuptake ≤ cuptake
ϕf + ϕr + ϕBM = 1.

The authors assume that the yield of energy per carbon

molecule is higher for respiration than for fermentation:

nr > nf
3, but that fermentation is more proteome-

efficient: εf > εr. The enzyme cost of a certain reac-

tion is the protein fraction necessary to attain one unit

flux. We thus see that the enzyme costs of respiration

are higher than fermentation: 1
εf
< 1

εr
. Because of this

trade-off between yield and enzyme costs, it becomes

optimal from a certain critical rate of carbon uptake to

use the respiration and fermentation reactions simulta-

neously, so that the model shows overflow metabolism.

This modeling approach was later generalized by the

same group in a formalism called Constrained Alloca-

tion FBA (CAFBA) [29].

Vazquez et al. [23] responded to the explanation of

Basan et al. by adding to the model that there is a max-

imum to the macromolecular density of a cell. They

argue that the enzyme costs, as defined in the previ-

ous paragraph, should be proportional to the enzyme

mass divided by its catalytic rate. The model that is

used to explain overflow metabolism is thus the same,

but with a different mechanistic underpinning of the

ε-parameters. This reasoning was implemented earlier

by the same authors in a genome-scale formalism called

FBA with Macromolecular Crowding (FBAwMC), with

which they already explained overflow metabolism in E.

coli [22]. This formalism was later also used to model

S. cerevisiae [28].

3 The authors originally used er, ef to denote these sto-
ichiometric fractions, but we have renamed them to avoid
confusion with enzyme concentrations.
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Another hypothesis is offered by Zhuang et al. [27]

in which overflow metabolism is explained using a mem-

brane occupancy constraint. The authors introduce pa-

rameters, mi, that capture the membrane area that is

occupied per mol/liter of enzyme i. Assuming that there

is only a limited plasma membrane budget, Bcyt, this

introduces the constraint
∑
imiei ≤ Bcyt. Together

with the steady state assumption, and a limited glu-

cose uptake rate, this gives:

maximize
v,e

vBM

subject to N · v = 0 (10)

vi = eikcat,i

ei ≥ 0

vuptake ≤ cuptake∑
i

miei ≤ Bcyt.

This hypothesis is supported by some quantitative evi-

dence collected by Szenk et al. [21].

Note that the above resource allocation approaches

differ in the mechanistic nature of the last constraint

that is added, but that the optimization function, the

steady state assumption and the limited substrate up-

take are all similar. Shlomi et al. used a similar ap-

proach with a total proteome constraint to describe the

Warburg effect in cancer cells [30].

3.4 Self-fabrication models

In the previously described modeling approaches, the

demand for cell components was approximated using a

virtual biomass reaction. However, this approximation

ignores an important nonlinear aspect of self-fabrication.

A self-fabricating cell should produce two daughters

identical to itself. The proportions in which the cell

should produce cellular components thus depend on its

own interior. If the cell reallocates resources to meet

this demand for cellular components, its interior changes

and therefore also the demand. The allocation of re-

sources thus both depends on, and determines, the de-

mand reaction.

Another inherent nonlinearity of cellular growth arises

because cellular components dilute by growth: if a com-

pound is not produced while the volume grows, its con-

centration drops. This dilution rate is equal to the growth

rate of the cellular volume, so in steady state the net

synthesis rate of all molecules should be equal to the

growth rate. In turn, the synthesis rate of proteins de-

termines how much volume is produced per unit time,

and thus how fast the cell grows. The synthesis rate thus

both depends on, and determines, the growth rate.

A small number of modeling approaches incorporate

these two nonlinearities [6,31–36]. The demand for cell

synthesis components is calculated by the models in-

stead of imposed on the models, and the growth rate

can only be found after solving a nonlinear problem – or

by solving a large number of linear problems in which

the growth rate is treated as a parameter, as we will

see. To keep our treatment of these complex models as

accessible as possible, we will first describe the essential

ingredients only. Then we will, referring to SI6 for most

of the mathematical derivations, derive a set of relations

that enables us to compare these self-fabrication mod-

els to the previously described models. After that, we

will shortly discuss the various extensions that describe

overflow metabolism.

The cell is modeled as consisting of three types of

compounds: metabolites (with concentrations x4 and

possibly including macromolecules such as lipids or polynu-

cleotides), enzymes (with concentrations e), and the ri-

bosome (with concentration r). The enzymes catalyze

the conversion of metabolites into other metabolites.

The ribosomes catalyze the synthesis of enzymes and

ribosomes from metabolites. As before, it is assumed

that the rates of the conversions scale proportionally

with the concentrations of the catalysts, and kinetic

saturation functions are again assumed constant:

vi = eikcat,i, (11)

vsynth,j = rkcat,ribαj , (12)

vsynth,rib = rkcat,ribαrib. (13)

Here vi are the usual metabolic reaction rates, and

vsynth,j denotes the synthesis rate of enzyme j. The fac-

tor αj is the fraction of the ribosome that is allocated
to the synthesis of enzyme j, and since these are frac-

tions we must have
∑
j αj = 1. It is further assumed

that the concentrations of macromolecules add up to a

fixed density5:∑
j

ρjej + ρribr = 1, (14)

where the ρj are volumetric parameters.6 In a cell that

is growing exponentially with rate µ, concentrations di-

lute with this same rate, see SI5 for a derivation. For

the metabolites, this changes the steady state assump-

tion from N · v = 0 in FBA approaches to N · v = µx.

4 The usage of x here is not related to its usage in our
standard form, Equation (1)
5 In some modeling methods this density is modeled as an

upper bound [31, 32, 36]. In SI7 we explain the advantages
and disadvantages of doing this.
6 Dependent on the biochemical interpretation of the

ρ-parameters, some models include contributions of the
metabolite concentrations ρixi [6, 36].
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Moreover, if we explicitly model enzyme synthesis, we

should also account for the metabolites that are con-

sumed during this synthesis. Let M be the matrix that

denotes how many metabolites are needed to make a

specific enzyme, then we get a first set of constraints

on the fluxes:

[
N −M

]
·
[

v

vsynth

]
= µx, (15)

vsynth,j = µej , (16)

vsynth,rib = µr. (17)

Equations (11) to (17) define the core ingredients of

the self-fabrication models. In Supporting Information

6 we show how this system can be rewritten. In short:

equations (11), (12) and (13) are used to get expressions

for the concentrations e and r in terms of the fluxes, and

these expressions are used in equations (14), (16) and

(17) to get four relations between the fluxes v,vsynth

and µ. These relations are linear in the reaction rates,

so that the system can be written in a form that looks

like a familiar Linear Program:

maximize
v,vsynth,µ

µ

subject to A(x, µ) ·

 v

vsynth

µ

 = 0 (18)

vi, vsynth,i ≥ 0.

Although this looks like a Linear Program, it is more

difficult since the constraint matrix is not constant. The

x-dependence is often “solved” by ignoring the dilution

of small metabolites and fixing the concentrations of

macromolecules based on experimental data [32, 35]7.

The µ-dependence that makes the problem nonlinear

is overcome by fixing the growth rate in the constraint

matrix to a certain value: A(x, µ)→ A(x, µ0), and then

add the constraint that the µ in the optimization vari-

ables should equal µ0. Note that, since it is fixed, we

can no longer maximize the growth rate. However, we

can check if there is a solution that solves the system.

If there is no solution, then µ0 > µmax; if there is a

solution, we can increase µ0. The maximal growth so-

lution is found by repeating this procedure until the

problem is still feasible for µ0 = µmax, but infeasible

7 One could also solve the problem for fixed metabolite con-
centrations [6,36], and then scan over all possible sets of con-
centrations, but this becomes computationally infeasible in
large quantitative models.

for all µ0 > µmax. So we get

maximize
v,vsynth,µ0

µ0

such that

[
A(x, µ0)

0 0 1

]
·

 v

vsynth

µ

 =

[
0

µ0

]
(19)

vi, vsynth,i ≥ 0.

Using the described mathematical core, Goelzer et al.

proposed a formalism that was named Resource Bal-

ance Analysis (RBA), with which they modeled over-

flow metabolism in B. subtilis [37]. In addition to the

density constraint of Equation (14), the authors used

a constraint on the maximal concentration of macro-

molecules in the membrane; in our notation:
∑
j σjej ≤

Dmem.

In parallel, Thiele et al. [34] for E. coli, and Ler-

man et al. [33] for T. maritima presented the so-called

Metabolism and Expression (ME) models. The math-

ematical basis of ME-models is equal to the basis of

RBA-models (Equations (11) to (17)), but ME-models

are even more comprehensive: for example, the synthe-

sis rates of mRNA, tRNA, and RNA-polymerases are

explicitly modeled. Moreover, some catalytic rates, of

the ribosome for example, are no longer assumed to be

independent of the growth rate; their dependence is es-

timated from experimental data. These extensions add

many variables and constraints to the model, but we

show in SI8 we show that these additions can still be

written as relations that are linear in the reaction rates

and nonlinear in the growth rate. In short, although

the A-matrix of Equation (19) gets larger, ME-models

can still be written in this form. O’Brien et al. used an

ME-model to model overflow metabolism in E. coli [35].

The cytosolic density constraint was here supplemented

with an upper bound on the substrate uptake flux.

Molenaar et al. [31] were the first to present a mech-

anistic model of cellular self-fabrication, a core model

with 5 reactions and 3 metabolites. Because their model

is so small, they could use enzyme kinetics and non-

linear optimization to directly maximize the growth

rate. The optimal solutions show a discrete switch from

an efficient pathway to an inefficient pathway. This is

different from the gradual switch that is observed in

overflow metabolism, even though, just as in [32], the

authors model an upper bound on the membrane den-

sity. However, this does not effectively constrain the

concentrations of membrane proteins, since the surface-

to-volume ratio can be freely adjusted. Therefore, only

the density constraint of Equation (14) is effective. In

personal correspondence, the authors confirmed that,

in hindsight, it might have been more realistic to set
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a lower bound to the size of the cell. In this case, an

additional constraint would have become active.

4 Discussion

4.1 Commonalities and differences

We reviewed many constrained optimization approaches

that describe overflow metabolism, ranging from rela-

tively simple linear Flux Balance Analysis models to

complicated nonlinear Metabolism and Expression mod-

els. Some approaches use small core models, others use

genome-scale networks comprising thousands of reac-

tions. The imposed constraints are either limits on re-

action rates, Gibbs dissipation limits or limits on en-

zyme concentrations. Despite all these differences, we

managed to write all these models in a concise stan-

dard form by focusing on their mathematical essence.

We conclude from this that these models must share a

feature, one that must be essential for describing over-

flow metabolism. In the following, we will compare the

models in their standard form using our recent theo-

retical work [6, 7] to analyze and explain this feature,

using an extremum principle that governs the solutions

of all the reviewed approaches.

4.1.1 A general extremum principle: Overflow

metabolism is caused by two growth-limiting

constraints

All reviewed approaches model a growing cell by impos-

ing a set of homogeneous constraints: a first set that

ensures a steady state, and a second set that deter-

mines the feasible direction for irreversible reactions.

There are some differences in how the first set is im-

posed. FBA and resource allocation approaches model

a system that produces cell components in the pro-

portions captured by a constant demand reaction, the

biomass reaction. The steady state assumption ensures

that no intermediate metabolite accumulates. The self-

fabrication models implement this assumption with a

balanced growth assumption: all cellular compounds

should be produced to match the rate of consumption

and dilution by growth. The demand reaction is there-

fore dependent on the growth rate, which gives rise to

nonlinear relations between the optimization variables

and the growth rate. These differences are illustrated

in Figure 2.

Despite these seemingly different setups, we can de-

fine Elementary Modes in both cases: growth-supporting

subnetworks that form the minimal building blocks of

the solution space. These are called Elementary Flux

Modes in the linear models [5], and Elementary Growth

Modes in the self-fabricator models, see SI1 for a short

introduction. The defining property of these modes is

that all possible solutions of the growth models can

be written as a combination of these modes. In other

words, EFMs are non-decomposable metabolic subnet-

works, and EGMs are non-decomposable self-fabrication

subnetworks. Overflow metabolism is decomposable in

an efficient subnetwork, and a less efficient subnetwork,

and is thus a combination of two Elementary Modes.

Using the concept of Elementary Modes we derived

an extremum principle stating that the number of flux-

carrying Elementary Modes in the optimal solution will

be smaller or equal than the number of active (i.e.

growth-limiting) constraints. These growth-limiting con-

straints are the additional constraints that are imposed

after the steady state and irreversibility constraints (in

Figure 1 and its caption we show an example in which

these additional constraints are imposed). This means

that only one Elementary Mode will be selected by

growth rate maximization under only one constraint.

For example, in a model in which only one nutrient up-

take rate is constrained, we will never observe overflow

metabolism. Overflow metabolism must thus be a re-

sult of two constraints, see Figure 2 for an illustration

of this result.

The extremum principle suggests that the success of

describing overflow metabolism might not lie in the de-

tails of the stoichiometric networks, or the exact choices

of model parameters, but rather in the mere existence

of two constraints. This implies that finding the mecha-

nistic cause of overflow metabolism amounts to finding

which two constraints are actually limiting growth.

Unfortunately, the extremum principle does not pre-

dict which constraint causes overflow metabolism. It

states that there should be two constraints, but does

not reveal their identity. Moreover, overflow metabo-

lism in different species might be due to completely dif-

ferent constraints. Thus, to find out which constraints

cause overflow metabolism, we must test hypothetical

constraints.

4.1.2 Specific experiments: the mechanistic cause of

overflow metabolism can be found with falsification

experiments

Encouraged by the conclusion that the growth-limiting

constraints must be important in causing overflow meta-

bolism, we have listed all the constraints that are used

in the reviewed models (Table 1). We see that all mod-
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Fig. 2 FBA models and self-fabrication models lead to a similar mathematical problem. In the top figures we
illustrate two of the reviewed approaches. FBA models consider steady state fluxes through networks of metabolic reactions
with constraints on the reaction rates. A virtual biomass reaction is added as a proxy for the growth rate. Self-fabricator models
make the synthesis of enzymes and the ribosome explicit, and can therefore model the growth rate as the volume increase due
to the production of components. The enzyme concentrations can now be viewed as the optimization variables, so that protein
concentration constraints can also be included. In the bottom figures we show a highly simplified illustration of the solution
space of both approaches. In the linear approaches, FBA and proteome-constrained models, all quantities depend linearly on
the growth rate, while there are nonlinear dependencies in the self-fabricator models. However, we showed that in both cases,
overflow metabolism is caused by at least two growth-limiting constraints.

Table 1 An overview of the models that describe overflow metabolism, including which constraints were used
in addition to the steady-state assumptions. (The first constraint in the model of Molenaar et al. [31] is striked through
because it can be alleviated in the model by adjusting the surface-to-volume ratio of the modeled cells.)

Paper Type Constraint 1 Constraint 2
Majewski et al. [10] FBA glucose uptake rate electron transfer capacity
Varma et al. [11] FBA glucose uptake rate oxygen uptake rate
Niebel et al. [17] tFBA glucose uptake rate free energy dissipation
Basan et al. [26] resource glucose uptake rate total proteome
Mori et al. [29] resource glucose uptake rate total proteome
Vazquez et al. [22, 23] resource glucose uptake rate macromolecular density
Van Hoek et al. [28] resource glucose uptake rate macromolecular density
Zhuang et al. [27] resource glucose uptake rate membrane occupancy
Szenk et al. [21] resource glucose uptake rate membrane occupancy
Shlomi et al. [30] resource glucose uptake rate total proteome
Molenaar et al. [31] self-fabr membrane density macromolecular density
Goelzer et al. [37] self-fabr membrane density macromolecular density
O’Brien et al. [35] self-fabr glucose uptake rate macromolecular density

els indeed use at least two constraints8. However, there

8 In fact, all models except Varma and Palsson use exactly
two constraints. Their third constraint is a lower bound on
an ATP-maintenance reaction, which we have left out of the
table for clarity. Molenaar et al. use only one effective con-
straint, which is indeed reflected by the results: their model
cannot describe the gradual metabolic switch that is seen in
overflow metabolism.

is some variation in the constraints that are imposed.

The question is how to find the relevant constraints.

The genome-scale approach is to make an extensive

model and try to quantitatively match the experimental
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data. One risk, however, is overfitting, because a large

enough model could potentially fit any experimental

data. Such an approach should therefore be backed up

by independent measurements of assumed constraints.

Still, it is hard to imagine how a model could distin-

guish the effects caused by a ’total proteome constraint’

and a ’macromolecular density constraint’. For this, we

need perturbation experiments. For example, Basan et

al. [26,38] overexpressed the nonfunctional protein LacZ

in one experiment, and added translation inhibitors in

another experiment, to artificially perturb the proteome

allocation of E. coli. We have derived a formalism in

which such perturbation experiments can be analyzed

[7]. Basan et al. could provide evidence for their pro-

posed total proteome constraint. In our opinion, this

makes their proposed constraint the best-established

mechanistic cause of overflow metabolism in E. coli up

to this point. However, as we now know, there should be

a second growth-limiting constraint. Basan et al. used

a limit on the uptake rate of nutrients, which cannot

truly be considered as a mechanistic cause of overflow

metabolism, because, as described by Molenaar et al.

in 2009: ”... using an artificial maximal capacity con-

straint on substrate uptake ignores the possibility of

variable investments made in substrate transport sys-

tems.” The identity of the second constraint in E. coli,

even though a constraint on transport of glucose is gen-

erally used and thus apparently accepted, remains to be

established.

4.1.3 Towards a complete model of cellular

self-fabrication.

We observe two directions of development towards a

complete model of cellular self-fabrication in the mod-

els that we have reviewed. Along the first direction the

optimization variables are moved closer to the actual

regulatory space of the cell, and thereby closer to the

origin of overflow metabolism. Along the second direc-

tion, more and more of the inherent nonlinearity of self-

fabrication is incorporated in the models.

To explain the first direction of development, we

recall that FBA models use fluxes as variables, which

can only be indirectly regulated via the enzyme and

metabolite concentrations. The resource allocation mod-

els switch perspective to enzyme concentrations as vari-

ables with the major advantage that constraints on en-

zyme concentrations can be formulated directly. These

constraints can be related to physically observable quan-

tities, such as the available membrane area or cytoso-

lic volume, whereas flux constraints cannot. Flux con-

straints can only be determined ad hoc using experi-

mental data, which limits the predictive power.9 One

can move even further towards the regulatory space of

the cell because the enzyme concentrations are in fact

dependent on the enzyme synthesis rates, and these

are regulated by the allocation of the ribosomes over

the different mRNAs. The reviewed self-fabricator mod-

els indeed use as variables the enzyme synthesis rates

[35, 37], or the ribosome allocation fractions [31]. A fi-

nal step towards the regulatory space of the cell could

be to model the regulation of mRNA synthesis via gene

expression directly, but we do not know of any models

that have implemented this.

The second direction of development moves towards

incorporating three nonlinearities that are related to

self-fabrication. We already mentioned two of them: 1)

the dependence of the biomass reaction on the enzyme

allocation, and 2) the dependence of the demanded en-

zyme synthesis rates on the growth rate. The incorpora-

tion of these two nonlinearities form the main improve-

ment of self-fabrication models with respect to FBA

type models. Here we want to add a third nonlinear-

ity: the kinetic dependence of enzyme and ribosome

activities on the metabolite concentrations. If a cell re-

allocates resources, metabolite concentrations change

as well, causing changes in the saturation levels of en-

zymes. Including the metabolite concentrations in the

model however, requires information about the enzyme

kinetics of all the different enzymes in the cell. More-

over, it makes the optimization problem computation-

ally infeasible because the problem is no longer guaran-

teed to have only one local optimum. Therefore, global

optimization software has to be used and it is difficult

to ascertain that the found solution is the actual op-

timum. For these reasons, enzyme kinetics can so far

only be included in core models [31] and theoretical

work [6, 7, 36]. The question is if there are constraints,

rules and patterns in the changes in (optimal) metabo-

lite levels that would allow us to approximate optimal

solutions without global optimisation of the full kinetic

model.

4.1.4 Alternatives for growth rate maximization

We have focused on growth rate maximization mod-

els, but alternative explanations of overflow metabo-

lism cannot be fully excluded. For example, it might

be that not absolute fitness is maximized, but rather

relative fitness compared to competitors. For example,

cells could produce overflow products to intoxicate their

neighbours, or cells could maximize their uptake rate to

9 In fact, many of the resource allocation models still use a
flux constraint for the nutrient uptake reaction, so that these
are also not entirely predictive.
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claim the largest share of the nutrient pool. These ex-

planations have been reviewed elsewhere [39,40].

It might even be that cells are not completely opti-

mized for anything. For example, it was shown that the

overexpression of transcriptional regulator ArcA could

increase the growth rate of E. coli on glycolytic sub-

strates [41]. This shows that metabolism was not opti-

mal in the wild type strain within the studied environ-

mental conditions.

5 Conclusion

We reviewed 14 different models of overflow metabo-

lism, ranging from Flux Balance Analyses, to nonlin-

ear self-fabricator models such as Metabolism and Ex-

pression models. Despite the many differences between

the models, we could rewrite the mathematical cores of

each of them into a concise standard form. This stan-

dard form could be analyzed using an extremum prin-

ciple, stating that the number of Elementary Modes

at maximal growth is less or equal than the number

of growth-limiting constraints. The extremum principle

implies that overflow metabolism is caused by at least

two growth-limiting constraints. We therefore listed all

reviewed models with their proposed constraints. We

hope that this list will serve as a source of hypotheses

that can now be tested using falsification experiments.
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