
contrasted two depths in our analysis, i.e. a shallow single-layered coded AE (SAE) and a deep 

triple layered AE (deepAE). We calculated the mean squared training and test error (measured 

using error = 1- R2, where R2 is computed globally over all genes using a global data variance 

(Fig. 1A) and locally for each gene individually using gene-wise variances (Fig. 1B-C)). 

Comparing the reconstruction errors of the different auto-encoders we found, not surprisingly, 

that the SAE performed poorly (>15% error) whenever we used less than 1024 hidden nodes, 

whereas increasing the number of nodes to 1024, reduced the error three-fold to ~5%. In 

contrast, the deepAE performed well already for 64 hidden nodes (11% error), which 

subsequently decreased following a power law up to 512 hidden nodes, best described by R2 = 

0.89*20.028(x-64), where x is the number of hidden nodes. Next, we analyzed the gene-wise R2 

performances of the R2 distributions (Fig. 1B-C) which showed that the median gene error was 

also low (R2 > 0.86) already for the 512 deepAEs. In summary, we found that the deepAE with 

512 hidden nodes performed comparably to the SAE with 1024 nodes. Since the purpose of our 

study was to discover biologically meaningful disease module we proceeded and analyzed the 

512 deepAEs in the remaining part of the paper as this architecture provided an effective 

compression of the data.  

 
Fig. 1. Deep auto-encoder (deepAE) outperformed shallow auto-encoder (SAE) up to 512 

hidden nodes in terms of accuracy. 1- coefficient of determination (R2), in training and 

validation set using the full data set variance (A) and the gene-wise variances (B, C). Left panel 

shows the mean behavior of R2 values on the full data set. The distribution of R2 values across 

each gene is shown for both models, SAE (B), and 3-layer deepAE (C), increasing the number 

of hidden nodes in each layer from 64 to 1024.  
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GWAS genes for eight different diseases were highly enriched in the third hidden layer 

Our overarching aim was to assess to what extent the compressed expression representation 

within a deepAE could capture molecular disease-associated signatures in a data-driven 

manner. To this end we downloaded well characterized genetic associations for each of the 

diseases in our data set (DisGeNET: Piñero et al., 2017). From this data we found seven diseases 

in our gene expression compendium in which at least 100 genes were found in DisGeNET, 

which we reasoned was sufficiently powerful to perform statistical enrichment analysis. These 

included asthma, colon carcinoma, colorectal carcinoma, Crohn's disease, non-small cell lung 

cancer, obesity and ulcerative colitis. In order to associate the genes upstream of a disease we 

designed a procedure which we refer to as reverse training (Methods). Briefly, using our hidden 

node representation and the phenotype vectors (represented as binary coded diseases) we 

designed a training procedure to predict the gene expression, referred to as ‘reverse’ since we 

explicitly used the hidden node representation. This procedure was repeated three times, (1) 

using only the first hidden layer, (2) using the first and second layers, (3) using all three hidden 

layers, and (4) as a comparison we also included the SAE.  

 

In a result, we deciphered a gene ranking to each disease based on our functional hidden node 

representation. Next, we tested the relevance of this representation by overlapping the top 1000 

genes of each disease with GWAS using Fisher’s exact test (Fig. 2 A). Interestingly, we found 

a highly significant disease association for at least one layer in all tested diseases (Fisher’s exact 

10-3<P<10-8), and for five cases the strongest association was found using the full model. In all 

but one case (asthma) the deepAE showed a higher enrichment than the SAE.  In order to 

validate the generality of this procedure we downloaded a new data set for MS on the same 

experimental platform (Brynedal et al., 2010). For this data-set we also performed a similar 

analysis of the control samples with other neurological disease (OND), similar to the analysis 

performed in (Brynedal et al., 2010). Reassuringly, we found significant enrichment for MS 

patients in MS GWAS (Fisher exact test P= 1.1 x 10-5, odds ratio (OR) = 2.3   n=29). Comparing 

these patients with OND patients showed lower enrichments (P= 8.6 x 10-3, OR = 1.7, n= 21) 

(Fig. 2 B) and a similar amount of top ranked differentially expressed genes between MS and 

OND showed no significance (P=0.49, OR=0.96, n=13). Taken together, the high enrichment 

of GWAS for the same disease supports our claim that our unbiased non-linear approach can 

indeed identify relevant upstream markers, generally with a higher accuracy than the shallower 

and narrower neural networks.   
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Fig. (2) Disease association enrichment of auto-encoder (AE) derived gene sets. Enrichment 

score (-log10(P)) resulting from Fisher’s exact test between disease gene overlap of the 

predicted genes by the deep neural network derived by first (green),  second (blue), and third 

(violet) hidden layers of the deep auto-encoder (deepAE). As a reference we also show the 

hidden layer of the shallow auto-encoder with 1024 nodes (SAE) that had a similar 

reconstruction error (red) (Panels A and B). The dotted (brown) line correspond to the p-value, 

cut-off 0.05 in the independent validation set in the case of control vs. MS. Panel (C) 

demonstrates the Fisher’s combined p-value across all the eight diseases predicted by a 3-layer 

deep auto-encoder. 
 

 

Samples of similar cell type and disease co-localized in the third layer of the deep auto-

encoder 

Next, we asked why disease genes preferentially associate with the third but not the other layers 

in a deep auto-encoder. However, to disentangle what is represented by each layer in a deepAE 

is not straightforward and has previously been the target of other studies (Chen, et al., 2016). 

In order to provide insight into what each layer represented in our case, we performed 

unsupervised clustering of the samples using the compressed representation. Since this was still 

a 512-dimensional analysis we further visualized the deepAE representation using the first two 

linear principal components (PCs) of the compressed space. This representation is henceforth 

referred to as the deepAE-PCA. Previously it has been shown that classical PCA on the full 

~20,000-dimensional gene space can discriminate cell types and diseases very well, which we 

therefore used as a reference in our analysis (Torrente et al., 2016). To analyze whether samples 

close in these spaces were biologically more similar than two random samples, we computed 
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the Silhouette index (SI) for phenotypically defined groups, governed by their cell type and 

disease status respectively (Fig. 3). Note that SI=1 reflects a perfect phenotypic grouping and 

SI=-1 indicates completely mixed samples. Next, the samples were grouped based on the 

different cell types in the data (n=56) and tested to determine whether the deepAE-PCA or PCA 

had the highest SI based on each of their respective, different hidden layers (see Methods). We 

filtered the compressed coordinates of normal cell types and found significantly more cell types 

having a higher SI for the third hidden deepAE layer than was the case in the PCA-based 

approach (n=45 out of 56, odds ratio = 4.09, binomial test P= 5.4x10-6). Interestingly, smaller 

enrichments were also found for the first (n=37, OR= 1.95, P=0.022) and second (n=37, 

OR=1.95, P=0.022) layers. Next, we repeated this analysis for the 128 diseases we had in our 

data, and we found all the cases showed strong associations: first layer (n=97, OR=3.13, P= 

4.2x10-9 ), second layer (n=98, OR=3.27, P= 1.3x10-9 ) and third layer (n=98, OR=3.27, 

P=1.3x10-9 ). These observations suggested that samples originating from similar conditions 

and phenotypes were automatically grouped according to the hidden layers, most significantly 

for the third. 

Fig. (3): Deep auto-encoder (deepAE) representation clustering samples into cell types 

and diseases. (A) Significance score (-log10(p)) for first (red), second (green), and third (blue) 

deepAE layers are more coherent (measured by a high Silhouette index (SI)) with respect to 

cell types (lower) and diseases (upper) than the standard principal component (PC) analysis-

based approach. (B) SI defined by the two PCs for diseases and control samples on compressed 
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signals at the third hidden of deepAE with each of the three hidden layers having 512 nodes. 

Control samples are marked by arrows. 
 

Genes associated with the same hidden node in the first layer were co-localized in a 

protein-protein interactome 

In order to further interpret the different layers and uncover their role in defining disease 

modules, we proceeded to analyze the relationship between the signature genes of each hidden 

node. Since cellular function is classically described in terms of biological pathways, or lately 

has also been abstracted to densely interconnected sub-regions in the interactome (so-called 

network communities) we analyzed the parameters in the deepAE and their connection to the 

global pattern of expressed genes (Amorim et al. 2018; Lin et al., 2017). There are different 

ways one could potentially interpret parameters in a deepAE. To this end we, created a 

procedure to associate genes with hidden nodes which we refer to as light-up. Briefly, a light-

up input vector was defined for each hidden node by activating it to the maximum value of the 

activation function, clamping all other nodes at the same layer de-activated by zero values. Then 

we forward-propagated this input vector through all layers to the output pattern response on the 

gene expression space (Methods). This resulted in a ranked list of genes for each hidden node, 

identifying which genes were most influenced by the activation of that node. We repeated this 

procedure for all hidden nodes and layers. In order to test if these lists corresponded to 

functional units, we analyzed their localization within the protein-protein interaction network 

STRING (Franceschini et al., 2013, ver 9.1).  We hypothesized that genes co-influenced by a 

hidden node could represent protein patterns involved in the same function. Also, the STRING 

database captures proteins associated with the same biological function and which are known 

to be within the same neighborhood of their physical interactome. By first ranking the most 

influenced genes we systematically analyzed the cut-offs thereby showing whether a gene was 

considered as associated with the node by powers of two from 100 to 10,000. Next, we 

calculated the average shortest path distance between these genes within the STRING network, 

using the harmonic mean distance to include also disconnected genes. This analysis revealed 

that the top-nodes in the ranked lists of the first hidden layer, had a high betweenness centrality 

(Fig. 4A) while exhibiting a low average graph distance between each other (Fig. 3B-D). Thus, 

highly co-localized genes were the most central part of the PPI. Both findings were tested using 

several different cut-offs (Fig. 4A-D) and the effect was most evident for the first layer, 

appearing to a weaker extent for the second layer and fully vanishing at the third layer.  
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Fig. (4):  Panel (A) demonstrate the betweenness centrality behavior of the top ranked genes 

on the basis of the first (green), second (blue) and third (violet) hidden layers of the deep auto-

encoder. Panels (B), (C) and (D) show the distribution of harmonic average distances of the top 

rank genes based on each hidden node of the first, second and third hidden layers of the deep 

auto-encoder respectively. Also, these results are robust across 256 and 1024 hidden nodes of 

the deep auto-encoder (Panels (E) and (F)). 

 

 

Validation of the approach using RNA-seq transcriptomic data  

In order to assess the generality and to increase the domain of applicability of the auto-

encoder approach to interpret emerging large RNA-seq data sets, we identified a large 

publicly available body of RNA-seq material (Lachmann et al. 2018). This data was divided 

into 50,000 training samples and 9,532 validation samples for 18999 genes, and was used to 

train a deep AE with similar hyperparameters as for the microarrays, i.e., using a three-

layered AE with 512 hidden nodes in each layer.  Unfortunately, this data did not contain 

sufficient complex disease samples and we therefore searched for additional RNA-seq data 

sets for our previously tested complex diseases, namely asthma (GSE75011), Crohn’s disease, 

ulcerative colitis GSE112057, obesity (GSE65540) and multiple sclerosis (James et al., 2018). 

Similar to the microarray AE we found a highly consistent significant overlap between 

GWAS and the associated disease genes derived from the third layer for each of the diseases 

(Fisher combined P<10-12), and to a lesser extent in the other two layers, see Fig. 5. Next, we 

tested whether the hidden nodes corresponded to close sets of interconnected protein-protein 
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interactions by repeating the light-up procedure. Interestingly, we found that the top ranked 

genes in the first, and to a lesser extent also in the second hidden layer, had low average 

betweenness centrality and had low average distance. Strikingly, this association was even 

stronger than in the analysis using the AE of the microarrays. In summary, our replication of 

our findings that the relationship between disease gene and the protein interaction confirms 

our findings of deep AEs as an unbiased estimator of functional disease associations (Fig. 6). 

 

Fig. (5) Validation of disease association enrichment results of deep auto-encoder 

(deepAE) derived gene sets on RNA-seq data. Enrichment score (-log10(P)) resulting from 

Fisher’s exact test between disease gene overlap of the predicted genes by the deep neural 

network derived by the first (green),  second (blue), and third (violet) hidden layers, of the 

deepAE in the Panel (A). Panel (B) demonstrates the Fisher’s combined p-value across all the 

five complex diseases predicted by the 3-layer deep auto-encoder. The dotted (brown) line 

corresponds to the p-value, cut-off 0.05. 
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Fig. (6):  Panel (A) demonstrates the betweenness centrality behavior of the top ranked genes 

on the basis of the first (blue), second (red) and third (pink) hidden layers of the deep auto-

encoder trained on the RNA-seq data. Panels (B), (C) and (D) show the distribution of 

harmonic average distances of the top rank genes based on each hidden node of the first, 

second and third hidden layers of the deep auto-encoder respectively.  

 

 

 

In the last few decades, various interactome connectivity-based approaches have been proposed 

for defining the disease module; however, the consistency of such approaches across the various 

diseases is limited due to incompleteness and the biased nature of the interactome (Menche et 

al., 2015). On the other side, the increase in the size of available transcriptomic data could offer 

an opportunity to overcome this method-biased problem by finding the functionally-related 

molecular components. The method represents a step toward overcoming the drawback of 

network method to biased underlying networks. 

 

Discussion  

In summary, our study aimed at using deep neural networks for identification of unbiased new 

functional representation that can explain complex diseases without the reliance of the protein-

protein interaction (PPI) network which is known to be incomplete (Menche et al., 2015) and 

strongly affected by the study bias of some early discovered cancer genes. We showed for the 

first time the applicability of deep learning that could prevail over the findings derived from 
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network medicine for understanding complex diseases. In order to find the similar inferences 

between structural features of the PPI and the estimated parameters of neural networks, we 

began a systematic demonstration of the light-up concept (Mordvintsev et al., 2015 ) motivated 

by the need to prioritize genes based on their contributions in the compressed space of the 

deepAE. Furthermore, we showed that the top genes prioritized by each node in the first and 

middle layers are localized and belong to the core part of the PPI. Moreover, the third layer 

nodes possess long-range variability in showing the localization to de-localization of their top 

genes compared to the random genes. This kind of gradient in terms of interpretability with 

respect to localization within the PPI network suggests that each layer indeed encodes different 

types of biological information. These results also suggest that the transformed signals in the 

compressed space first decode the modular features of the underlying interactome which then 

vanishes smoothly layer-by-layer as a deeper representation is encoded. Concurrently, with 

such a decreasing protein-defined modular gradient, an increase in disease-relevant genes and 

modules thereof is progressively discovered in the deepest layers of the auto-encoder. Next, we 

presented a novel method that follows a neural network to determine a disease-specific feature 

vector in the compressed space of the deepAE. The disease-specific feature vector of the 

compressed space transformed to a gene space that defined the disease module. For this 

purpose, we found deep auto-encoders using 512 state variables of ~20,000 genes at a 95% R2 

for microarrays and 80-85% for RNA-seq. This represented a two-fold compression compared 

to the variables in the LINCS project and to our tested shallow. The high degree of compression 

for the deep auto-encoder with fewer state variables suggests that this representation is indeed 

preferable compared to shallow representations. One reason for the need of deepness is that 

such AEs are theoretically capable of capturing more complex relations between genes, such as 

the XOR relations (Goodfellow et al. 2016,  Hong et al. 2013, Hunziker et al. 2010), which 

shallow AEs cannot.  

 

Our findings suggest the usefulness of deep learning analysis to decompose different hierarchy 

levels hidden with the relations between genes. For example, the first layer encodes the modular 

features belonging to the central part of the interactome. These features are synonymously 

selected by the interactome-based approaches to find the components that have control over the 

entire system (Wuchty, 2014). In contrast, these features are not necessarily transferable by cell 

type-specific transcriptomic signals. More interestingly, the third layer efficiently encodes cell 

type-specific functional features; therefore, it might be reason to increase the likelihood of 

mapping the disease-specific functional genes by disease-related cell type signals in the light-
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up. Also, the presented approach can play a crucial role in utilizing the resolution level of the 

single cell transcriptomic signals in prioritizing genes that are enriched with the upstream 

dysregulated genes and their relationship with causal genetic variants (Calabrese  et al., 2017). 

Another important application of our approach can indeed provide new insights in the multi-

scale organization about disease-disease, disease pathways disease-gene associations (Gaudelet 

et al., 2019). 

 

Using transfer learning our AEs could help stratify disease groups of limited samples as the 

number of parameters could decrease by about ~40-fold (from ~20,000 to 512), which decrease 

the analysis complexity. Therefore, transfer could be applied by other clinically interested 

researchers staring from our derived representation, which could lead to increased power for 

building classification systems. Lastly, we showed the generality of our approach by confirming 

our result in RNA-seq data. We think the approach is applicable to other omics and using our 

derived single omics representations together with others they open a door to multi-omics 

neural networks using transfer learning, similar to what is nowadays routinely done within the 

field of image recognition.  

 

Methods 

 

Auto-encoder construction 

 

(1) Data preparation and normalization:  The micro-array data is log transformed normalized 

values. Similarly, we normalized RNA-seq data by the upper quantile method using the function 

uqua of the R package NOISeq and log transformed the normalized gene expression values by 

log2(1+normalized expression value) (Tarazona et al., 2011).  Also, we discarded the noisy log 

transformed expression values those are less than the 3.0.  Next, we re-normalized the ith gene 

mRNA expression level in the kth sample   across the samples to be in the range between zero 

and unity, such that 

 𝑒𝑖
𝑘 =

𝐸𝑖
𝑘−𝑚𝑖𝑛(𝐸)

𝑚𝑎𝑥(𝐸)−𝑚𝑖𝑛(𝐸)
 .  

 

 

 

 

Ei
k
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Fig. 7. Schematic diagram of training an auto-encoder from normalized transcriptomic 

data. 

(2) Parameter optimization: The normalized expression matrix [𝑒𝑖
𝑘] is input and output signals 

for training the auto-encoder with sigmoid activation function. We have chosen a dense layer 

so that the optimizer starts with an initial point that has unbiased dependency among the data 

features. We used optimizer ADAM, with learning rate = 0.0001, 𝛽1 =0.9, 𝛽2=0.999, 𝜖 =1e-8 

and decay =1e-6, to train the model which we have observed as an optimal choice in predicting 

the high level of accuracy in the both training and validation data sets (Kingma, D. P., and 

Jimmy Ba (2014). The batch size was 256 for the training. In order to systematically investigate 

the impact of number of hidden nodes on the prediction accuracy, we fixed the number of 

hidden nodes in all the three hidden layers of the deep auto-encoder (deepAE), termed as a 

three-layer model.  In our case, the three-layer model with 512 hidden nodes was more suitable 

for capturing the biological features. This model has fewer reconstruction errors in comparison 

with similar hidden node of the one-layer model (SAE). We implemented our methods using 

the tensorflow backend (https://www.tensorflow.org) and Keras (https://github.com/keras-

team/keras) neural network Python-library. 
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Interpreting the trained auto-encoder with PPI  

 

Fig. 8. Schematic diagram for interpreting auto-encoder in terms of the PPI. Description 

of the  light-up from the first, second and third hidden layers by the trained deep auto-encoder. 

 

The preserved biology in the compressed space is confined in each hidden layer. Therefore, our 

objective was to understand the meaning of all the nodes in each hidden layer. For this objective, 

we computed activations at the output layer for each node of a hidden layer.  We recursively 

forward-propagated the maximum activation value of each node, while keeping other nodes 

neutral by zero input, on the remaining portion. Finally, we prioritized the genes on the basis 

of last layer activations.  For simplicity, we mathematically formulated these steps as follows. 

Suppose kth layer of an L layer AE, has Nk nodes. Here, N1 and  NL  are the same as the number 

of genes in the profile expression matrix. Also, the number of nodes in each hidden layer is h, 

i.e.  Nk  = h for 2≤k≤L-1. The following equation recursively defines the activations, xk, of the 

kth  layer from the activations, xk-1, at (k-1)th layer with the initial activation vector xp (it consists 

of the maximum activation value at the corresponding position of the hidden node and the rest 

of the elements are zero) corresponding to the node in the pth hidden layer,  

 

 
𝑥𝑘 = {

𝑓𝑘 (𝑊𝑘(𝑥𝑘−1 + 𝑏𝑘)) 𝑖𝑓𝑝 < 𝑘 ≤ 𝐿

𝑥𝑝𝑖𝑓𝑝 = 𝑘
 

                 (1) 

                                                                  

Where 𝑓𝑘 , 𝑏𝑘 and 𝑊𝑘 are associated with the kth layer activation function, bias term and weight 

matrix respectively. Note that the first input layer does not have an activation function, bias 

term and weight matrix, so 2 ≤ k ≤ L. The equation (1) defines the activations at the output 

layer,𝑥𝐿, with dimension of gene size. We prioritized the genes based on the vector,𝑥𝐿, to show 

the associations with the PPI module.  
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Predicting disease genes 

 

We derived a new approach for predicting a disease gene that is explained in the following four 

steps  (Fig. 9):  

 

Fig. 9. Schematic diagram illustrating making disease associations using the trained three-

layer deep auto-encoder and the deep neural network-based method. Most of the left 

colored matrix corresponds to the normalized gene expression profile where rows and columns 

are associated with genes and samples, cells and corresponding phenotypes, respectively. The 

next colored matrix corresponds to the compressed representation of the expression profile at 

the third layer by the deep auto-encoder. 

 

 

(1) Compressing the expression profile at hidden layers using trained deepAE.  

 

(2) Training a supervised neural network:  We trained a one-hidden-layer supervised 

neural network, having the same number of nodes in the second and third layers, with sigmoid 

and linear activation function respectively. The input matrix [𝑐𝑖
𝑘] is followed by 1 ≤ k ≤ S and 

1 ≤ i ≤ P with dimension SxP, where S and P are the total number of samples and their 

associated phenotypes respectively. The matrix [𝑐𝑖
𝑘] is defined by another identity matrix [𝛿𝑖

𝑝
] 

of the Kronecker tensor as follows, 𝑠𝑖
𝑘 = 𝛿𝑖

𝑝
 if the kth sample is associated with the pth 

phenotype. The output matrix [𝑠𝑗
𝑘] is a profile matrix of compressed signals at a hidden layer 

of dimension Sxh, while h is the number of nodes in the hidden layer. 

 

(3) Stacking the supervised neural network with the left part of deepAE, in the feed forward 

direction, from the layer at which the supervised neural network is trained. We scaled the mean 

and the variance of the weight matrices and biases in the consecutive layers where the both 

networks are stacked.  
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(4) Finding the disease scores from the expression: The scores sp, for prioritizing the genes 

related to the pth phenotype are computed by the parameters of a stacked neural network using: 

 

𝑥𝑘 = {
𝑓𝑘 (𝑊𝑘(𝑥𝑘−1 + 𝑏𝑘))  𝑖𝑓𝑝 < 𝑘 ≤ 𝐿

𝑥𝑘 = 𝛿𝑝 𝑖𝑓𝑝 = 𝑘
 

 
𝑠𝑝 = 𝑊𝐿−1(𝑥𝐿−2) 

 

Where  𝛿𝑝 is a Kronecker tensor for the  pth phenotype. 
 

 

Validation of predicted genes  

We downloaded the curated disease SNPs from the DisGeNET database and human genome 

reference consortium assembly, build version 37 (GRch37, hg19) from the  UCSC database 

(https://genome.ucsc.edu/). We computed the closest gene to each disease associated SNP, 

using Bedtools under the default option. In this way, we defined disease-associated gene sets 

for validating the neural network-based predicted genes. The performance of the predicted 

genes was demonstrated in terms of Fisher p-value using a hypergeometric test.  
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