
Supplementary materials for the genome design

suite: enabling massive in-silico experiments to

design genomes

Oliver Chalkley ∗1, Oliver Purcell2, Claire Grierson †3,4, and Lucia
Marucci ‡1,4

1Engineering mathematics, University of Bristol, Bristol, BS8 3PF,
UK.

2MIT Synthetic Biology Center, 500 Technology Square,
NE47-257, Cambridge, MA 02139, USA.

3School of Biological Sciences, University of Bristol, Bristol, BS8
3PF, UK.

4Co-last author.

1 PyGDS framework

PyGDS is a Python library created to provide a framework to enable massive in-
silico experiments. All computers are assumed to have Linux operating systems.
As outlined in the main text, three fundamental processes make up PyGDS:

1. Decide what simulations to run next in-order to optimise a specified func-
tion and learn from previous simulations if there is any;

2. organise simulations into batches and submit them to the computer clus-
ter(s). Monitor all running jobs and when the jobs are finished, perform
any necessary tasks like data processing and updating databases;

3. perform fundamental tasks on a remote computer like creating files, run-
ning code, and checking disk usage.

The fundamental processes are coded into the following modules:

• Process-1, or algorithms, is in the multigeneration_algorithm.py module.

∗o.chalkley@bristol.ac.uk
†lacsg@bristol.ac.uk
‡lucia.marucci@bristol.ac.uk

1

Figure 1: This shows how the three fundamental processes interact to design
an in-silico genome. Process-1 is labelled as ‘algorithm’, process-2 is labelled as
‘job manager’, and process-3 is labelled as ‘computer communication’.

2

• Process-2, or job manager, is in the batch_jobs.py module.

• Process-3, or computer communication, is in the base_connections.py and

connections.py modules.

Supplementary Figure 1 shows how these processes interact to create an
iterative process that learns over time. Furthermore, if coded correctly, these
fundamental processes can act as an abstract template enabling versatility of
algorithms, models and computer clusters.

1.1 Computer communication

Generally, computer clusters can only be accessed by authorised users through
a secure shell (SSH) remote connection. Authorised users are required to prove
their identity by either password or encryption key. There is no universal login
system for clusters and PyGDS will need repeated access, so it is required that
a user has certain SSH settings. Coding passwords or storing them is insecure,
and so a user’s account must be accessible by encryption key (this is a standard
method for logging into a computer cluster and is generally perceived to be more
secure than using passwords). The user will then need to set up the following
file ‘ /.ssh/config’:

Host ssh_alias

User user_name

HostName address_to_remote_computer

IdentityFile /home/user_name /.ssh/key_name

This setup means that in a Linux terminal it is possible to connect to the remote
machine, without manually entering a password, using the following command
ssh ssh_alias .

The computer communication code is kept in the base_connection module.
The Connection class is the only class in the base connection module and is
the abstract class that defines the core structure of all connection classes. All
the child classes that inherit from this class can be thought of as a portal to
another computer. This document will provide two example subclasses Blue-
CrystalIII, and BlueGem which are both high-performance computer clusters
based at the University of Bristol. The former uses a PBS/Torque job manager
and the latter uses a Slurm job manager. These are both popular job managers
for computer clusters and so can be used as a template for subclasses to other
computer clusters.

Initialisation:
The Connection class is initialised with attributes:

• The username of the account on the remote computer.

• The SSH alias defined in ‘ /.ssh/config’ file.

3

• The path to the encryption key required for user login.

• The forename of the user.

• The surname of the user.

• The user’s email.

Instance methods:
The createFile method turns a list of text into a file on the local computer
and sets the file permissions if specified.

The rsyncFile method transfers files either locally or onto the remote com-
puter. This method uses the rsync function commonly found on Linux com-

puters and can be installed with apt-get install rsync on Debian-based sys-

tems or yum install rsync on RPM-based systems.

The convertKosAndNamesToFile method is specific to gene knock-out experi-
ments with the whole-cell model of M. genitalium[1]. It creates two files, one
that contains all the sets of gene knock-outs and one that contains a name for
each set. Both files are ordered in the same way, so line 1 of the names file gives
the name of the knock-out set on line 1 of the gene knock-out sets file.

The sendCommand method takes a list of shell commands and runs them on
the remote computer. It returns a dictionary with the stdout , stderr and
return_code .

Static methods:
The checkSuccess method takes a function that needs to make a remote con-
nection with a set of arguments and executes that function in a while loop
until the return code signifies success. Having it loop normally can potentially
overload the login server of the remote computer (like a denial of service attack),
and so this waits a certain duration of time before trying again. It starts rel-
atively frequent and slows down, starting with every three seconds and ending
by checking once every 24 hours. Once the function returns a successful return
code, checkSuccess returns the output with a successful return code. If the
function does not return a successful return code within 7 days, then it exits
with a return code of 13 but this can be easily changed to a user’s preference
by editing the source code or overloading the method in a sub-class of this.

Abstract methods:
checkQueue and checkDiskUsage are methods that will often be used but vary

from computer to computer. When creating a child class for a new computer
to connect to, it is advised that these methods are properly overloaded because
they are made abstract so that additional software that uses the framework
can assume that this functionality is available. If a method(s) is not available,
then compilation or potentially dangerous runtime errors may occur. However,

4

anyone that does not wish to add this or the computer does not have the func-
tionality can create overload the method with only the pass command so that

it does nothing. The checkQueue method checks the queue on a remote cluster
and the checkDiskUsage returns disk usage statistics of the remote computer.

1.2 Job manager

There is no framework for the job manager section as the structure is provided
by the base_connection and the multigeneration_algorithm modules. The job
manager’s tasks depend on the what data processing and storage solution the
user desires and so these modules are only coded for specific implementations.

1.3 Algorithms

The MGA class is an abstract class that acts as a template that all other algo-
rithm classes should inherit from and can be found in the multigeneration_algorithm

module. The class must be abstract enough that it can act as a template
for as many algorithms as possible and can accommodate any single or multi-
generation algorithm that is compatible with the model being used. Supple-
mentary Figure 2 shows how the MGA class, and thus all algorithms, execute.
One can see that all algorithms will be started by running the run method,
which then initiates a loop that does not stop until a specified maximum genera-
tion number is reached. Each iteration of the loop represents a single generation
and each generation is created and simulated using the runSimulations method.

Initialisation:
The class needs to be initialised with:

1 A Python dictionary where the values are cluster connection instances that
are available to run simulations on (i.e. child classes of the Connection

class from the base_connections module). The keys of the clusters are
unique names that label each cluster connection.

2 A Python dictionary that defines when the algorithm should stop running.
At present this only has the functionality to stop at a predetermined
generation in the future, but additional options could be added.

3 The name given to this instance of the algorithm.

4 Once the class is initialised a class variable that remembers what genera-
tion the algorithm is on is created and set to None .

Instance methods:
The checkStop method checks to see if the generation counter (i.e. class vari-

able 4) is less than the ‘stop generation’ number in the ‘checkStop’ dictionary
(i.e. class variable 2). If the generation counter (4) is equal or more than the
‘checkStop’ dictionary (2) it returns True otherwise it returns False .

5

Figure 2: A schematic of the abstract class MGA. One can see that all algorithms
will be started by using the run() method which initiates a loop that repeats
until a maximum generation is reached. It is an abstract class, so needs a child
class to be used and that child needs to define what the algorithm does through
the runSimultions() , getGenerationName() , and getGeneration() methods.

The run method is a while loop that runs the next batch of simula-
tions and increments the generation counter (i.e. class variable 4) by one un-
til the generation counter is greater or equal to the maximum generation (i.e.
while checkStop()!= True).

Abstract methods:
The runSimulations method is called by the run method and implements one
generation of an algorithm. Since this is the abstract class it does not specify
any algorithm and leaves it for the child classes to define. Two other abstract
methods are set as they will ned to be called by the runSimulations method.
These are the getGenerationName and getNewGeneration methods.

The getNewGeneration method will need to create the genomes of the children
that need to be simulated in the next generation but is an abstract method and
so it is left for the child class to define.

The getGenerationName method will return a name for each generation that
can be used to identify what belongs to each generation. This is an abstract
method and so it is left for the child classe to define.

6

2 Implementation tutorial

In order to demonstrate the use of PyGDS we will use the case study from
the main text. The case study wishes to use a genetic algorithm to reduce the
genome of the whole-cell model of M. genitalium. In order to demonstrate using
a PBS/Torque cluster and Slurm cluster the case study will use BlueCrystalIII
and BlueGem to run the simulations, respectively. For an example of imple-
menting a different algorithm see the supplementary information of the guess,
add, and mate algorithm[2]. Here, we report firstly details of the resources at
the University of Bristol, setting up access to the cluster, and details on running
the whole-cell model are presented. Then, we include details of how to create
both the Connection and the MGA sub-classes and writing the job manage-
ment classes. Finally, the steps to starting the genetic algorithm are presented.

Genetic algorithms are a great general purpose, easy to implement machine
learning algorithm used to optimise objectives and have been used to in a wide
variety of tasks[3, 4]. A genetic algorithm attempts to, roughly, mimic evolu-
tion by natural selection in order to learn. The population of individuals is
made up of parents and children where the parents are the fittest individuals
that survived whatever natural selection is placed upon them. Here the natural
selection is normally implemented by some kind of objective function that one
wishes to optimise. A set of genes defines each parent and the fittest individuals
mate to create children that are made up of a random combination of the genes
of both parents, plus some random mutation.

In order for PyGDS to control clusters from the hub, the user must be able
to log into the remote cluster without a password as described in section 1.
Once this is achieved, the user must create subclasses of the Connection and
MGA classes in order to utilise the framework. Then the job manager classes

need writing so that the algorithm knows how to split simulations across the
cluster(s), perform data processing, and update any databases - depending on
the data requirements of the user. The rest of this section will give a general
explanation of the process and will provide an example based on setting up a
genetic algorithm to reduce the genome of the whole-cell model of M. genital-
ium. The requirements of this will be described in the next section followed by
descriptions of sub-classing the Connection and MGA classes, writing the job
management classes, and finally running the genetic algorithm on the computer
cluster.

2.1 Resources and requirements of the case study

The University of Bristol provides access to two high-performance computing
clusters, BlueCrystalIII (BC3), BlueGem (BG), and the Flex1 scratch drive.
The hub is an standard desktop computer (Intel(R) Core(TM) i3-3110M CPU
@ 2.40GHz with 4GB RAM). Supplementary Figure 3 shows that the hub can
access BC3 and BG and that the clusters have access to a shared scratch drive,

7

Figure 3: A diagram showing the resources at the University of Bristol and how
they are connected.

flex1. The hub ran on the CentOS 6.6 distribution of Linux; BC3 runs Scientific
Linux 6.4 (Carbon) and uses the PBS 4.2.4.1 job scheduler - for more information
about BC3 see the official webpage at [5]; BG runs on Scientific Linux release
6.6 (Carbon) and uses the Slurm 14.03.0 - for more information see the official
webpage at [6].

All simulation output data will be written to the shared scratch drive in two
forms.

1. SQLite3 database called ko.db to store general details about each batch of
simulations and the average growth rate and division time of each in-silico
cell.

2. The raw simulation output data of a single simulation is split into hundreds
of compressed Matlab files which are slow to access, and so it was decided
to convert the data into Python Pandas Dataframes stored as Pickle files.
In [2] GAMA ran 51,119 simulations which would produce ∼ 12.2TBs of
data1 and so some generally important time series are saved and the rest
are deleted. These files are called ‘basic summary*.pkl’ where * is some
kind of identifier, and an example of a wild-type simulation is contained
in SI.zip. The Pickle files contain the following time series.

• Chromosome state: ploidy and segregation status.

• FtsZ ring: variables related to the state of the division process (i.e.

1It was estimated that an average wild-type simulation produced ∼ 239MBs of data.

8

classdef koRunner < edu.stanford.covert.cell.sim.runners.

SimulationRunner

methods

function this = koRunner(varargin)

this = this@edu.stanford.covert.cell.sim.

runners.SimulationRunner(varargin {:});

end

end

% jobNumber can be used in order to change make the simulation

jobNumber depended.

% Change the jobnumber as shown in this example:

% runSimulation (..,’runner ’,’AdjustParameters ’,’jobNumber

’,1 ,..)

properties

jobNumber = 0; % Preallocate jobNumber

koList =0;

end

methods (Access = protected)

function modifyNetworkParameters(this , sim)

% set the seeed and display it

timeNow = clock;

seed = this.jobNumber * 10000 + timeNow (2) *24*31 +

timeNow (3)*24 + timeNow (4); %Override seed

this.seed = seed

% apply kos

koList=this.koList

sim.applyOptions(’geneticKnockouts ’, koList)

end

end

end

Figure 4: The simulation runner sub-class used to perform gene knock-out ex-
periments.

the number of edges and whether they are bent). For more informa-
tion about how cell division is modelled, see [1].

• Geometry: the diameter of the cell and if the cell has completely
separated into two cells.

• Mass: various metrics of mass (e.g. total, DNA, RNA, protein,
metabolite, media, and water).

• Metabolic reactions: growth.

• Ribosome: states of individual ribosomes (e.g. active, stalled, or
formed).

• RNA-polymerase: states of individual RNA-polymerase (e.g. active,
free, specifically bound, and non-specifically bound).

9

cd PATH_TO_WHOLECELL_MASTER_DIR

addpath(PATH_TO_WHOLECELL_MASTER_DIR)

setWarnings ()

setPath ()

runSimulation(’runner ’,’koRunner ’,’logToDisk ’,true ,’outDir ’,

SIMULATION_OUTPUT_DIR ,’jobNumber ’,JOB_NUMBER ,’koList ’,

CELL_ARRAY_OF_GENE_CODES_TO_KO)

Figure 5: A Matlab script used to run a gene knock-out simulations using the
simulation runner sub-class created in Supplementary Figure 4.

#!/ bin/bash

COMMENTS

Job name

#PBS -N JOB_NAME

Resource request

#PBS -l nodes= NO_OF_NODES :ppn=NO_OF_CORES ,walltime=HH:MM:SS

#PBS -q QUEUE_NAME

Job array request

#PBS -t MIN_ARRAY_NUMBER - MAX_ARRAY_NUMBER

designate output and error files

#PBS -e /PATH/TO/DIR/TO/SAVE/STDERR/FILE

#PBS -o /PATH/TO/DIR/TO/SAVE/STDOUT/FILE

print some details about the job

echo "The Array ID is: ${PBS_ARRAYID}"

echo Running on host ‘hostname ‘

echo Time is ‘date ‘

echo Directory is ‘pwd ‘

echo PBS job ID is ${PBS_JOBID}

echo This job runs on the following nodes:

echo ‘cat $PBS_NODEFILE | uniq ‘

load required modules

e.g. module load apps/matlab -r2013a

echo "Modules loaded:"

module list

code to be excuted for each array job should go here

Figure 6: A template submission script for a cluster with a PBS/Torque queue-
ing system like BC3.

10

#!/ bin/bash -login

COMMENTS

Job name

#SBATCH --job -name= NAME_OF_JOB

What account the simulations are registered to

#SBATCH -A ACCOUNT_NAME

Resource request

#SBATCH --ntasks= NUMBER_OF_TASKS

#SBATCH --time=D-HH:MM:SS

#SBATCH -p QUEUE_NAME

Job array request

#SBATCH --array=MIN_ARRAY_NUMBER - MAX_ARRAY_NUMBER

designate output and error files

#SBATCH --output =/ PATH/AND/NAME/TO/SAVE/STDOUT.OUT

#SBATCH --error =/ PATH/AND/NAME/TO/SAVE/STDERR.ERR

print some details about the job

echo "The Array TASK ID is: ${SLURM_ARRAY_TASK_ID}"

echo "The Array JOB ID is: ${SLURM_ARRAY_JOB_ID}"

echo Running on host ‘hostname ‘

echo Time is ‘date ‘

echo Directory is ‘pwd ‘

load required modules

e.g. module load apps/matlab -r2013a

echo "Modules loaded:"

module list

code to be excuted for each array job should go here

Figure 7: A template submission script for a cluster with a Slurm queueing
system like BG.

11

In addition to the simulation data, another SQLite3 database was created to
store biological information about the whole-cell model of M. genitalium - this
called static.db and a copy can be found in the SI.zip file that accompanies this
document. The database contains information about the genes, RNAs, pro-
teins, protein monomers, protein complexes, and reactions within the model.
This machine-readable format allows biological data to be more easily inte-
grated into algorithms, results, and analysis.

Both ko.db and static.db have accompanying python libraries to aid in using the
databases through Python - these are called ko db.py and staticDB.py, respec-
tively and can also be found in the SI.zip file that accompanies this manuscript.

The genetic algorithm will need to be able to perform gene knock-out simula-
tions using the whole-cell model of M. genitalium - the most recent version can
be downloaded from GitHub at https://github.com/CovertLab/WholeCell

and it is assumed that this is contained somewhere on the hub in the direc-
tory wholecell-master. The recommended way to perform a gene knock-out
experiment in the whole-cell model of M. genitalium is by creating a simulation
runner subclass to pass the desired gene knock-out combination and a seed for
the pseudo-random number generator in Matlab (Dr Jonathan Karr, personal
communication November 2015) - see Supplementary Figure 4 for code used. A
simulation can then be run using the code in Supplementary Figure 5.

Computer clusters normally have some kind of queueing system. PBS/Torque
and Slurm are two common queuing systems which are used by BC3 and BG,
respectively. A template for the submission script used is presented for BC3
(Supplementary Figure 6) and BG (Supplementary Figure 7). These may act
as general templates for other PBS/Torque or Slurm clusters, respectively - al-
ternative queuing systems will require a submission script that is a specific to
that queueing system.

2.2 Creating a connection class to a specific cluster using
the PyGDS framework

All connection instances using the PyGDS framework must come from a class
that inherits from the Connection class of the base connections.py module.
Since PyGDS assumes that all computers used run on Linux, the biggest dif-
ference with clusters is the queueing system used to run jobs. Two of the most
common queueing systems are PBS/Torque or Slurm, and an example of each
can be found in the Bc3 and Bg classes from the connections.py module, re-
spectively - the reader is encouraged to view these classes whilst reading through
this section.

A parent class can be sub-classed in Python by importing the base class (i.e.
from base_connections import Connection) and then passing the class as a param-

12

https://github.com/CovertLab/WholeCell

eter when defining the child class (i.e. class Bc3(Connection): or class Bg(Connection):

). The user is reminded that the base class must be initialised within the ini-
tialisation of the child class, thus requiring all the parameters required by the
parent class. Additionally, the child class must define all abstract methods of
the parent class.

Initialisation:
The child Connection classes have the additional initialisation variables:

• A path to a directory where all simulation output should be saved.

• A path to a directory where all files/data needed to submit jobs to the
cluster should be saved.

• A path to the WholeCell-master directory that is necessary to run simu-
lations using the whole-cell model of M. genitalium.

Abstract methods:
These classes do not dictate any abstract methods; however, the Connection

class dictates that all child classes must have the checkQueue and checkDiskUsage

methods.

The checkQueue method takes a job number as a parameter and returns
all entries in the queuing system that have that specified job number. The
PBS/Torque and Slurm clusters use different queuing systems and so the imple-
mentation of the checkQueue method are different for the PBS/Torque clusters
(i.e. in the Bc3 class) and the Slurm clusters (i.e. in the Bg class).

The checkDiskUsage method returns the user’s disk usage. BC3 has a cus-

tom command, pan_quota , for this and so uses this command to return the
percentage of disk available and used. To implement this on the BG is not
straightforward because there is no equivalent to the pan_quota command and
using multiple shared file systems makes it more complicated than it would be
on a normal PC. Since this method is not used by the genetic algorithm or the
job management classes we can not create the method. However, the parent
class requires that the method be created and so we simply create a method of
that name with the pass command and so it exists but does nothing when

called2.

Instance methods:
The createStandardKoSubmissionScript is a method that creates an executable

PBS/Torque or Slurm submission script (the Bc3 class or Bg class, re-

spectively) that will submit a batch of gene knockout simulations using the
whole-cell model of M. genitalium. All the method needs to know is

2The user should be careful when using this class on other algorithms or job management
systems because they might need this function and thus cause unexpected bugs.

13

• The local path and file name of the submission script that it will create.

• The name of the job that will be sent to the cluster queuing system.

• The number of gene knock-out sets in this batch of jobs.

• The remote path and file name of a file that contains all the names of each
of the gene knock-out sets. 3

• The remote path and file name of a file that contains all the gene codes
of each of the gene knock-out sets. 4

• The number of times that the user wishes each gene knock-out set to be
repeated.

• The path to the WholeCell-master directory.

• The path where the simulation data output will be stored.

• The path and file name where the simulation’s standard-out should be
saved.

• The path and file name where the simulation’s standard-error should be
saved.

The method checks that a feasible number of simulations has been given and
then splits the simulations across array jobs and cores within an array job such
that it gets through the cluster queue as quickly as possible.

When a job is submitted to a cluster queuing system, a job number is nor-
mally returned to standard-out. The getJobIdFromSubStdOut method takes the
number from the standard-out and remembers it so that the job’s progress can
be monitored.

The file static.db is an SQLite3 database that acts as the central author-
ity on data related to M. genitalium and its whole-cell model (see section 2.1).
Children of the Connection class may want to query this database for various
reasons, and so there are four instance methods that relate to this.

There is a Python library in the same directory as static.db that makes querying
the database easier. If one wants to send a raw SQLite3 query to static.db, then
the sendSqlToStaticDb method will do this and return the result. If one wants

to use any of the other functions in the library, then the useStaticDbFunction

can be used.

3These names must be unique and must be in the same order as the gene knock-out sets
file - there is one name per line.

4These sets of codes must be in the same order as the gene knock-out sets names file -
there is one comma-separated set of gene codes per line.

14

The convertGeneCodeToId method converts a tuple of gene codes into gene
IDs.

The getGeneInfo method takes a tuple of gene codes and returns a dictionary
containing the following attributes taken from the supplementary information
of [1]:

• gene code;

• gene type (e.g. mRNA or rRNA etc);

• gene name;

• gene symbol;

• functional unit of gene product;

• deletion phenotype according to [1];

• essential in model according to [1];

• essential in experiment according to [1].

This method is not strictly necessary for the algorithm to run but is simply
added for convenience to the user and as an example of how an algorithm may
gain access to biological data.

2.3 Constructing a job manager

The job manager has no base class to inherit from. However, it must take child
classes of the Connection class that are able to create a submission script
to run all possible simulations required by the algorithm. In this case, the al-
gorithm will only require gene knock-out simulations in the whole-cell model
of M. genitalium and so the createStandardKoSubmissionScript method of the

Bc3 and Bg classes satisfy this condition. Additionally, the algorithm will
pass instructions of which gene knock-out simulations to run in the form of a
dictionary whose keys are unique names to identify the simulation parameters
and the value is the parameter values (i.e. a tuple of gene codes to knock-out).

The job manager libraries are kept in one module batch_jobs which contains

two classes, JobSubmission and ManageSubmission . The job manager libraries
do not have a rigid structure defined by abstract classes since this structure is de-
fined in the computer communication and the algorithm libraries. Whilst there
is no inheritance structure between the JobSubmission and ManageSubmission

classes, it is important to note that they are intricately linked by the fact that
the ManageSubmission class requires an instance of the JobSubmission class
in order to be created. This structure enables the user to change the post-
simulation data processing through only the ManageSubmission class (e.g. it

becomes easy to change the data storage solution used by the system).

15

2.4 The JobSubmission class

The JobSubmission class holds everything needed to submit a batch of jobs to
a computer cluster.

Initialisation:
The class needs to be initialised with:

• A name for the submission.

• A child class that inherits from the Connection class of the base_connection

with a method, known by the algorithm, that is able to create a submission
script to perform all possible simulations required by the algorithm.

• A Python dictionary whose keys are unique names and the values are
tuples of genes codes where each code represents a gene to knock-out.

• A base path on the remote computer where the simulation data should be
saved.

• A base path on the remote computer where the simulation standard-error
files should be saved.

• A base path on the remote computer where the simulation standard-out
files should be saved.

• A base path on the remote computer where the files needed to run the
simulations should be saved.

• The number of times the user wants each gene knock-out set to be re-
peated.

• A path to the WholeCell-master directory where the whole-cell model of
M. genitalium is stored.

Instance methods:
The createUniqueJobName method creates a unique name so that files can be
created and stored locally. It needs to be unique because an algorithm instance
may want to submit more jobs than can be handled in one JobSubmission in-
stance and so there will be multiple, very similar instances running at the same.
In order to make sure that similar instances do not interfere with each other’s
files, a directory name that is guaranteed to be unique is needed.

Files often need to be created and transferred to the remote computer before a
job can be submitted to the cluster. prepareForSubmission is the method that
does this.

The submitJobToCluster method submits the job to the cluster, records the
time and job number, and then deletes any temporary files created locally for
the submission.

16

2.5 The ManageSubmission class

The ManageSubmission class submits a JobSubmission instance to a cluster

using the submitJobToCluster method and then monitors its progress in the
queue. When the job is finished, it converts the raw simulation output into
Pandas DataFrames, updates ko.db, and remembers the average growth rate
and division time of all the simulations.

Initialisation:
The class needs to be initialised with:

• An instance of the JobSubmission class.

• Sometimes an algorithm needs to pass information specific to only that
algorithm, and so there is a class variable that this can be passed to if
necessary.

• The class automatically submits the job contained in the JobSubmission

instance which can be a problem for unit testing and so a variable is passed
to tell the class whether to initialise normally or in test mode.

Instance methods:
The prepareDictForKoDbSubmission method creates a dictionary that is designed

to be recognised by the ko_db module and so can be used to update the ko.db

database. This returns the dictionary that will be submitted to the database,
but all data related to the simulations in the job submission will not be filled
in yet - it will only contain the common data like the details of the person who
submitted the job, the details about the cluster, and the time that the job was
submitted.

The prepareSimulationDictForKoDbSubmission method goes to the directory of
a specific simulation on the remote computer to open the Pandas DataFrame,
extract the average growth rate and the time step when the pinchedDiamter

variable was first zero (i.e. the time of division - if the cell did not divide then
it returns the number zero). It then returns a dictionary where the key is the
gene knock-out set that defines the genome of the organism, and the value is
the average growth rate and division time of that organism.

The monitorSubmission method watches every simulation related to the job
submission as it progresses through the queuing system by checking the queue
after the first hour, followed by 15-minute intervals after that. Occasionally some
jobs might get lost in the queuing system or the simulation crashes, and this
method will account for these events. When this method finds that simulations
have finished, it converts the data from state-*.mat files to Pandas DataFrames
stored in .pickle files - this is done in parallel using ProcessPoolExecutor from
the concurrent.futures module. As each simulation finishes and the data is
converted, the average growth rate and division time are also retrieved into a

17

dictionary using the prepareSimulationDictForKoDbSubmission method - these are
added to a dictionary that is stored as a class variable and so once all the sim-
ulations are completed the relevant data can be found all in one place. When
the whole job submission is finished, the data is converted and the growth and
division time data is collected, then the method updates ko.db using the KoDb

class of the ko db.py module which can be found on a drive that is directly
accessible from the cluster login nodes.

The convertDataToPandas method goes to the directory of the simulation data
output and converts all the raw data from state-*.mat files into Pandas DataFrames
stored in .pkl files using the Python package Pickle. It is worth noting that the
.mat files are read by the File method of the h5py package. However, it
was found that occasionally it threw an error whilst trying to read the file even
though Matlab had no problem. The standard version of .mat file that Matlab
uses is 7.0, which is a compressed version, and it appeared that the uncom-
pressed version, 7.3, did not cause this error. In order to avoid these errors,
code in the whole-cell model was modified so that it saves the files in version
7.3 rather 7.0 - lines 916 and 932 of /.../WholeCell-master/src/+edu/+stanfor
d/+covert/+cell/+sim/+util/DiskLogger.m.

2.6 Creating an algorithm using the PyGDS framework

This section will describe creating an algorithm class on the PyGDS frame-
work using a genetic algorithm as an example - full code can be seen in the
GeneticAlgorithm class of the multigeneration algorithm.py module.

Supplementary Figure 8 shows how each generation of the GeneticAlgorithm

is executed - to see how this fits in with the entire process it should be com-
pared to Supplementary Figures 1 and 2.

Initialisation:
In addition to the parameters needed to initialise the MGA class the GeneticAlgorithm

class requires

• The maximum number of fit individuals that are allowed to survive each
generation.

• The number of times each simulation needs to be repeated.

• The number of children needed in each generation.

• A path indicting where all simulation data should be stored. This is
relative to the cluster base path which is given by the connection class.

• The probability that a mutation occurs whilst creating a child.

• The name of a function (that exists in the child class) that can be called
to get a dictionary that contains all the gene codes and IDs that make up
the genome.

18

Figure 8: This diagram show how the runSimulations method is implemented
in the GeneticAlgorithm class. Red boxes contain everything that happens

within the runSimulations method. Blue boxes contain any significant methods
or classes called within the runSimulations method. Yellow boxes contain
significant methods or classes called within the blue boxes. Here GA represents
the GeneticAlgorithm class. 19

Abstract methods:
The MGA class defines three abstract methods that need to be defined in any
child classes, getGenerationName , getNewGeneration , and runSimulations .

The getGenerationName method returns the string ‘genN’ where ‘N’ is the
current generation number.

The getNewGeneration method decides what method to call to generate the next

generation of children. For the genetic algorithm, this calls the mateTheFittest

method if the number of fit individuals is greater than one. Otherwise, it calls
the getRandomKos method.

The runSimulations method defines the algorithm over one generation. For
geneticAlgorithm this means using the getGeneration method to get all the

child genomes for the next generation of simulations as well as the number of
clusters available. It then splits the children evenly over all the clusters and
creates JobSubmission instances for each set.

Parallel computing is required to create the ManageSubmission classes. Python
executes all lines of code sequentially and waits for each line of code to fin-
ish before executing the next. The sequential nature of code execution means
that normal code will submit the first batch of jobs to cluster-1 and then wait
for the whole ManageSubmission process to finish before submitting the sec-
ond batch of jobs to cluster-2. This sequential use of the clusters defeats the
point of having multiple computing facilities, and so a parallel solution was
created by using the multiprocessing library to map each job to their re-
spect clusters. Due to the amount of time it takes to convert the simulation
data output to Pandas DataFrames and the fact that it is not uncommon for
lots of simulations to finish at a similar time, the ManageSubmission class ex-

ecutes the convertDataToPandas method in parallel as well. It is now clear
that the process running the ManageSubmission class is already a child process

from the parallelised mapping in the runSimulations method. Unfortunately,
the multiprocessing library does not allow child processes to spawn new child
processes, and so the more popular library was dropped and replaced by the
futures module of the concurrent library.

Once all the simulations for this generation have completed then the runSimulations

method passes all the finished ManageSubmission instances to the updateFittestPopulation

method in order to learn what happened in the current generation.

Instance methods:
The getPopulationSize method returns the desired population of children for
this generation.

The getRandomKos method finds out what genes can be knocked-out out from

20

the genome from class variables and uses the getPopultionSize method to find
out how many children need to be created. It then uses these to create the de-
sired number of children, each with a random number of genes knocked out in
the range [2, 5]. The number of genes knocked out and which genes are knocked
out are both picked from a uniform distribution. Each child name is made up
of two parts, the first part is ‘ko’ and the second part is a number that starts
equal to 1 and increments by one every time a new child is created so that each
child has a unique name in the generation. When a new generation starts, the
name counter goes back to 1. This method returns a dictionary where the keys
are the names of the children, and the values are the gene codes of the genes
that need to be knocked out - this dictionary will be referred to as the child
name to gene knock-out set dictionary.

The mateTheFittest method creates all the children for the next generation.
The children are created by mimicking natural selection and sexual reproduc-
tion by randomly selecting two parents from the fittest individuals found so
far (natural selection) and creating a child by mixing the genomes of the two
parents (sexual reproduction). It starts by making a copy of all the fittest in-
dividuals. The genome of individual i, Θi, can be represented by the set of all
genes knocked-out of the wild-type, Ki. The fittest individuals, F , are a set
of knock-out that represent all the individuals that have survived up until that
point, F = {Ki}. Each of the fittest individuals is assigned a fitness score which
is the number of knock-outs, L = {li | (li = |Ki|) ∧ (Ki ∈ F)}, and thus can
define the probability of picking individual Ki as

P(X = Ki) :=
li∑

lj∈L [lj]
. (1)

Two individuals, Ki & Kj , are randomly picked from the fittest set to mate
using equation 1. These are converted into the genome representation and
will become the parents of a new child, P 1 = Ω(Ki) = {θ1

1, θ
1
2, . . . , θ

1
|Γ|} and

P 2 = Ω(Kj) = {θ2
1, θ

2
2, ..., θ

2
|Γ|}

5. In order to create the child a random num-

ber in the range x ∈ [1, |Γ|] is uniformly picked, this indicates how much of
the child genome will be made up of parent-1. A subset of size x is uni-
formly picked from P 1, CP 1 ⊂ P 1, and the remaining genes will come from
parent-2, CP 2 ⊂ P 2. CP 1

and CP 2

are combined to make a new genome,

C = CP 1 ∪ CP 2

= {θk1
1 , θk2

2 , . . . , θ
k|Γ|
|Γ| } where km = 1 if taken from parent-1 or

km = 2 if taken from parent-2. A mutation probability is passed at initialisation
of the algorithm, and this used to determine which children receive a random
mutation from a uniform distribution. The number of genes to be mutated is
picked randomly from a custom6 method based on an exponential distribution

5The user defines the total gene set, Γ, and thus its size when creating an instance of the
algorithm. The gene set may be the entire wild-type genome or some subset of that which
excludes genes that the user does not want to knock-out. For this case study, |Γ| = 358, which
is the number of the characterised protein-coding genes minus one that tends to cause the
simulations to crash.

6It was desired that the number of genes to knock-out be variable in order to enable large

21

number_of_gene_mutations = 0

while number_of_gene_mutations == 0:

number_of_gene_mutations = int(np.around(np.random.

exponential (2)))

Figure 9: Code segment showing how the modified exponential distribution is
calculated. The while-loop means that a 0 value will never be created, the
np.around method performs standard rounding on the result, and the int

method converts the data type from float to integer (int truncates all decimal
places rather than rounding them and so rounding them first results in fewer
loops).

with parameter two (see code segment 9 for the code). 10,000 samples were
taken from the modified exponential distribution, and a histogram of the data
can be seen in Supplementary Figure 10. The sample minimum, maximum,
mean, and standard deviation are 1, 20, 2.54050, and 2.00049, respectively.
Once the number of genes is known then that number of genes are selected ran-
domly from a uniform distribution and then flipped by adding genes that were
knocked-out or knocking-out genes that were present (i.e. θi is a binary variable
and so can be flipped by adding 1 modulo 2, θi → (θi + 1)mod2). The process
of creating children is then repeated until enough children are created for the
new generation.

The updateFittestPopulation method takes the simulation results from a com-

pleted SubmissionManager instance and extracts all individuals that produced a
dividing cell. The dividing cells are then combined with the current fittest indi-
viduals and ranked so that the smallest genomes are at the top and the largest
at the bottom. The algorithm class is initialised with a maximum number of fit
individuals, M , and so the top M individuals are taken from the new list and
set as the new fittest individuals.

Instance methods for all child classes:
These are methods deemed generally useful and automatically get put into all
child classes of the MGA class and will always be identical in implementation.
These will not be defined again in the other child classes.

The random_combination method takes a Python iterable (e.g. a list) and
the desired size and then picks a random subset of that size from a uniform

and small random mutations to occur. However, the larger the number of mutations the larger
the chance of killing the cell and so a uniform distribution with a large range will result in
mostly killing the cell, but a small range means that larger mutations can never be tested. A
desirable distribution would be a negative exponential distribution - this enables both large
and small numbers of mutations. However, small numbers of mutations are more likely with
the probability of larger numbers of mutations exponentially decaying. The problem with the
negative exponential distribution is that it is continuous in values starting from 0 whereas we
desire discrete integers starting from 1.

22

Figure 10: Histogram of the modified exponential distribution. 10,000 data
points were sampled from the modified exponential distribution to create this
histogram. The data had a minimum value of 1, a maximum value of 20, a
mean value of 2.54050, and a standard deviatation of 2.00049.

distribution which is then returned to the user.

The random_pick method is the same as the random_combination method
except it picks the iterable elements from a distribution defined by an iterable
of probabilities passed by the user.

The getJr358Genes method returns a tuple of gene codes. These gene codes are
defined as all of the protein-coding genes that are characterised in the whole-cell
model of M. genitalium minus one that tends to crash the simulation.

The getDictOfJr358Codes method returns a dictionary where the keys are gene

codes returned by the getJr358Genes method and the values correspond to the

ID used in our databases. This method takes an instance of the Connection

class and uses that connection to get IDs directly from static.db so that all
users are working off the same data source.

The invertDictionary method takes a dictionary and, assuming that the keys
and values share a bijective relationship, returns a dictionary where the keys
and values are swapped.

The createIdxToIdDict method takes a dictionary that converts gene codes
into gene IDs and converts that into a dictionary that converts genome indexes
into gene IDs.

The convertIdxToGeneId method takes a list of genome indexes and returns

23

a corresponding list of gene IDs

The convertGeneIdToCode method takes a list of gene IDs and returns a corre-
sponding list of gene codes.

2.7 Running the genetic algorithm

Having set up the /.ssh/config file as specified in section 1.1; created a sub-class
of the Connection class to enable the communication between the users hub
and cluster(s); set up the databases and corresponding communication modules
on the cluster(s); and made all the PyGDS modules available to an instance of
Python3+ on the hub, it will be possible to run a genetic algorithm to reduce
the genome of the M. genitalium whole-cell model on the user’s cluster(s).

Supplementary Figure 11 shows a Python script that could be used to run the ge-
netic algorithm described in this document. In a Python3 virtual-environment, a
user can start the genetic algorithm with python genetic_algorithm_runfile_example.py

. Due to the long running time of these massive in-silico experiments, it is ad-
vised that a user runs the Python script in a terminal multiplexer (e.g. GNU
screen or tmux) so that it is possible to log out of a remote connection with the
hub and then log back in and carry on the session. In addition to this, it is useful
to be able to both see the progress of the algorithm in real-time whilst also being
able to look at the standard-out and standard-error in a text file. In order to
fulfil both of these requirements a user can start the algorithm with the following
command python genetic_algorithm_runfile_example.py 2>&1 | tee path/to/outfile.out

.

3 Other modifications

This case study and Rees and Chalkley et al.[2] have presented examples of how
to use PyGDS to run two different genome reduction experiments on the whole-
cell model of M. genitalium on two different high-performance computer clusters.
It is possible to modify this to include different different data management
requirements, models and design objectives. Section 2.3 described creating the
job management classes for data management specific to the genome design
group at the University of Bristol; however it should be relatively easy to recreate
that data management system or modify it for other systems. Adapting this
code to use different models and design objectives would not be as straight
forward as say running existing algorithms on different clusters or adding a new
algorithm. This is because the code changes need to be made throughout all the
different modules. To run an algorithm on a different model changes would need
to be made to the child connection classes and the job management classes so
that they know how to submit simulations using the new model to the cluster.
Varying different parameters in the model (e.g. not gene knock-outs) would
require making the same changes as well as changes to the MGA sub-class since

24

load classes to be used

from multigeneration_algorithm import GeneticAlgorithm

from connections import Bc3 # this example uses the Bc3 class but

the user needs to load a connection sub -class that will work on

their cluster

details about the user

cluster_user_name = ’USER_NAME ’

ssh_config_alias = ’SSH_ALIAS ’

path_to_key = ’PATH_TO_SHH_KEY ’

name1 = ’USER_FIRST_NAME ’

name2 = ’USER_SURNAME ’

email = ’USER_EMAIL_ADDRESS ’

create instances of the connection classes that the user wishes

to run simulations on

bc3_connection = Bc3(cluster_user_name , ssh_config_alias ,

path_to_key , name1 , name2 , email)

dict_of_cluster_instances = {’bc3’: bc3_connection} # This

dictionary will be passed to the algorithm class and can

contain multiple cluster instances

dict_for_checkStop = {’max_generation ’: [100]} # This will tell the

algorithm to stop when it gets to 100 generations

MGA_name = ’GA_full_run_with_seed_2019_05_15 ’ # This must be a

unique name for the in -silico experiment (if not unqie then the

simulations will throw an error a stop)

max_no_of_fit_individuals = 100 # This is the maximum number of fit

individuals allowed to mate to create the next generatio

reps_of_unique_ko = 1 # This is the number of times each simulation

needs to be repeated

create an instance of the GeneticAlgorithm class

genetic_algorithm = GeneticAlgorithm(dict_of_cluster_instances ,

dict_for_checkStop , MGA_name , max_no_of_fit_individuals ,

reps_of_unique_ko , generation_num_to_gen_size_dict = {0: 600,

-1: 200}) # generation_num_to_gen_size_dict tells it to create

600 children for generation 0 and 200 children for all other

generations

genetic_algorithm.run() # start the genetic algorithm

Figure 11: A example of a Python script that will use a genetic algorithm to
reduce the genome of the M. genitalium whole-cell model - actual file can be
found in genetic algorithm runfile example.py from the SI.zip file that accom-
panies this document.

25

this needs to know what parameters use.

References

[1] Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Miriam V
Gutschow, Jared M Jacobs, Benjamin Bolival, Nacyra Assad-Garcia, John I
Glass, and Markus W Covert. A whole-cell computational model predicts
phenotype from genotype. Cell, 150(2):389–401, jul 2012.

[2] Joshua Rees, Oliver Chalkley, Sophie Landon, Oliver Purcell, Lucia Marucci,
and Claire Grierson. Designing Minimal Genomes Using Whole-Cell Models.
bioRxiv, page 344564, mar 2019.

[3] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing,
4(2):65–85, jun 1994.

[4] Thomas Back. Evolutionary algorithms in theory and practice : evolution
strategies, evolutionary programming, genetic algorithms. Oxford University
Press, 1996.

[5] ACRC. BlueCrystal Phase 3. https://www.acrc.bris.ac.uk/acrc/

phase3.htm.

[6] BrisSynBio. BlueGem. https://www.bristol.ac.uk/brissynbio/

equipment/hpc/bluegem/.

26

https://www.acrc.bris.ac.uk/acrc/phase3.htm
https://www.acrc.bris.ac.uk/acrc/phase3.htm
https://www.bristol.ac.uk/brissynbio/equipment/hpc/bluegem/
https://www.bristol.ac.uk/brissynbio/equipment/hpc/bluegem/

	PyGDS framework
	Computer communication
	Job manager
	Algorithms

	Implementation tutorial
	Resources and requirements of the case study
	Creating a connection class to a specific cluster using the PyGDS framework
	Constructing a job manager
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|JobSubmission|whitepush0 g 0 Gpoptowidthheightdepth class
	The push0 g 0 Gpop[basicstyle=,breaklines=true]|ManageSubmission|whitepush0 g 0 Gpoptowidthheightdepth class
	Creating an algorithm using the PyGDS framework
	Running the genetic algorithm

	Other modifications

