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ABBREVIATIONS  

1KG  1000 Genomes 

AUC  Area Under the Curve 

BMI  Body Mass Index 

CI  Confidence Interval 

DIAGRAM DIAbetes Genetics Replication and Meta-analysis  

GDM  Gestational Diabetes 

PRS  Polygenic Risk Score 

GraBLD Gradient Boosted and LD adjusted  

GRM  Genomic Relationship Matrix 

GREML Genomic relatedness matrix residual maximum likelihood 

GRS  Genetic Risk Score 

GWAMA Genome-Wide Association Meta-Analysis 

GWAS  Genome-Wide Association Study 

LD  Linkage Disequilibrium 

LDMS  LD and MAF stratified 

MAF  Minor Allele frequency 

MAGIC Meta-Analyses of Glucose and Insulin-related traits Consortium 

MS  MAF stratified 

OR  Odds Ratio 

PCA  Principal Component analysis 

P+T  Pruning and Thresholding 

ROC  Receiver Operating Characteristic  

SC   Single component 

SE  Standard Error 

SNP  Single Nucleotide polymorphism  

START South Asian Birth Cohort  

T2D  Type 2 Diabetes 

UKB   UK Biobank  
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ABSTRACT 1 

Gestational diabetes Mellitus (GDM) affects 1 in 7 births and is associated with numerous 2 

adverse health outcomes for both mother and child. GDM is suspected to share a large common 3 

genetic background with type 2 diabetes (T2D). The first aim of this study, was to we build and 4 

characterize different GDM genome-wide polygenic risk scores (PRSs) using genome-wide 5 

genotypes taken from the South Asian Birth Cohort (START) and the DIAGRAM consortium. 6 

The second aim of this study was to estimate the heritability of GDM. 7 

GDM PRSs were derived for 832 South Asian pregnant women participating in the START 8 

study using three methods: 1) (Pruning and thresholding (P+T), 2) LDpred, and 3) the 9 

gradient boosted and LD adjusted (GraBLD) methods). Summary statistics were derived from 10 

Mahajan et al., 2014 and Scott et al., 2017, two large genome-wide association meta-analysis 11 

performed in ethnically diverse and European participants respectively. Linkage disequilibrium 12 

(LD) between variants was assessed using the START and 1000 Genomes (1KG) data. Both 13 

weighted and unweighted PRSs were derived. Association with GDM was tested using 14 

logistic regression. Heritability of GDM was estimated using the GRMEL approach. Results 15 

were replicated in South Asian and European women from the UK Biobank study. 16 

The best P+T, LDpred and GraBLD PRSs were all based on data from Mahajan et al., but 17 

differed with respect to their source of LD. The best PRS was highly associated with incident 18 

GDM in START (AUC= 0.62, OR: 1.60 [95% CI: 1.44–1.69]) and in South Asian (AUC=0.65) 19 

and British (AUC=0.58) women from UK Biobank. Heritability of GDM approximated 0.55 ± 20 

0.83 in START and 0.18 ± 0.22 in European women from UK Biobank. 21 

Our results highlight the importance of combining genome-wide genotypes and summary 22 

statistics from large multi-ethnic genome-wide meta-analysis in order to derive an optimal 23 

PRS in South Asian women.  24 
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INTRODUCTION 25 

Gestational diabetes mellitus (GDM) is defined as dysglycemia due to elevated blood glucose 26 

levels first identified during pregnancy, and is specifically defined based on glucose response 27 

to an oral glucose challenge test in pregnancy. GDM has been associated with numerous 28 

adverse health outcomes affecting mother and child, both during and after pregnancy 1,2. 29 

Because of its increasing  prevalence (~ 1 in 7 births), GDM has become a major health concern 30 

worldwide 3. Nevertheless, the prevalence of GDM largely varies from one region of the globe 31 

to the other, and South Asian women have been shown to be at higher risk of GDM than white 32 

Caucasian women.  33 

Although GDM is thought to have a strong genetic component, to our knowledge, no studies 34 

have estimated the heritability of GDM. Nevertheless, since GDM and T2D have similar risk 35 

factors and share common pathophysiological pathways, the heritability of GDM is thought to 36 

be similar to that of T2D.  37 

Numerous genome-wide association studies (GWASs) and genome-wide association meta-38 

analysis (GWAMAs) of glucose related traits and T2D have been conducted in non-gravid 39 

populations, and summary statistics from large consortia (e.g., MAGIC and DIAGRAM) are 40 

publicly available 4-13. By contrast, few studies of genetic determinants of GDM have been 41 

conducted or published. For instance, only two studies sought to identify genes associated with 42 

dysglycemia, GDM, and diabetes during pregnancy by GWAS 14,15. Top signals from these 43 

studies were located within/near CDKAL1, MTNR1B, GCKR, PCSK1, PPP1R3B and G6PC2, 44 

which were previously known for their association with glucose metabolism and T2D 14,15. In 45 

addition, other T2D associated loci (e.g., TCF7L2, PPARG, CDKN2A/B, KCNQ1, GCK, etc.) 46 

were also significantly associated with GDM when tested separately 16-39, or combined in 47 

genetic risk scores (GRS) 33,34,40-42.  48 
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GRS are used to capture genetic information at one or more loci. Most of published studies 49 

interested in complex traits/diseases and using GRS typically combine data for a small number 50 

of single nucleotide polymorphisms (SNPs), and the predictive power of these GRS is sub-51 

optimal 43. However, with the increased availability of genome-wide genotypes and publicly 52 

available data from large consortia, GRS with a larger number of variants are being used, and 53 

the predictive value of these genome-wide polygenic risk scores (PRSs) has substantially 54 

improved 44,45.  55 

PRSs can be derived using different approaches, however, these require both summary statistics 56 

from an external GWAS and genetic data for a reference panel for between-variants linkage 57 

disequilibrium LD (LD) calculations. Pruning and thresholding (P+T) is a commonly used 58 

heuristic approach to derive PRSs in which variants are filtered based on an empirically 59 

determined P-value threshold. Linked variants are further clustered in different groups and 60 

SNPs with the highest significance (lowest P values) in each group are prioritized and included 61 

in the PRS, while variants of less significance within the group are pruned out 46. Other 62 

programs have been shown to improve the predictive value of the score by allowing the 63 

inclusion of a larger number of independent as well as linked variants into the score using 64 

different approaches. For instance, LDpred, another commonly used method, estimates the 65 

mean weight of each variant, assuming a prior knowledge of the genetic architecture of the trait 66 

(fraction causal), and using a Bayesian approach 47. More recently, we developed the gradient 67 

boosted and LD adjusted (GraBLD), a new PRS building approach which applies principles of 68 

machine-learning to estimate SNP weights (gradient boosted regression trees), and regional LD 69 

adjustment 48.  70 

The first objective of this study was to determine the optimal gene scores and investigate the 71 

association of genetic variants combined in these PRSs with GDM in South Asian women 72 

participating to the South Asian Birth Cohort (START). We considered several parameters: 1) 73 
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two different sources of GWAS summary statistics (Mahajan et al., 2014 5 vs. Scott et al., 2017 74 

6); 2) two templates for LD calculation (1000 Genomes phase 3 49 vs. START genotypes); 3) 75 

different minimal values of the number of samples in each SNP’s analysis in the consortia; 4) 76 

weighted vs. unweighted PRSs; 5) three methods to derive the PRSs; Pruning and Thresholding 77 

(P+T),. LDpred and GraBLD and; 6) different P-value thresholds (for P+T and LDpred PRSs 78 

only). The second objective was to estimate the heritability of GDM from: 1) genome-wide 79 

data; 2) common variants; and 3) SNPs in the best P+T PRS. Our results were further validated 80 

in a subset of South Asian and European origin women who participated in the UK Biobank 81 

study 50. 82 
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METHODS   83 

Study design and participants  84 

The South Asian Birth Cohort (START) study: START is a prospective cohort designed to 85 

evaluate the environmental and genetic determinants of cardiometabolic traits of South Asian 86 

pregnant women and their offspring living in Ontario, Canada. The rationale and study design 87 

are described elsewhere 51. In brief, 1,012 South Asian (people who originate from the Indian 88 

subcontinent) pregnant women, between the ages of 18 and 40 years old, were recruited during 89 

their second trimester of pregnancy from the Peel Region (Ontario, Canada) through physician 90 

referrals between July 11, 2011 and Nov. 10, 2015. All START participants signed an informed 91 

consent including genetic consent, and the study was approved by local ethics committees 92 

(Hamilton Integrated Research Ethics Bard, William Osler Health System, and Trillium Health 93 

Partners). A detailed description of the maternal measurements has been published previously 94 

52. 95 

UK Biobank: The UK Biobank is a large population-based study which includes over 500,000 96 

participants living in the United Kingdom 50. Men and Women aged 40 - 69 years were recruited 97 

between 2006 and 2010 and extensive phenotypic and genotypic data about the participants was 98 

collected, including ethnicity and a question regarding past history of GDM. Details of this 99 

study are available online (https://www.ukbiobank.ac.uk) 50. Data from UK Biobank were used 100 

in order to validate the results from the START study.  101 

Derived variables 102 

START Study: GDM status was determined using the South Asian specific cutoffs as defined 103 

in the Born in Bradford study (fasting glucose level of 5.2 mmol/L or higher, or a 2-hour post 104 

load level of 7.2 mmol/L or higher) 53. Self-reported GDM status was used if these measures 105 
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were unavailable. Participants with a history of T2D prior to pregnancy were excluded. Using 106 

these criteria, 832 START participants with known GDM status (301 cases and 531 controls) 107 

and available genotypes were included in the analysis. The South Asian ethnicity/ancestry of 108 

participants was validated using genetic data. 109 

UK Biobank: Participants in the UK Biobank completed questionnaires at several time points 110 

(questionnaire of initial assessment visit, 2006-2010; questionnaire of first repeat assessment 111 

visit, 2012-2013; questionnaire of imaging visit, 2014 onwards). For the purpose of our study, 112 

GDM cases were defined as women who reported having had diabetes during pregnancy only, 113 

collected at any time point using questionnaires. The control group was comprised of women 114 

who: 1) had at least one child (self-reported, live births only) 2) had never been diagnosed with 115 

diabetes or GDM in all assessments. The ethnicity/ancestry of participants was validated using 116 

genetic data.  117 

DNA extraction, genotyping, imputation, filtering and SNP extraction:  118 

START: DNA was extracted and genotyped from a total of 867 samples (START mothers) 119 

using the Illumina Human CoreExome-24 and Infinium CoreExome-24 arrays (Illumina, San-120 

Digeo, CA, USA). Data was cleaned using standard quality control (QC) procedures 54 and 837 121 

women samples passed the QC. Genotypes were subsequently phased using SHAPEIT v2.12 122 

55, and imputed with the IMPUTE v2.3.2 software 56, using the 1000 Genomes (phase 3) data 123 

as a reference panel 49. Variants with an info score ≥ 0.7 were kept for analysis. Addition data 124 

manipulation and SNP selection criteria for the building of the PRSs are detailed in 125 

Supplementary Information and Supplementary Figure 1. 126 

UK Biobank: A total of ~500,000 participants from the UK biobank were genotyped using 127 

the UK BiLEVE or UK Biobank Affymetrix Axiom arrays. Detailed QC, phasing and 128 

imputation procedures have previously been described 57. As a result, 3,169 and 220,703 129 
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unrelated South Asian and European (from Great Britain) women respectively passed QC. 130 

Among these, 2,386 and 184,869 participants had available GDM status respectively, and were 131 

used to replicate our results from the START study. Genotypes for > 98% of SNPs included in 132 

our top START GDM PRSs were available (info score ≥ 0.6) and were extracted for the 133 

replication. Because of the large number of UK Biobank British European participants, 134 

heritability of GDM was estimated in subgroup of participants selected for inclusion in a case-135 

cohort study (627cases of GDM and 9083 controls). 136 

Consortium data  137 

Summary statistics (P-value, effect size) from the following two DIAGRAM sources were used 138 

in order to build the PRSs: 139 

1) Mahajan et al., Nature Genetics, 2014 140 

This trans-ethnic GWAMA included up to 12,171 T2D cases and 56,862 controls of 141 

European ancestry; 6,952 cases and 11,865 controls of East Asian ancestry; 5,561 cases 142 

and 14,458 controls South Asian ancestry and 1,804 cases and 779 controls of Mexican 143 

and Mexican American ancestry 5. This study was selected for its multi-ethnic 144 

composition and its inclusion of South Asian participants.  145 

2) Scott et al., Diabetes, 2017 146 

This study combines data from 18 GWASs, for a total of 26,676 T2D cases and 132,532 147 

controls of European ancestry 6. This study was selected for its large sample size and its 148 

relatively homogenous samples (100% white Caucasians).  149 

Summary statistics of these studies were downloaded from DIAGRAM’s main website 150 

(http://www.diagram-consortium.org).  151 
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Templates for LD calculation  152 

LD calculations used to build the PRSs were derived from the following two genotyping 153 

datasets: 1) START study (LD source hereafter referred to as LDSTART); and 2) the 1000 154 

Genomes consortium (LD source hereafter referred to as LD1KG) phase 3. Genotypes of 1000 155 

Genomes participants were downloaded from the project’s data portal 156 

(http://www.internationalgenome.org), and a subset of participants was created in order to 157 

match the proportion of the ethnicities represented in each consortium study.  158 

Pruning and thresholding PRSs 159 

Both weighted and unweighted PRSs were built using GNU Parallel 58 and PLINK v1.9 160 

(https://www.cog-genomics.org/plink2). 64 different clump P-value cutoffs ranging from 5 × 161 

10-8 to 1 were tested in order to identify the optimal index variant’s significance threshold. All 162 

other parameters were set to default. A diagram of the different P+T PRSs built is show in 163 

Supplementary Figure 2. 164 

LDpred 165 

LDpred PRSs were derived using the LDpred software v0.9.9 166 

(https://github.com/bvilhjal/ldpred) 47. The fractions of causal variants assumed a prior were 167 

similar to the P value thresholds used for the P+T PRSs. Since the number of SNPs was different 168 

between the PRSs, The LD radius was adjusted accordingly in each model using the 169 

recommended formula (N SNP/3000). All other parameters were kept on their default setting. 170 

A diagram of the different P+T PRSs built is shown in Supplementary Figure 2. 171 
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GraBLD 172 

GraBLD PRSs were built using several functions available in the GraBLD R package 173 

(https://github.com/GMELab/GraBLD) 48. Data of all the women participating in the START 174 

study were used for the calibration. All parameters were set to default.  175 

Association analysis 176 

The association of each PRS with GDM was assessed using a univariate logistic regression 177 

model, and areas under the receiver-operating characteristic (ROC) curves (AUCs, c-statistics) 178 

were compared in order to determine the PRS with the highest predictive value of GDM. 179 

Continuous PRSs were also divided into quartiles in order to compare the participants with 180 

highest PRS values to the other groups. Statistical significance of the difference between the 181 

predictive values of two PRSs was tested using the DeLong's test for two correlated ROC 182 

curves. Analyses were performed using GNU Parallel 58 and R v3.3 59. 183 

Heritability 184 

The proportion of the variance of GDM explained by: 1) genome-wide genotypes (minor allele 185 

count ≥10); 2) common variants (MAF ≥ 0.01); 3) SNPs included in our top P+T PRS; was 186 

estimated by using the GCTA software 60-63. Single component GREML models were tested. 187 

Since heritability of GDM was estimated for a subset of UK Biobank British women included 188 

in a case-cohort, reported values for this study were adjusted for a disease prevalence of 0.4%, 189 

as estimated in all of the British European women with GDM data in UK Biobank (Table 1). 190 

All models were adjusted for the first 3 PCA axes. 191 
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RESULTS:  192 

Population characteristics:   193 

Error! Reference source not found. shows the characteristics of START and UK Biobank 194 

women included in the analyses. Because of major differences in recruitment strategies, 195 

inclusion criteria and study protocols, selected participants from the UK Biobank were of older 196 

age, higher weight, and body mass index (BMI) compared to START participants. Furthermore, 197 

the proportion of participants with GDM was significantly lower in South Asian women from 198 

the UK Biobank and even more so in European women of the same study. 199 

Minimum sample size per SNP in consortium data: 200 

In the two DIAGRAM studies from which we extracted summary statistics, the number of 201 

participants tested for association with T2D was different for each SNP and ranged between 25 202 

– 110,219 and 4,731 – 158,186 in Mahajan et al. and Scott et al respectively (Supplementary 203 

Figure 3, Supplementary Table 1).  204 

We derived several PRSs for which the list of variants was restricted to SNPs tested in at least 205 

0, 85, 90, 95 and 98% of the maximum sample size in the consortium GWAMA of interest. The 206 

number of SNPs used in the PRSs and the percentage of SNP loss for each one of these 207 

thresholds are shown in Supplementary Table 1. The percentage of variants lost after this 208 

filtering was the most substantial in PRSs based on Mahajan et al., with only 346,290 209 

polymorphisms remaining when keeping variants tested in ≥ 95% samples (Supplementary 210 

Table 1). 211 

For both Mahajan et al. and Scott et al. based PRSs, the optimal minimum percent of 212 

participants to keep varied depending on the method used (P+T, LDpred or GraBLD), the 213 
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source of LD estimates (LDSTART or LD1KG) and the consortium P-value threshold (Figure 1, 214 

Figure 2, Supplementary Figure 3 and Table 2).  215 

With an AUC of 0.62, the best GraBLD PRS included 1,305,596 SNPs and was derived using 216 

weights from Mahajan et al. (WMahajan); LD from START (LDSTART); SNPs tested in ≥ 90% of 217 

the samples in the consortium data (N90%). This top GraBLD PRS will hereafter be referred to 218 

as GraBLD_PRS1_WMahajan_LDSTART_N90%. The best P+T was comprised of 9,274 SNPs, 219 

showed an AUC of 0.62 and was derived using the following parameters: Weights from 220 

Mahajan et al. (WMahajan); LD from 1KG (LD1KG); SNPs tested in ≥ 85% of the maximum 221 

sample size (N85%) and a maximum P-value of 0.016 in its reference consortium GWAMA 222 

(P0.016). This top P+T PRS will be referred to as PT_PRS1_WMahajan_LD1KG_N85%min_P0.016. 223 

Finally, with an AUC of 0.62 as well, the best LDpred PRS included 1,290,525 SNPs and was 224 

derived using weights from Mahajan et al. (WMahajan); LD from 1KG (LD1KG); SNPs tested in 225 

≥ 85% of the samples in the consortium data (N85%). This top LDpred PRS will hereafter be 226 

referred to as LDpred_PRS1_WMahajan_LD1KG_N85%. Detailed characteristics and rankings of the 227 

best PRSs are shown in Supplementary Table 2 228 

Pruning and Threshold PRSs 229 

AUCs of unweighted P+T PRSs were similar to AUCs for their weighted counterpart at very 230 

low P-value thresholds (clump P ≤ 0.004). Interestingly, the inclusion of variants with 231 

association P-values that are less significant than the usual GWAS significance threshold (5 × 232 

10-8) always resulted in a considerable increase in the predictive value of the scores. Optimal 233 

AUCs were reached at clump P-values ranging from 0.016 - 0.20 depending on the source of 234 

LD or the consortium used (Figure 1, Supplementary figure 2 and Table 2). Passed these 235 

maximal points, the difference between weighted and unweighted PRSs gradually increased, 236 
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with the weighted PRSs performing better than their unweighted counterparts (Figure 1, 237 

Supplementary figure 2). 238 

LDpred PRSs: 239 

Similarly to P+T PRSs, the increase in the fraction of causal SNPs (from P values of 5 × 10-8 to 240 

P = 0.0005 corresponding to 0.5 and 7.5 % of consortium SNPs in Mahajan et al. and Scott et 241 

al. respectively) highly improved the predictive value of the PRSs (Figure 2). The increase in 242 

the fraction causal passed this point was not associated with a significant change in the AUC of 243 

LDpred PRSs (Figure 2).  244 

GraBLD vs. P+T vs. LDpred PRSs: As previously mentioned, whether the performance of a 245 

PRS derived using a given method was better than that of its different counterparts (other two 246 

methods) largely depended on the consortium data, the source of LD, the minimum % of 247 

participants, and the maximum clump P-value cutoffs used. Nevertheless, when comparing the 248 

best PRSs derided from each method, no significant difference was observed between GraBLD, 249 

LDpred and P+T (AUCs=0.62, Table 2, P pairwise differences = 0.95). When comparing P+T to 250 

LDpred only, AUCs were higher and more stable in LDpred PRSs than in P+T PRS for high P-251 

value thresholds (> 0.1) (Figure 3). 252 

Mahajan et al. vs. Scott et al. PRSs: The predictive value of most Mahajan-based P+T PRSs 253 

were higher than that of their Scott-based counterparts (Figure 4). For GraBLD and LDpred 254 

PRSs, all Mahajan based PRSs had higher AUCs than Scott based PRSs (Figure 4, data not 255 

shown). Finally, the best Mahajan-based PRSs always outperformed the top Scott-based PRSs 256 

for all three methods (Table 2, Supplementary Table 2)  257 
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LD from 1000 Genomes vs. START: AUCs of the best LDSTART PRSs were not significantly 258 

different from AUCs of their LD1KG counterpart for P+T, LDpred and GraBLD PRSs (Figure 259 

5, Table 2).  260 

Association with GDM: 261 

The association results of the top PRSs (GraBLD_PRS1_WMahajan_LDSTART_N90%, 262 

PT_PRS1_WMahajan_LD1KG_N85%_P0.016 and LDpred_PRS1_WMahajan_LD1KG_N85%) with GDM 263 

(univariate models) are shown in Table 2 (continuous PRSs) and Table Error! Reference 264 

source not found. (categorical PRSs). The odds of developing GDM was 2 to 2.5 fold higher 265 

in participants with the highest PRSs (top 25%) compared to the rest (75%) of the study 266 

population, depending on the type of PRS used. When analyzing participants with high and low 267 

PRSs values only, our results show that participants with the highest PRS values (top 25%) had 268 

between 3 and 3.4 fold increase in their risk of GDM compared to the participants with the 269 

lowest PRS values (bottom 25%). These results were similar in both UK Biobank South Asian 270 

and European replication datasets (Table 3). 271 

Heritability  272 

In order to better characterize the genetic architecture of GDM, heritability was estimated from 273 

1) genome-wide genotype data (h2
WG_SNPs); 2) common variants (MAF ≥ 0.01); and 3) SNPs 274 

included in our top P+T PRS, in South Asian women from START, as well as for a subgroup 275 

of white European women from Great Britain from UK Biobank. The results are shown in Table 276 

4. Due to a lack of power, standard errors for our heritability estimates were large, and most 277 

lower and upper bound values of the 95% confidence intervals were close to, or crossed their 278 

respective 0 and 1 boundaries. The proportion of the variance in GDM explained by genome-279 

wide data (h2
WG_SNPs ) in South Asian women from the START study was 0.55 ± 0.83 and 280 

h2
WG_SNPs estimated in the women included in our case cohort study from UK Biobank European 281 
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samples was 0.18 ± 0.22 (Table 4). Heritability attributed to common variants (MAF ≥ 1%) 282 

reached 0.49 ± 0.78 and 0.12 ± 0.14 in our START and UK Biobank samples, which explained 283 

90% and 67% of the h2
WG_SNPs respectively. Heritability estimated from the SNPs used in our 284 

top P+T PRS explained 27.5% and 11.2 % of h2
WG_SNPs in START and UK Biobank.  285 

DISCUSSION 286 

In this study, we built several thousands of GDM PRS using genome-wide genotypes, large 287 

consortium data and 3 different methods. Our best PRS was built using the LDpred method, 288 

with weights extracted from Mahajan et al. and LD calculated using 1KG genotypes. This PRS 289 

was also significantly associated with GDM in South Asian women from the START study, an 290 

observation that was successfully replicated in South Asian and British European women from 291 

the UK Biobank. Participants with the highest PRS values had an increased risk of GDM when 292 

compared to the other groups.  293 

We observed a considerable difference in the proportion of participants with GDM between 294 

South Asian women from the START study (36.2 %), South Asian women from UK Biobank 295 

(2.2%), and white Caucasian women from UK Biobank (0.43%). This disparity is likely due to 296 

major differences in the study design, recruitment strategies and definition of GDM between 297 

the two studies involved. For instance, the definition of GDM status in START was based on 298 

glucose levels measurements performed during pregnancy in response to an oral glucose 299 

challenge, and South Asian-specific diagnosis cutoffs were used. On the other hand, GDM 300 

status was retrospectively self-reported by UK Biobank participants, which most likely resulted 301 

in an increased number of misclassifications and a reduced number of reported GDM cases. In 302 

an effort to refine the phenotype in UK Biobank, our control group was restricted to women 303 

without GDM who also went through at least one live birth. Nevertheless, the lack of sensitivity 304 

and specificity of the GDM phenotype likely remains an issue in UK Biobank. 305 
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Summary statistics from two large T2D GWAMAs were used to build our PRSs. One of the 306 

major advantages in using data from Mahajan et al. was that ~20% of its participants originated 307 

from the South Asian sub-continent. The study also had a large maximum number of cases and 308 

controls, but many of the SNPs included in the meta-analysis were tested in a much smaller 309 

sample (Supplementary figure 3, Supplementary Table 1). On the other hand, no South Asian 310 

participants were included in the GWAMA performed by Scott et al. but the average number 311 

of samples tested for each SNP was larger than in Mahajan et al. Our results show that Mahajan-312 

based PRSs consistently outperformed their Scott-based counterparts in spite of a lower genome 313 

coverage and smaller average number of participants per SNP. This highlights the importance 314 

of using consortium data of the same ethnic group than the study at hand whenever possible. 315 

However, since Mahajan et al.’s summary statistics were derived from a blend of participants 316 

of different ethnicities, our top PRS could likely be improved if built based on summary 317 

statistics derived from an equally powered GWAMA performed in South Asians only.  318 

Several reports suggest that T2D and GDM share a common genetic background. In the absence 319 

of publicly available data of large GDM GWASs, summary statistics from a T2D consortium 320 

were used to derive our scores. Our results show that a T2D PRSs can be highly predictive of 321 

GDM in South Asian and European-origin women, hence confirming the hypothesis of a 322 

common genetic background between these two diseases. However, the effect size of the 323 

genetic variants could be different between the two conditions, and some loci could be specific 324 

to each disease. Although these differences should not affect our models comparisons, we 325 

expect that the predictive value of GDM PRSs will be further improved if built using weights 326 

from a large GDM GWAS or GWAMA.  327 

A significant conclusion derived from this study is that, whatever the consortium or the method 328 

used, restricting the list of SNPs to GWAS significant variants (P value ≤ 5×10-8) drastically 329 

reduces the predictive value of the PRSs. Unfortunately, many studies still rely on this threshold 330 
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to select their loci of interest to derive their risk scores. We recommend the use of higher P-331 

value thresholds (> 0.01 in our case) whenever possible in order to increase the predictive value 332 

of the PRSs.  333 

Based on our results, weighted PRSs perform similarly, or better than their unweighted 334 

counterparts in general. For P+T PRS, the predictive value of the unweighted PRSs are 335 

especially lower than for weighted PRS at high P-value cutoffs. Hence, we recommend the use 336 

weighted PRSs whenever possible. If unweighted PRSs are used, P-value cutoffs should be set 337 

between 0.01 and 0.1. 338 

When comparing the best PRSs, our results suggest that the GraBLD, P+T and LDpred methods 339 

perform equally well in terms of disease prediction as measured by the AUC. Nevertheless, the 340 

identification of the optimal P+T, and LDpred PRSs required the test of several thousand 341 

predictors (n = 2,560 and 1280 respectively), when a similar result was achieved by testing 40 342 

GraBLD models only. While this may lead one to slightly favor the use of LDpred or GraBLD 343 

for the building of PRSs, the P+T remains the method of choice in our opinion, given the fact 344 

that it required less SNPs and was easier to implement using the PLINK software.  345 

T2D’s SNP-based heritability has recently been estimated at 0.54 [95%CI: 0.47 - 0.61] 64.Our 346 

results from the START study suggest that the heritability of GDM could approximate that 347 

same value (h2 WG_SNPs in START= 0.55 ± 0.83). Heritability estimates were considerably 348 

smaller in European participants than in South Asians. This could be explained by the difference 349 

between the disease prevalence in START and UK Biobank as previously discussed, and 350 

potentially, by differences in the environments and lifestyles of the participants included in the 351 

two studies. Another potentially interesting observation derived from our heritability results is 352 

the fact that a large proportion of the genetic variance of GDM (between 67% and 90% 353 

depending on the ethnicity) can be explained by common SNPs. Furthermore, our results 354 

suggest that a relatively large proportion of the genetic variance (between 11.2% and 14.7%) is 355 
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captured by an even smaller fraction of SNPs (~2.5%, N=9,274) that are included in our top 356 

P+T PRS. However, given the small number of cases in our studies, our GREML tests are likely 357 

underpowered, resulting in very large standard errors. Hence, our heritability results should be 358 

interpreted with caution, and larger studies are needed in order estimate GDM’s heritability 359 

with a higher accuracy. 360 

In conclusion, our results show that the predictive value of polygenic risk scores in South Asian 361 

women can be greatly improved by combining genome-wide genotyping data and by 362 

extracting summary statistics from large multi-ethnic genome-wide meta-analysis. 363 
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 START* UK Biobank –  

SAW 

UK Biobank –  

Brit-EUR-W 

Number of Participants with GDM data 
832 2,386 184,869 

GDM, n (%) 301 (36.2%) 52 (2.2 %) 627 (0.43 %) 

Age, yr 30.2 (4.0) 53.0 (8.1)‡ 57.6 (7.8)‡ 

Height, cm 162.3 (6.2)¥ 156.8 (5.9)‡ 162.5 (6.1)‡ 

Weight, kg 62.6 (12.0) ¥ 67.7 (12.5)‡ 71.0 (13.2)‡ 

BMI, kg/m2 23.8 (4.4) 27.5 (4.9) ‡ 26.9 (4.9)‡ 

Family history of diabetes, n (%) 334 (40.2) 1,556 (49.1) 25656 (17.57) 

Table 1: Characteristics of women participants from the START and UK Biobank 

studies with available GDM and Genotype data. *South Asian Women with GDM status. 

Data are mean (SD) unless otherwise indicated. ¥ pre-pregnancy values, ‡ Values from 

baseline data. Abbreviations: BMI, Body mass index; GDM, gestational diabetes; SA-W, 

South Asian women, Brit-EUR-W, Europeans women from Great Britain; START, South 

Asian Birth Cohort.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 26, 2019. ; https://doi.org/10.1101/574616doi: bioRxiv preprint 

https://doi.org/10.1101/574616


25 

 

   START -SAW UK Biobank SAW UK Biobank Brit-Eur-W 

PRS 

Type 

Consortium LD 

source 

Beta SE P-value  AUC Beta SE P-value  AUC Beta SE P-value AUC 

P+T Mahajan 

et al, 2014 

1KG 0.445 0.08 8.7 × 10-9 0.62 0.423 0.14 0.003 0.61 0.303 0.04 4.63 × 10-14 0.58 

START 0.448 0.08 6.55 × 10-9 0.62 0.512 0.14 0.0003 0.64 0.291 0.04 3.84 × 10-13 0.58 

Scott et al, 

2017 

1KG 0.370 0.07 7.86 × 10-7 0.60 0.280 0.14 0.05 0.57 0.296 0.04 1.45 × 10-13 0.58 

START 0.351 0.07 2.98 × 10-6 0.60 0.300 0.14 0.03 0.59 0.270 0.04 1.88 × 10-11 0.57 

GraBL

D 
Mahajan 

et al, 2014 

1KG 0.465 0.08 1.8 × 10-9 0.62 0.520 0.14 0.0003 0.64 0.343 0.04 1.14 × 10-17 0.59 

START 0.470 0.08 1.32 × 10-9 0.62 0.510 0.14 0.0005 0.63 0.351 0.04 1.86 × 10-18 0.59 

Scott et al, 

2017 

1KG 0.317 0.07 1.61 × 10-5 0.59 0.388 0.14 0.006 0.61 0.344 0.04 8.08 × 10-18 0.59 

START 0.342 0.07 3.93 × 10-6 0.59 0.387 0.14 0.006 0.61 0.348 0.04 4.15 × 10-18 0.59 

LDpre

d 
Mahajan 

et al, 2014 

1KG 0.461 0.07 2.18 × 10-9 0.62 0.527 0.14 0.0002 0.65 0.305 0.04 2.63 × 1014 0.58 

START 0.470 0.08 1.32 × 10-9 0.62 0.44 0.14 0.002 0.61 0.278 0.04 3.32 × 10-2 0.57 

Scott et al, 

2017 

1KG 0.347 0.07 4.05 × 10-6 0.59 0.382 0.14 0.006 0.61 0.377 0.04 1.80 × 10-21 0.60 

START 0.281 0.07 0.00015 0.57 0.225 0.13 0.10 0.55 0.323 0.04 1.90× 10-16 0.59 

Table 2: Characteristics and GDM association results of the top weighted P+T and GraBLD PRSs in South Asian women from the START and UK 

Biobank studies. Results are from univariate association tests with GDM. The top 3 PRSs are shown in bold. Abbreviations: 1KG, 1000Genomes; AUC 

area under the curve; Brit-Eur-W, European women from Great Britain; GraBLD, Gradient Boosted and LD adjusted; LD, Linkage 

Disequilibrium; NA, Non applicable; P+T, pruning and thresholding; PRS, Polygenic Risk Score; SAW, South Asian Women; SE, Standard 

Error; START, South Asian Birth Cohort.    
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   START – SAW  UK Biobank – SAW UK Biobank – Brit-EUR-W 

High PRS 

definition 

Reference 

group 

PRS type OR 95% CI P value OR 95% CI P value OR 95% CI P value 

Top 25% Remaining 

75% 

GraBLD 2.51 1.82 - 3.47 1.75 × 10-8 2.66 1.51 - 4.63 0.0006 1.75 1.48 – 2.05 2.07 × 10-11 

P+T 2.08 1.51 – 2.87 7.44 × 10-6 1.80 0.99 – 3.17 0.05 1.65 1.40 – 1.94 2.41 × 10-09 

LDpred 2.00 1.45 – 2.76 2.11 × 10-5 2.61 1-16 – 3.60 0.01 1.72 1.46 – 2.02 7.66 × 10-11 

Top 25% Lowest 

25% 

GraBLD 3.40 2.25 - 5.17 7.30 × 10-9 5.30 2.17 - 15.88 0.0008 2.11 1.69 – 2.66 1.09 × 10-10 

P+T 3.09 2.10 – 4.74 1.47 × 10-7 4.21 1.67 – 12.82 0.005 2.22 1.76 - 2.82 3.08 × 10-11 

LDpred 3.06 2.02 – 4.69 1.77 × 10-7 3.59 1.53 – 9.84 0.006 2.08 1.66 – 2.62 3.09 × 10-10 

Table 3: Association results of Top PRSs (categories) with GDM in South Asian women from the START and UK Biobank studies. 

GraBLD PRS used: GraBLD_PRS1_WMahajan_LDSTART_N90%; P+T PRS used: PT_PRS1_WMahajan_LD1KG_N85%min_P0.016;  LDpred PRS used: 

LDpred_PRS1_WMahajan_LD1KG_N85%. Abbreviations: CI, confidence interval; Brit-Eur-W, European women from Great Britain; PRS, Polygenic 

Risk Score; GraBLD, Gradient Boosted and LD adjusted; OR, Odds ratio; P+T, Pruning and thresholding; SAW, South Asian Women; START, 

South Asian Birth Cohort. 
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  START- SAW UKB – BRIT-EUR-W 

C_COH * 

 Allele count / 

MAF cutoff 
h2 SE h2 SE 

All SNPs in the study 
MAC 10 0.55 0.42 0.18 0.11 

MAF 0.01 0.49 0.40 0.12 0.07 

SNPs in top P+T PRS  
NA 0.15 0.13 0.02 0.02 

Table 4: Heritability estimates for GDM in women from the START and UK Biobank 

studies. Models are adjusted for the first 3 eigenvectors from the principal component 

analysis. * heritability estimates on the liability scale (disease prevalence = 0.4%). 

Abbreviations: Brit-EUR-W European women from Great Britain; C_COH, Case-Cohort; MAC, 

Minor allele count; MAF, Minor allele frequency; NA, Not applicable; P+T, Pruning and 

thresholding; SAW, South Asian women; SE, Standard Error; SNP, Single Nucleotide Polymorphism; 

START, South Asian Birth Cohort; UKB, UK Biobank.
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Figure 1: AUCs of the different weighted and unweighted LDSTART P+T PRSs based on Mahajan 

et al. and Scott et al. Results from association tests with GDM. Abbreviations: 0 85 90 95 and 98%, 

PRSs including a subset of SNPs tested in at least 0 85 90 95 and 98% of the total samples of the 

consortium study respectively; AUC area under the curve; PRS, Polygenic Risk Score; LD, Linkage 

disequilibrium; P+T, Pruning and thresholding; SNP, Single Nucleotide Polymorphism; START, South Asian 

Birth Cohort; ROC, receiver operating characteristic; uPRS, unweighted PRSs; wPRS, weighted PRSs. 
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Figure 2: AUCs of the different LDpred PRSs based on Mahajan et al. and Scott et al. Results 

from association tests with GDM. Abbreviations: 0 85 90 95 and 98%, PRSs including a subset of SNPs 

tested in at least 0 85 90 95 and 98% of the total samples of the consortium study respectively; 1KG, 

1000 Genomes; AUC area under the curve; PRS, Polygenic Risk Score; LD, Linkage disequilibrium; SNP, 

Single Nucleotide Polymorphism; ROC, receiver operating characteristic; wPRS, weighted PRSs.  
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Figure 3: AUCs of the best Mahajan et al. P+T and LDpred PRSs in START. 
Abbreviations: 85 %, PRSs including a subset of SNPs tested in at least 85 % of the total 

samples of the consortium study respectively; 1KG, 1000 Genomes; AUC area under the curve; 

PRS, Polygenic Risk Score; LD, Linkage disequilibrium; P+T, Pruning and thresholding; START, 

South Asian Birth Cohort; ROC, receiver operating characteristic; wPRS, weighted PRSs 
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Figure 4 : AUCs of the different weighted P+T and LDpred PRSs based on Mahajan et 

al. and Scott et al. Results from association tests with GDM. Abbreviations: 0 85 90 95 and 

98%, PRSs including a subset of SNPs tested in at least 0 85 90 95 and 98% of the total 

samples of the consortium study respectively; 1KG, 1000 Genomes; AUC area under the 

curve; PRS, Genome-wide Polygenic Risk Score; LD, Linkage disequilibrium; P+T, Pruning 

and thresholding; SNP, Single Nucleotide Polymorphism; START, South Asian Birth Cohort; 

ROC, receiver operating characteristic; uPRS, unweighted PRSs; wPRS, weighted PRSs. 
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Figure 5; AUCs of Mahajan et al. N85% based LDSTART P+T and LDpred PRS and their 

LD1KG counterparts. Abbreviations: 85 and 95%, PRSs including a subset of SNPs tested in 

at least 85 and 95% of the total samples of the consortium study respectively; 1KG, 1000 

Genomes; AUC area under the curve; PRS, Polygenic Risk Score; LD, Linkage disequilibrium; P+T, 

Pruning and thresholding; START, South Asian Birth Cohort; ROC, receiver operating characteristic; 

wPRS, weighted PRSs. 
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