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Abstract 15 

Combatting antibiotic resistance will require both new antibiotics and strategies to preserve the 16 

effectiveness of existing drugs. Both approaches would benefit from predicting optimal dosing of 17 

antibiotics based on drug-target binding parameters that can be measured early in drug 18 

development and that can change when bacteria become resistant.  This would avoid the 19 

currently frequently employed trial-and-error approaches and might reduce the number of 20 

antibiotic candidates that fail late in drug development. 21 

 22 

Here, we describe a computational model (COMBAT- COmputational Model of Bacterial 23 

Antibiotic Target-binding) that leverages accessible biochemical parameters to quantitatively 24 

predict antibiotic dose-response relationships. We validate our model with MICs of a range of 25 

quinolone antibiotics in clinical isolates demonstrating that antibiotic efficacy can be predicted 26 

from drug-target binding (R2 > 0.9). To further challenge our approach, we do not only predict 27 

antibiotic efficacy from biochemical parameters, but also do the reverse: estimate the magnitude 28 

of changes in drug-target binding based on antibiotic dose-response curves. We experimentally 29 

demonstrate that changes in drug-target binding can be predicted from antibiotic dose-response 30 

curves with 92-94 % accuracy by exposing bacteria overexpressing target molecules to 31 

ciprofloxacin. To test the generality of COMBAT, we apply it to a different antibiotic class, the 32 

beta-lactam ampicillin, and can again predict binding parameters from dose-response curves with 33 

90 % accuracy. We then apply COMBAT to predict antibiotic concentrations that can select for 34 

resistance due to novel resistance mutations.  35 

 36 
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Our goal here is dual: First, we address a fundamental biological question and demonstrate that 37 

drug-target binding determines bacterial response to antibiotics, although antibiotic action 38 

involves many additional effects downstream of drug-target binding. Second, we create a tool 39 

that can help accelerate drug development by predicting optimal dosing and preserve the efficacy 40 

of existing antibiotics by predicting optimal treatment for possible resistant mutants. 41 

 42 

Introduction 43 

The rise of antibiotic resistance represents an urgent public health threat. In order to effectively 44 

combat the spread of antibiotic resistance, we must optimize the use of existing drugs and 45 

develop new drugs that are effective against drug-resistant strains. Accordingly, methods to 46 

improve antibiotic dose levels to i) maximize efficacy against susceptible strains and ii) 47 

minimize resistance evolution play a key role in our defense against antibiotic resistant 48 

pathogens. 49 

 50 

It is noteworthy that dosing strategies for treatment of susceptible strains (e.g., dosing level[1], 51 

dosing frequency[2], and treatment duration[3-5]) have recently been substantially improved, even 52 

for antibiotic treatments that have been standard of care for decades. This suggests that there 53 

likely remains significant room for optimization in our antibiotic treatment regimens. It also 54 

highlights the difficulty in identifying optimal dosing levels for new antibiotics. Indeed, 55 

optimizing dosing is one of the biggest challenges in drug development. Typically, time-56 

consuming trial-and-error approaches are used and each failed drug candidate makes this process 57 

more expensive[6]. 58 

 59 
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It is even more challenging to optimize dose levels to minimize the emergence of antibiotic 60 

resistance, both for existing and novel antibiotics. There remains substantial debate about which 61 

dosing strategies best prevent the emergence of resistant mutants during treatment[7-9]. In this 62 

context, a useful concept that links antibiotic concentrations with resistance evolution is the 63 

resistance selection window (mutant selection window) that ranges from the lowest 64 

concentration at which the resistant strain grows faster than the wild-type, usually well below the 65 

wild-type minimum inhibitory concentration (MIC), to the MIC of the resistant strain[10-12]. 66 

Antibiotic concentrations above the resistance selection window safeguard against de novo 67 

resistance emergence. Antibiotic concentrations below the resistance selection window do not 68 

kill the susceptible strain, but also do not favor the resistant strain and therefore do not promote 69 

emergence of resistance. The latter may be preferable if one cannot dose above the MIC of the 70 

resistant strain due to toxicity or solubility limits. To limit resistance emergence, it is therefore 71 

important to identify the resistance selection window and optimize dosing accordingly. 72 

 73 

Limitations in our knowledge of how antibiotic treatment regimens affect bacterial populations 74 

contribute to the need for lengthy and expensive trial-and-error approaches, with the sheer 75 

number of possible dosing regimens making it difficult to identify an optimal regimen. We argue 76 

that this knowledge gap is a major limitation for the improvement of dosing regimens of existing 77 

drugs and a real obstacle for the development of new antibiotics[13, 14]. 78 

 79 

Pharmacodynamic models that can make predictions of bacterial killing and selection on the 80 

basis of drug-target interactions offer new promise to inform rational antibiotic dosing 81 

practices[15]. Recently described models that include drug-target binding have been useful in 82 
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gaining a better qualitative understanding of complicated drug effects, such as post-antibiotic 83 

effects, inoculum effects, and bacterial persistence[15-18]. However, to speed the development 84 

of new antibiotics or to inform practices which minimize resistance, we require quantitative 85 

predictions for antibiotics or resistant bacterial strains that do not exist yet. Models which permit 86 

quantitative predictions of changes in drug efficacy as a function of modification of antibiotic 87 

molecules (i.e. new drugs) or novel resistance mutations would be invaluable. Such tools would 88 

advance our general mechanistic understanding of antibiotic action, could guide dosing trials of 89 

new drugs, and suggest better dosing of existing drugs. 90 

 91 

In this report, we describe a mechanistic computational modeling framework (COMBAT- 92 

COmputational Model of Bacterial Antibiotic Target-binding) that allows us to predict drug 93 

effects based solely on accessible biochemical parameters describing drug-target interaction. 94 

These parameters can be determined early in drug development. We use this framework to 95 

investigate how changes in drug target binding, either due to improvements in existing 96 

antibiotics or due to resistance mutations in bacteria, affect antibiotic efficacy. We first show that 97 

COMBAT accurately predicts bacterial susceptibility as a function of drug-target binding and, 98 

conversely, allows inference of these biochemical parameters on the basis of observed patterns of 99 

bacterial growth suppression or killing. We then use COMBAT to predict the susceptibility of 100 

newly arising resistant variants based on the molecular mechanism of resistance and determine 101 

the resistance selection window. 102 

 103 

Results 104 

Quinolone target affinities correlate with antibiotic efficacy 105 
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To investigate how biochemical changes in antibiotic action modifies bacterial susceptibility, we 106 

explored how the affinity of antibiotics to their target affects the MIC. We compared the MICs of 107 

quinolones, an antibiotic class in which individual antibiotics have a wide range of affinities to 108 

their target, gyrase (KD ~10-4 - 10-7 M) but are of similar molecular sizes and have a similar mode 109 

of action[19]. This choice allowed us to isolate the effects of differences in drug-target affinity 110 

on the MIC. 111 

 112 

We obtained binding affinities of quinolones to their gyrase target in Escherichia coli from 113 

previous studies[20-24]. We then retrieved MIC data for several quinolones from clinical 114 

Enterobacteriaceae isolates collected before 1990[25], i.e., before the widespread emergence of 115 

quinolone resistance[19]. We assume that quinolone affinities obtained from clinical 116 

Enterobacteriaceae isolates collected before the emergence of resistance correspond to those 117 

measured in wild-type E. coli. 118 

 119 

To make qualitative predictions of MICs, we employed a simplified model based on the 120 

assumptions that i) drug-target binding occurs much more quickly than bacterial replication, ii) 121 

the antibiotic concentration remains constant and iii) that during the 18 hours of an MIC assay, 122 

the concentration gradient of the drug inside and outside the cell has equilibrated. Under these 123 

assumptions, the MIC can be expressed as 124 

𝑀𝐼𝐶 = 𝐾&
'(
)*'(

          (1) 125 

 126 

where KD represents the affinity constant and fc the fraction of the target bound at the MIC[26]. 127 

Accordingly, this model predicts that the MIC is linearly correlated with KD. 128 
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 129 

Fig. 1 shows the correlations between drug-target affinities and MICs for seven quinolones and 130 

clinical isolates of 11 different Enterobacteriaceae species. We observed a significant (p < 0.018) 131 

linear correlation between MIC and KD in all species, confirming the qualitative model 132 

prediction. 133 

 134 

A quantitative model to predict antibiotic efficacy 135 

While it was encouraging that our model can qualitatively predict MIC changes, our aim was to 136 

quantitatively predict antibiotic treatment performance. The simplified model assumes that the 137 

binding kinetics are much faster than bacterial replication, which may not be true in all cases. To 138 

expand the generalizability of the model, we extended the modeling framework to allow that 139 

bacterial replication may occur in a similar time frame as drug-target binding events. 140 

 141 

The full model (COMBAT- COmputational Model of Bacterial Antibiotic Target-binding) 142 

describes the binding and unbinding of antibiotics to their targets and predicts how such binding 143 

dynamics affects bacterial replication and death (Fig. 2a). In previous work linking drug-target 144 

binding kinetics with bacterial replication[18 ], we described a population of bacteria with 𝜃 145 

target molecules per cell with a system of 𝜃 + 1 (bacteria with 0, 1, …, 𝜃 bound target 146 

molecules) ordinary differential equations (ODEs). This system increases in complexity with the 147 

number of target molecules and makes fitting the model to data computationally too demanding 148 

for most settings. To simplify this prior approach, we developed new mathematical models based 149 

on partial differential equations (PDEs), where a single equation describes all bacteria 150 

simultaneously. The sum of bacteria within all target occupancy states over time can be 151 
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described by a time kill curve (Fig. 2b), during which the bacterial population is characterized by 152 

the distribution of bacterial cells with different levels of target occupancies at each time-step 153 

(Fig. 2c). This curve can be visualized as a two-dimensional surface in a three-dimensional 154 

coordinate system where the number of bacteria is represented on the z-axis, the percent of 155 

bacteria with the fraction of bound target molecules on the x-axis, and time on the y-axis (Fig. 156 

2d). 157 

 158 

Antibiotic action is described by rates of binding (kf) and unbinding (kr) to bacterial target 159 

molecules (Fig. 2a, e). The binding of an antibiotic to a target results in the formation of an 160 

antibiotic-target molecule complex x, where x ranges between 0 and 𝜃. 161 

COMBAT consists of two mass balance equations: equation 2 describing bacterial numbers as a 162 

function of bound targets and time and equation 3 describing antibiotic concentration as a 163 

function of time (Methods section). 164 

,-(/,1)
,1

+ ,
,/
(𝑣-(𝑥, 𝑡)𝐵(𝑥, 𝑡))

899999:99999;
-<=><=?	A<=B1<CD

= −𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I(𝑡) + 𝑆-(𝑥, 𝑡)𝐹H<I(𝑡)899999999999:99999999999;
KBLH<CM1<N=	M=>	<1D	B''BC1D	N=	O<=><=?

− 𝛿(𝑥)𝐵(𝑥, 𝑡)899:99;
&BM1Q

 (2) 165 

 166 

The term for binding kinetics is given in brown, the term for replication in blue and the term for 167 

death in red. 168 

>R(1)
>1

= −𝑘T'𝐴(𝑡) ∫ (𝜃 − 𝑥)𝐵(𝑥, 𝑡)𝑑𝑥X
Y + 𝑘Z ∫ 𝑥𝐵(𝑥, 𝑡)𝑑𝑥X

Y      (3) 169 

 170 

where 𝑣- = 𝑣' − 𝑣Z , 𝑣' = 𝑘T'𝐴(𝑡)(𝜃 − 𝑥) and 𝑣Z = 𝑘Z𝑥. 𝑣-, 𝑣',	and 𝑣Z can be seen as a 171 

generalized velocity 𝑣 = >/
>1

.  172 

 173 
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Equation 4 (part of the replication term in equation 2) describes how daughter cells inherit bound 174 

target molecules from the mother cell during replication: 175 

𝑆-(𝑥, 𝑡) = 2∫ ℎ(𝑥, 𝑧)𝑟(𝑧)𝐵(𝑧, 𝑡)𝑑𝑧X
/ ;	∀𝑥 ∈ [0,𝜃]      (4) 176 

 177 

Equation 5 (part of the replication term in equation 2) is a logistic growth model describing 178 

reduced bacterial replication as the carrying capacity is approached: 179 

𝐹H<I = d1 − ∫ -(/,1)>/f
g

h
i         (5) 180 

 181 

Model fit to ciprofloxacin time-kill data 182 

We used the quinolone ciprofloxacin to quantitatively fit bacterial time-kill curves, since this is a 183 

commonly used antibiotic for which binding parameters have been directly measured. 184 

Supplementary Tab. S1 gives an overview of the known parameters used for fitting; 185 

Supplementary Tab. S2 gives the parameters resulting from our fit. 186 

 187 

The functional relationship between the levels of bacterial replication and death on the fraction 188 

of bound target molecules is extremely hard to obtain experimentally. We therefore treated the 189 

relationships between the fraction of bound target and bacterial replication and death as free 190 

parameters in our model fitting. Ciprofloxacin is considered to have both bacteriostatic and 191 

bactericidal action (mixed action)[27, 28], and we fitted functions for a monotonically decreasing 192 

replication and a monotonically increasing killing with each successively bound target molecule 193 

(see Methods & Supplementary Fig. S1). 194 

 195 
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Overall, we found that COMBAT could fit the time-kill curves well (R2 = 0.93, Fig. 3a). Fig. 3b 196 

shows the predicted bacterial replication r(x) and death as a function of target occupancy 𝛿(𝑥) 197 

based on the fit obtained in Fig. 3a. After model calibration, we simulated bacterial replication 198 

during exposure to different antibiotic concentrations for 18 h. For this simulation, positive 199 

values indicate an increase in the number of bacteria, and negative values indicate a decrease in 200 

the number of bacteria. We estimated a MIC of 0.0139 mg/L (Fig. 3c), a value that is within the 201 

range of MIC determinations for wt E. coli (0.01 mg/L, 0.015 mg/L, 0.017 mg/L and 0.023 mg/L 202 

[11, 29-31]). 203 

Accurate prediction of target overexpression from time-kill data 204 

Having shown that COMBAT can quantitatively fit experimental data on antibiotic action within 205 

biologically plausible parameters, we continued to test the predictive ability of the model. Given 206 

our hypothesis that modifications in antibiotic-target interactions lead to predictable changes in 207 

bacterial susceptibility, we experimentally induced changes in the antibiotic-target interaction of 208 

ciprofloxacin in E. coli. We then quantified these biochemical changes by fitting COMBAT to 209 

corresponding time-kill curves and compared them to the experimental results. Ciprofloxacin 210 

acts on gyrase A2B2 tetramers[19]. We used an E. coli strain for which both gyrase A and gyrase 211 

B are under the control of a single inducible promoter (PlacZ), such that the amount of gyrase 212 

A2B2 tetramer can be experimentally manipulated[32]. We measured net growth rates for this 213 

strain at different ciprofloxacin concentrations in the presence of 10 µM isopropyl β-D-1-214 

thiogalactopyranoside (IPTG; mild overexpression) and 100 µM IPTG (strong overexpression) 215 

and compared it to the wild-type in the absence of the inducer (Fig. 4a). 216 

 217 
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Like previously reported, we find that increasing gyrase content makes E. coli more susceptible 218 

to ciprofloxacin[32]. We fitted net growth rates allowing the target molecule content, i.e. gyrase 219 

A2B2, to vary. We assumed that the only change between the different conditions was the amount 220 

of target. We further assumed that the relationship between bound target and bacterial replication 221 

or death did not differ between the control strain containing a mock plasmid (no IPTG) and the 222 

experiments with overexpression (Fig. 4b, between 0 % and 100 %). Finally, we assumed that 223 

the maximal kill rate at very high antibiotic concentrations was accurately measured in our 224 

experiments and forced the function describing bacterial death through the measured value when 225 

all target molecules are bound. We found the best fit for a 1.31x increase in GyrA2B2 target 226 

molecule content for bacteria grown in the presence of 10 µM IPTG and a 2.02x increase in 227 

GyrA2B2 target molecule content for those grown in the presence of 100 µM IPTG. 228 

 229 

We subsequently tested these predictions experimentally by analyzing Gyrase A and B content 230 

by western blot Fig. 4c; Supplementary Fig. S2). Using realistic association and dissociation 231 

rates for biological complexes[33], we predicted a range of functional tetramers based on the 232 

relative amount of Gyrase A and B proteins (Fig. 4d). Supplementary Tab. S3 details the 233 

individual measurements, and the procedure to estimate tetramers is provided in the methods 234 

section. We found that the observed overexpression was very close to our theoretical prediction, 235 

with 1.43x [95 % CI 1.19-1.81] overexpression (model prediction = 1.31x overexpression) in the 236 

presence of 10 µM IPTG and 2.15x [95 % CI 1.73-2.87] overexpression in the presence of 237 

100 µM IPTG (model prediction = 2.02x overexpression). 238 

 239 

Accurate prediction of target occupancy at MIC from time-kill data 240 
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Next, we tested whether COMBAT can be applied to the action of the beta-lactam ampicillin, a 241 

very different antibiotic with a distinct mode of action from quinolones. Using published 242 

pharmacodynamic data of E. coli exposed to ampicillin[31] also allowed us to compare 243 

COMBAT predictions to established pharmacodynamic approaches. Most of the biochemical 244 

parameters for ampicillin binding to its target, penicillin-binding proteins (PBPs), have been 245 

determined experimentally (Supplementary Tab. S1). Ampicillin is believed to act as a 246 

bactericidal drug[34], and this mode of action is supported by findings from single-cell 247 

microscopy[26]. We therefore assume that ampicillin binding does not affect bacterial 248 

replication. In order to model the consumption of beta-lactams at target inhibition and eventual 249 

target recovery, we made small adjustments to equation 13 (see Methods, description of beta-250 

lactam action). 251 

 252 

We fitted COMBAT to published time-kill curves of E. coli exposed to ampicillin (Fig. 5a). 253 

Again, COMBAT provides a good fit to the experimental data between 0 min and 40-60 min. 254 

After that time, observed bacterial killing showed a characteristic slowdown at high ampicillin 255 

concentrations which is often attributed to persistence[18] (Fig. 5a). For the sake of simplicity, 256 

we chose to omit bacterial population heterogeneity in this work and therefore cannot describe 257 

persistence, even though COMBAT can be adapted to capture this phenomenon[18]. Because 258 

ampicillin acts in an entirely bactericidal manner, we assume a constant replication rate (see 259 

Methods & Supplementary Fig. S1) and fitted bacterial death as a function of target binding, 260 

𝛿(𝑥) (Fig. 5b, fitted parameters in Tab. S4). Fig. 5c shows the predicted net growth rate over a 261 

range of drug concentrations. We estimated a MIC of 2.6 mg/L. This MIC is based on the 262 

Clinical & Laboratory Standards Institute definition of the MIC determined at 18 h. The original 263 
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source of the MIC, which was based on experimental data and a pharmacodynamic model[31] 264 

determined an MIC of 3.4 mg/L at 1 h. If we change our prediction to 1 h, our estimated MIC is 265 

3.32 mg/L, which is within 2.5 % of the reported value[31].  266 

 267 

Having established that COMBAT can also adequately capture the pharmacodynamics of 268 

ampicillin, we next tested whether we can estimate experimentally determined target occupancy 269 

at the MIC. Our estimated mean occupancy considering both living and dead bacteria is 89 % 270 

(Fig. 5b), a value within previously reported experimental estimates from Staphylococcus aureus 271 

(84-99 %)[35]. 272 

 273 

Sensitivity of antibiotic efficacy to parameters of drug-target binding 274 

It is possible to vary all parameters in COMBAT and explore their effect. We used this to test 275 

how hypothetical chemical changes to ampicillin or ciprofloxacin would affect antibiotic 276 

efficacy (Supplementary Fig. S3-S11). These changes could reflect either bacterial resistance 277 

mutations or modifications of the antibiotics themselves. We predict that changes in drug-target 278 

affinity, KD, have more profound effects than changes in target molecule content, bacterial 279 

reaction to increasingly bound target (i.e. d(x) and r(x)), or changes in target molecule content. 280 

We also predict that the individual binding rates kr and kf, and not just the ratio of these terms, 281 

the KD, are important factors in efficiency. The faster a drug binds, the more efficient we 282 

predicted it will be. One intuitive explanation for the observation that kf drives efficacy is that a 283 

slow binding fails to rapidly interfere with bacterial replication, which may allow for the 284 

production of additional target molecules and thereby reduce the ratio of free antibiotic to target 285 

molecules. 286 
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 287 

Forecasting the resistance selection window 288 

Finally, we illustrate how COMBAT can be used to explore how the molecular mechanisms of 289 

resistance mutations affect antibiotic concentrations at which resistance can emerge, i.e., the 290 

resistance selection window. We compared predicted net growth rates as a function of 291 

ciprofloxacin concentrations for a wild-type strain and an archetypal resistant strain. For this 292 

analysis, we assumed that the resistant strain has a 100x slower drug-target binding rate (i.e. 293 

~100x increased MIC, realistic for novel point mutations[36]) and that the maximum replication 294 

rate of the resistant strain is 85 % of the wild type strain[37]. We then predicted the antibiotic 295 

concentrations at which resistance would be selected. Interestingly, when comparing COMBAT 296 

to previous pharmacodynamics models (Fig. 5), we observed that estimates of replication rates 297 

depend on the selected time frame (Fig. 6a). When the timeframe for MIC determination is set to 298 

18 h as defined by CLSI[38], the “competitive resistance selection window”, i.e., the 299 

concentration range below the MIC of both strains where the resistant strain is fitter than the wild 300 

type, ranges from 0.002 mg/L to 0.014 mg/L for ciprofloxacin (Fig. 6a) and 1 mg/L to 2.6 mg/L 301 

for ampicillin (Supplementary Fig. S12), respectively. This corresponds well with previous 302 

observations that ciprofloxacin resistance is selected for well below MIC[11]. However, when 303 

measuring after 15 min or 45 min, the results are substantially different. The reason for this is 304 

illustrated in Fig. 6b. COMBAT reproduces non-linear time kill curves where bacterial 305 

replication continues until sufficient target is bound to result in a negative net growth rate. This 306 

compares well with experimental data around MIC in Fig. 3a and 5a. In Fig. 6b, we show model 307 

predictions for ciprofloxacin concentrations corresponding to a zero net growth (i.e. same 308 

population size) after 15 min, 45 min and 18 h (MICResistant; 15 min, MICResistant; 45 min, 309 
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MICResistant; 18 h). In all cases, the bacterial population first increases and then decreases slowly. 310 

This may have consequences for the selection of resistant strains. Fig. 6c illustrates how the 311 

resistance selection windows depending on the observed time frame. This suggests that even at 312 

concentrations above the 18 h MIC of the resistant strain, there may be initial growth of the 313 

resistant strain. In this case, the resistant strain could continue growing at concentration of up to 314 

7 mg/L ciprofloxacin at 15 min, even though the MIC at 18 h is 1.27 mg/L. 315 

 316 

Discussion 317 

Optimizing dosing levels of antibiotics is important for maximizing drug efficacy against wild-318 

type strains as well as for minimizing the rise of resistant mutants. The determination of optimal 319 

dosing strategies typically requires expensive empirical studies; the need for such studies arises 320 

in part from our currently limited capacity to predict how antibiotics will affect bacteria at a 321 

given concentration. In fact, drug attrition is mainly due to insufficient predictions of efficacy 322 

(pharmacodynamics) rather than pharmacokinetics[6]. For optimizing drug development and for 323 

minimizing resistance, we need quantitative predictions for antibiotics or resistant bacterial 324 

strains that do not exist yet. The ability to accurately predict MICs on the basis of biochemical 325 

parameters and, more generally, to define antibacterial activity across a range of drug 326 

concentrations, would allow us to estimate antibiotic efficacy for novel compounds or against not 327 

yet emerged resistant strains[15, 39]. Recent studies have reported methods to predict MICs from 328 

whole genome sequencing data[40, 41]. However, these methods require transfer of prior 329 

knowledge on how the resistance mutations affect MICs in other organisms. There are no 330 

methods that could predict a priori how chemical changes to an antibiotic structure or novel 331 

resistance mutations affect bacterial growth at a given antibiotic concentration. 332 

 333 
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Here, we accurately predict antibiotic action on the basis of accessible biochemical parameters of 334 

drug-target interaction. Our computational model, COMBAT provides a framework to predict 335 

the efficacy of compounds based on drug-target affinity, target number, and target occupancy. 336 

These parameters may change both when improving antibiotic lead structures as well as when 337 

bacteria evolve resistance. Importantly, they can be measured early in drug development and 338 

may even be a by-product of target-based drug discovery[42]. When these data are available, 339 

COMBAT makes only one assumption: that the rate of bacterial replication decreases and/or the 340 

rate of killing increases with successive target binding. While fitting, we allow this relationship 341 

to be gradual or abrupt and select the best fit. This means we do not model specific molecular 342 

mechanisms down-stream of drug-target binding, but their effects are subsumed in the functions 343 

that connect the kinetic of drug-target binding to bacterial replication and death.  344 

 345 

In previous work, for example on antipsychotics[16], antivirals[17] and antibiotics[15, 18], 346 

models of drug-target binding kinetics have been used to improve our qualitative understanding 347 

of pharmacodynamics. Our study substantially advances this work by making accurate 348 

quantitative predictions across antibiotics and bacterial strains when measurable biochemical 349 

characteristics change. This is possible because COMBAT employs an elegant mathematical 350 

approach, based on partial differential equations, that makes it computationally feasible to fit the 351 

model to a large range of data. Importantly, we are not only able to predict antibiotic action from 352 

biochemical parameters, but can also vice versa use COMBAT to accurately predict biochemical 353 

changes from observed patterns of antibiotic action. We have confirmed the excellent predictive 354 

power of COMBAT with clinical data as well as experiments with antibiotics with very different 355 

mechanisms of action. This gives us confidence that biochemical parameters are major 356 
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determinants of antibiotic action in bacteria and that COMBAT helps to make rational decisions 357 

about antibiotic dosing. 358 

 359 

In drug development, our mechanistic modeling approach provides insight into which chemical 360 

characteristics of drugs may be useful targets for modification. For example, our sensitivity 361 

analyses indicate that antibiotics with a similar affinity but faster binding inactivate bacteria 362 

more quickly and therefore prevent replication and production of more target molecules, which 363 

would change the ratio of antibiotic to target. Furthermore, because e.g. antibiotic binding and 364 

unbinding rates can be determined early in the drug development process, such insight can help 365 

the transition to preclinical and clinical dosing trials. This may contribute to reducing bottlenecks 366 

between these phases of drug development and thereby save money and time. 367 

 368 

Avoiding antibiotic concentrations that select for resistance is challenging because the precise 369 

concentrations are only known after extensive experiments have been performed that identify the 370 

MIC of (nearly) all possibly emerging resistant mutants. Predicting the resistance selection 371 

windows of novel resistant mutants on the basis of biologically plausible changes in drug-target 372 

binding would allow us to better assess what drug concentrations need to be achieved to avoid 373 

selection of resistance. This approach offers new promise to assess resistance risks prior to 374 

characterizing the majority of resistance mutations and thereby reduce the failure rates of 375 

candidate compounds late in the drug development process when resistance is observed in 376 

patients and substantial resources have been invested.  377 

 378 
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Our approach also offers insight into determinants of the resistance selection window. Rather 379 

than determining the resistance selection window for a comprehensive collection of possibly 380 

arising resistance mutations in each bacteria-drug pair, it would be attractive to build 381 

transferrable knowledge that allows estimating the resistance selection window. In concordance 382 

with a recent meta-analysis of experimental data[43], our sensitivity analyses predict that 383 

changes in drug target binding and unbinding have a greater impact on the MIC than changes in 384 

target molecule content or down-stream processes. Thus, a more comprehensive characterization 385 

of the binding parameters of spontaneous resistant mutants would allow an overview of the 386 

maximal biologically plausible levels of resistance that can arise with one mutation. Dosing 387 

above this level should then safeguard against resistance. This is especially useful for compounds 388 

for which it is difficult to saturate the mutational target for resistance, or for safeguarding against 389 

resistance to newly introduced antibiotics for which we do not yet have a good overview of 390 

resistance conferring mutations. If toxicity, solubility or other constraints do not allow dosing 391 

above the MIC of expected resistant strains, COMBAT can predict the concentration range at 392 

which resistance is less strongly selected. This could guide decisions on treating with low versus 393 

high doses, which is currently controversially debated[7, 8]. Good quantitative estimates on the 394 

dose-response relationship of new drugs would also help defining the therapeutic window, i.e. 395 

the range of drug concentrations at which the drug is effective but not yet toxic. 396 

 397 

Our quantitative work can help to identify optimal dosing strategies at constant antibiotic 398 

concentrations for homogeneous bacterial populations. These measures are commonly used to 399 

assess antibiotic efficacy. In addition, previous work has demonstrated that drug-target binding 400 

models can qualitatively describe antibiotic efficacy over the fluctuating concentrations that 401 
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actually occur in patients[26, 44]. They can also explain complicated phenomena such as 402 

biphasic kill curves, the post-antibiotic effect, or the inoculum effect[15, 18, 45] that often 403 

complicate the clinical phase of drug development. COMBAT has similar characteristics that 404 

allow capturing these complex phenomena. Therefore, employing COMBAT may be useful for 405 

guiding drug development to maximize antibiotic efficacy and minimize de novo resistance 406 

evolution. 407 

 408 

Methods 409 

Mathematical model 410 

COMBAT incorporates the binding and unbinding of antibiotics to their targets and describes 411 

how target binding affects bacterial replication and death. This work extends the model 412 

developed in[18]. COMBAT consists of a system of two mass balance equations: one PDE for 413 

bacteria (describing replication and death as a function of both time and target binding) and one 414 

ODE for antibiotic molecules (describing the concentrations as function of time). 415 

 416 

In the most basic version of COMBAT, we ignored differences between extracellular and 417 

intracellular antibiotic concentrations and only followed the total antibiotic concentration A, 418 

assuming that the time needed for drug molecules to enter bacterial cells is negligible. We model 419 

ciprofloxacin (to which there is a limited diffusion barrier[46]) and ampicillin (where the target 420 

is not in the cytosol, even though the external membrane in gram negatives has to be crossed to 421 

reach PBPs). We therefore believe that this assumption is justified in wild-type E. coli. This 422 

basic version of COMBAT is therefore more accurate for describing antibiotic action where the 423 

diffusion barrier to the target is weak. 424 
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 425 

Binding kinetics 426 

We describe the action of antibiotics as a binding and unbinding process to bacterial target 427 

molecules[18]. For simplicity, we assume a constant number of available target molecules 𝜃. The 428 

binding process is defined by the formula 𝐴 + 𝑇 ⇌ 𝑥, where the intracellular antibiotic 429 

molecules A react with target molecules T at a rate kf and form an antibiotic-target molecule 430 

complex x, where values for x range between 0 and 𝜃. If the reaction is reversible, the complex 431 

dissociates with a rate kr. 432 

In[18], the association and dissociation terms are described by the following terms 433 

𝑑𝐵<(𝑡)
𝑑𝑡 = 𝑘T'𝐴(𝑡)l(𝜃 − 𝑖 + 1)𝐵<*)(𝑡) − (𝜃 − 𝑖)𝐵<(𝑡)n89999999999999:9999999999999;

RDDNC<M1<N=	1BZI

−	435 

	𝑘Zl𝑖𝐵<(𝑡) − (𝑖 + 1)𝐵<o)(𝑡)n899999999:99999999;
&<DDNC<M1<N=	1BZI

; 	𝑖𝜖[0, 𝜃]       (6) 434 

 436 

where 𝑘T' =
Aq

rsts=u
, kf is the association rate, Vtot is the volume in which the experiment is 437 

performed, nA is Avogadro’s number, kr is the dissociation rate, Bi is the number of bacteria with 438 

i bound targets, and 𝜃	is the total number of targets. Green denotes the association term, while 439 

the dissociation term is in orange. 440 

This approach requires the use of a large number of ordinary differential equations, (𝜃 + 1) for 441 

the bacterial population and one for the antibiotic concentration. To generalize this approach, we 442 

assume that the variable of bound targets is a real number 𝑥 ∈ ℛ. Under this continuity 443 

assumption, we consider the bacterial cells as a function of x and the time t, thereby reducing the 444 

total number of equations to two. 445 

Under the continuity approximation (𝑥 ∈ ℛ), we can rewrite the binding kinetics in the form 446 
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,-(/,1)
,1

= ,
,/
w𝑘T'𝐴(𝑡)(𝜃 − 𝑥)𝐵(𝑥, 𝑡)x

89999999:9999999;−

RDDNC<M1<N=	1BZI
,
,/
l𝑘Z𝑥𝐵(𝑥, 𝑡)n

89999:9999;
&<DDNC<M1<N=	1BZI

     (7) 447 

 448 

or simply 449 

,-(/,1)
,1

= ,
,/
w𝑣'(𝑥, 𝑡)𝐵(𝑥, 𝑡) − 𝑣Z(𝑥, 𝑡)𝐵(𝑥, 𝑡)x      (8) 450 

 451 

where 𝑣' = 𝑘T'𝐴(𝑡)(𝜃 − 𝑥) and 𝑣Z = 𝑘Z𝑥 can be considered as two velocities, i.e., the derivative 452 

of the bound targets with respect to the time >/
>1

. Green denotes the association term, while the 453 

dissociation term is in orange. 454 

 455 

Replication rate 456 

We assume that the replication rate of bacteria, r(x), is dependent on the number of bound target 457 

molecules x. The function r(x) is a monotonically decreasing function of x, such that fewer 458 

bacteria replicate as more target is bound. r(0) is the maximum replication rate, corresponding to 459 

the replication rate of bacteria in absence of antibiotics. Thus, r(x) describes the bacteriostatic 460 

action of the antibiotics, i.e., the effect of the antibiotic on bacterial replication. 461 

 462 

Carrying capacity 463 

Replication ceases as the total bacterial population approaches the carrying capacity K. At that 464 

point, the replication term of the equation is 465 

,-(/,1)
,1

= 𝑟(𝑥)𝐵(𝑥, 𝑡)
h*∫ -(/,1)>/f

g
h

= 𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I     (9) 466 

 467 
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where 𝐹H<I =
h*∫ -(/,1)>/f

g
h

 is the replication-limiting term due to the carrying capacity K, and 468 

0 ≤ 𝐹H<I ≤ 1. 469 

 470 

Distribution of target molecules upon division 471 

We assume that the total number of target molecules doubles at replication, such that each 472 

daughter cell has the same number as the mother cell. We also assume that the total number of 473 

drug-target complexes is preserved in the replication and that the distribution of x bound target 474 

molecules of the mother cell to its progeny is described by a hypergeometric sampling of n 475 

molecules from x bound and 2𝜃 − 𝑥 unbound molecules. Under the continuity assumption, we 476 

generalize the concept of hypergeometric distribution. Because the hypergeometric distribution 477 

is a function of combinations and because a combination is defined as function of factorials, we 478 

can use 𝛤 functions in place of factorials and redefine a continuous hypergeometric distribution 479 

as a function of 𝛤 functions. A 𝛤 function is 480 

𝛤(𝜁) = ∫ 𝑥|*)𝑒*/𝑑𝑥; 	𝑅𝑒(𝜁) > 0�
Y         (10) 481 

 482 

where 𝜁 is a complex number. In this way, the distribution can be expressed as a probability 483 

density function of continuous variables. The amount of newborn bacteria is given by the term 484 

𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I(𝑡). We assume that bound target molecules are distributed randomly between 485 

mother and daughter cells, with each of them inheriting 50% upon division on average. This 486 

means that twice the amount of newborn cells must be redistributed along x to account for the 487 

random distribution process. For example, if a mother cell with 4 bound targets divides, we have 488 

two daughter cells, each with a number of bound targets between 0 and 4 (their sum has to be 4), 489 

following the generalized hypergeometric distribution. For simplicity, we define S(x,t) to be a 490 
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function related to the replication rate that depends on the number of bacteria with a number of 491 

bound target molecules ranging between x and 𝜃, their specific replication rate r(x), and the 492 

fraction of their daughter cells expected to inherit x antibiotic-target complexes h(x,z): 493 

𝑆(𝑥, 𝑡) = 2∫ ℎ(𝑥, 𝑧)𝑟(𝑧)𝐵(𝑧, 𝑡)X
/ 𝑑𝑧        (11) 494 

 495 

Death rate 496 

The death rate function 𝛿(𝑥) depends on the number of bound target molecules. The function 497 

𝛿(𝑥) is assumed to be a monotonically increasing function of x, where 𝛿(𝜃) is the maximum 498 

death rate, when all targets in the bacteria have been bound by antibiotics. The shape of this 499 

function describes the bactericidal action of the antibiotic. 500 

 501 

Bacteriostatic and bactericidal effects 502 

We consider several potential functional forms of the relationship between the percentage of 503 

bound targets and replication and death rates, because the exact mechanisms how target 504 

occupancy affects bacteria is unknown (Supplementary Fig. S1). We use a sigmoidal function 505 

that can cover cases ranging from a linear relationship to a step function. When the inflection 506 

point of a sigmoidal function is at 0 % or 100 % target occupancy, the relationship can also be 507 

described by an exponential function. We assume that replication in bactericidal and death in 508 

bacteriostatic drugs is independent of the amount of bound target. With sufficient experimental 509 

data, the replication rate r(x) and/or the death rate 𝛿(𝑥) can be obtained by fitting COMBAT to 510 

time-kill curves of bacterial populations after antibiotic exposure. The sigmoidal shape of r(x) 511 

and d(x) can be written as:  512 

𝑟(𝑥) = Zg
)oB��l����s�n

; 	𝛿(𝑥) = >���

)oB���l����s�n
       (12) 513 
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 514 

where xrth is the replication rate threshold, xdth is the death rate threshold, and both represent the 515 

point where the sigmoidal function reaches ½ of its maximum. gr and gd represent the shape 516 

parameters of the replication and death rate functions, respectively. These factors determine the 517 

steepness around the inflection point. When they are extreme, the relationship approaches a 518 

linear or a step function.  519 

 520 

Full equation describing bacterial population 521 

Putting these components together, the full equation describing a bacterial population is: 522 

,-(/,1)
,1

+ ,
,/
w𝑣'(𝑥, 𝑡)𝐵(𝑥, 𝑡) − 𝑣Z(𝑥, 𝑡)𝐵(𝑥, 𝑡)x

899999999999:99999999999;
-<=><=?	A<=B1<CD

=523 

	−𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I(𝑡) + 𝑆-(𝑥, 𝑡)𝐹H<I(𝑡)899999999999:99999999999;
KBLH<CM1<N=	M=>	<1D	B''BC1D	N=	O<=><=?

− 𝛿(𝑥)𝐵(𝑥, 𝑡)899:99;
&BM1Q

     (13) 524 

 525 

where B(x,t) is the number of bacteria. As in equations 2, 6, 7 and 8, green denotes the binding 526 

term, orange the unbinding term (together the binding kinetics is given in brown), blue the term 527 

describing bacterial replication and red the term describing bacterial death. 528 

  529 

Equation describing antibiotic concentration 530 

The free antibiotic concentration results from mass conservation, i.e., all antibiotic molecules 531 

associating with their target are subtracted and all dissociating antibiotic molecules are added. 532 

Equation 3 in the results section describes the dynamics of the antibiotic concentration. 533 

 534 

Description of beta-lactam action 535 
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Beta-lactams acetylate their target molecules (PBPs) and thereby inhibit cell wall synthesis. The 536 

acetylation of PBPs consumes beta-lactams. However, PBPs can recover through deacetylation. 537 

We modified the term of drug-target dissociation in the equation describing antibiotic 538 

concentrations (equation 3), and set the unbinding rate kr = 0. To reflect the recovery of target 539 

molecules, we substituted the dissociation rate kr in the equation describing the bacterial 540 

population with the deacetylation rate ka, as described in[26]. 541 

 542 

Initial and boundary conditions 543 

At t = 0, we assume that all bacteria have zero bound targets (𝑥 = 0), and the initial 544 

concentration of bacteria is 𝐵(𝑥, 0) = 0, 𝑥 > 0, and 𝐵(0,0) = 𝐵Y. 545 

At the boundaries of the partial differential equation (𝑥 = 0, 𝑥 = 𝜃), we specify that the outgoing 546 

velocities are zero. For 𝑥 = 0, i.e. no bound target molecules, the unbinding velocity 𝑣Z(0, 𝑡) =547 

0, and in 𝑥 = 𝜃, i.e. all targets are bound, the binding velocity 𝑣'(𝜃, 𝑡) = 0. When the 548 

replication term at 𝑥 = 0 and the death term at 𝑥 = 𝜃 are known, we can solve the partial 549 

differential equation with two ordinary differential equations at the boundaries. They are similar 550 

to the equations at 𝑥 = 0 and at 𝑥 = 𝜃 described by Abel zur Wiesch et al.[18], but taking into 551 

account that x is a continuous variable instead of a natural number. 552 

 553 

Numerical schemes 554 

To solve our system of differential equations, we used a first-order upwind scheme. Specifically, 555 

we used the spatial approximation 𝑢*' =
�(<)*�(<*))

∆/
 for the binding term (vf > 0) and the spatial 556 

approximation 𝑢o
' = �(<o))*�(<)

∆/
 for the unbinding term (vr < 0). For the time approximation of 557 
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both the PDEs and the ODEs, we used the forward approximation ∆-
∆1
= -���*-�

∆1
[47]. We also 558 

verified that the Courant-Friedrichs-Lewy condition is satisfied. For fitting the experimental data 559 

of bacteria exposed to ciprofloxacin and ampicillin, we used the particle swarm method 560 

(“particleswarm” function in Matlab, MathWorks software). 561 

 562 

Concentrations of gyrase A2B2 tetramers 563 

We assumed that gyrases A and B first homo-dimerize to A2 and B2, respectively, which in turn 564 

bind to each other to form the tetramer TR[48]. The following system of equations describes 565 

their binding kinetics: 566 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

>R
>1
= −2𝑘)𝐴� + 2𝑘*)𝐴�	

>-
>1
= −2𝑘�𝐵� + 2𝑘*�𝐵�	

>R�
>/

= 𝑘)𝐴� − 𝑘*)𝐴� − 𝑘�𝐴�𝐵� + 𝑘*�𝑇𝑅
>-�
>1

= 𝑘�𝐵� − 𝑘*�𝐵� − 𝑘�𝐴�𝐵� + 𝑘*�𝑇𝑅
>�K
>1

= 𝑘�𝐴�𝐵� − 𝑘*�𝑇𝑅	

       (14) 567 

⎩
⎪
⎨

⎪
⎧ 𝐴 + 𝐴

A�⇌
A��

𝐴�	

𝐵 + 𝐵
A�⇌
A��

	𝐵�

𝐴� + 𝐵�
A�⇌
A��

𝑇𝑅

	          (15) 568 

 569 

First, we calibrated the model to ensure that we obtain the correct number of gyrase A2B2 570 

tetramers (~100) per wild type bacterial cell[49, 50]. This results in an average of each 206 571 

gyrase A and B monomers. Because the association and dissociation rates of the dimers and 572 

tetramers are unknown, we sampled 104 sets of six parameters in equation 14 (𝑘*�,… 𝑘�) in a 573 

Latin hypercube approach from a biologically plausible range where the association rates are 574 
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between 107 - 109 M-1 s-1 and the dissociation rates between 10-3 - 10-1 s-1 [33]. This results in 104 575 

estimates for each of the six experimental replicates quantifying gyrase A and B (Fig. 4, 576 

Supplementary Fig. S2, Supplementary Tab. S3). 577 

 578 

Experimental methods 579 

Strains, growth conditions and strain construction 580 

Escherichia coli strain BW25113[51] (SoA2740) was transformed with plasmids pCA24N-581 

SC101-gyrAB[32] and pCA24N-SC101-ΔP-YFP[32] using electroporation, resulting in strains 582 

BW25113/pCA24N-SC101-gyrAB (SoA3329) and BW25113/pCA24N-SC101-ΔP-YFP 583 

(SoA3330), respectively. pCA24N-SC101-gyrAB encodes the E. coli gyrAB genes under control 584 

of the IPTG inducible LacZ promoter. pCA24N-SC101-ΔP-YFP encodes a promoterless copy of 585 

YFP and was used as a control. Bacteria were grown at 30°C on either LB agar or in LB broth, 586 

both supplemented with 10 µg/mL chloramphenicol (Cm) and 10 µM (mild induction) or 100 587 

µM (strong induction) of isopropyl β-D-1-thiogalactopyranoside (IPTG) (43714 5X, VWR 588 

Chemicals) when necessary. 589 

 590 

Time-kill curves 591 

Overnight cultures of BW25113 or SoA3329 and SoA3330 were diluted 1:1000 in pre-warmed 592 

LB or LB-Cm and LB-Cm-IPTG, respectively, and grown with shaking to OD600 ~0.5. A 1:3 593 

dilution series of ciprofloxacin was made and added to the cultures at indicated concentrations. 594 

Additional cultures without antibiotics and with a very high concentration of ciprofloxacin 595 

(2.187 mg/L) were used to determine the minimal and maximal kill rate, respectively. Samples 596 

were taken immediately prior to addition of the antibiotic and in ~20 min intervals or after 45 597 
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min, respectively. Samples were washed once in phosphate buffered saline (PBS) before colony 598 

forming units (CFUs) were determined for each sample by plating a 1:10 dilution series in PBS 599 

on LB agar plates. 600 

 601 

GyrAB quantification 602 

To quantify the relative amount of GyrAB, samples of SoA3329 and SoA3330 were collected 603 

after 45 min of drug treatment as described above. An equal number of cells corresponding to 1 604 

mL culture at OD600 = 1 were harvested by centrifugation. Pelleted cells were lysed at room 605 

temperature for 20 min using B-PER bacterial protein extraction reagent (90078, Thermo 606 

Scientific) supplemented with 100 µg/mL lysozyme, 5 units/mL DNaseI (all part of B-PER™ 607 

with Enzymes Bacterial Protein Extraction Kit, 90078, Thermo Scientifc) and 100 µM/mL 608 

PMSF (52332, Calbiochem). Samples were stored at -80°C until further use. 609 

Samples were heated to 70°C for 10 min after addition of 1x Bolt sample reducing agent (B0009, 610 

Life Technologies) and 1x fluorescent compatible sample buffer (LC2570, Invitrogen). Proteins 611 

in whole-cell lysates were separated on 4-15 % Mini-Protean TGX Precast gels (456-1085, Bio-612 

Rad) and transferred to 0.2 µm Nitrocellulose membranes (1704158, Bio-Rad). 613 

Membranes were blocked in Odyssey blocking buffer-TBS (927-50000, Li-Cor) for at least one 614 

hour at room temperature. Primary antibodies raised against GyrA (Rabbit α-Gyrase A, PA005, 615 

Inspiralis), GyrB (Rabbit α-Gyrase B , PB005, Inspiralis), and CRP (Mouse α-E. coli CRP, 616 

664304, Nordic Biosite antibodies) were diluted 1:250, 1:250, and 1:2,000 in Odyssey blocking 617 

buffer-TBS, respectively. The blocked membranes were incubated with the appropriate primary 618 

antibodies overnight at 4°C, washed 4x for 15 min each in TBS-T solution (Tris buffered saline 619 

supplemented with Tween20: 0.138 M sodium chloride, 0.0027 M potassium chloride, 0.1 % 620 
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Tween20, pH 8.0 at 25°C), and incubated for 2 h at room temperature with fluorescent labelled 621 

secondary antibodies (1:10,000 of IRDye® 680RD Goat anti-Mouse IgG, P/N 925-68070, Li-622 

Cor and 1:5000 of IRDye® 800CW Goat anti-Rabbit IgG, P/N 925-32211, Li-Cor) in Odyssey 623 

blocking buffer-TBS. Finally, the membranes were washed 4x for 15 min each in TBS-T 624 

solution and imaged at 700 nm and 800 nm using a Li-Cor Odyssey Sa scanning system. 625 

Band intensities were quantified from unmodified images using the record measurement tool of 626 

Photoshop CS6, normalized to the CRP loading control after background subtraction, and 627 

reported relative to SoA3330. For clarity, the “levels” tool of Photoshop CS6 was used to 628 

enhance the contrast of shown Western blot images. 629 

 630 

Data Availability 631 

Computer code will be available at https://www.abel-zur-wiesch-lab.com/. 632 
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 823 

Fig. 1| Clinical data confirm linear correlation between MICs and affinities of quinolones to 824 

gyrase. We analyzed MIC and drug-target affinity data from 11 Enterobacteriaceae isolates and 825 

seven different quinolones. The x-axes show the affinities (KD) as reported in the literature[21, 826 

23-25], and the y-axes show the MICs, both in mol/L. The adjusted R2 and p-value of each 827 

correlation are given. In cases where there was more than one KD value reported in the literature, 828 
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we used the mean for this analysis. The tested MIC values are the median of several clinical 829 

isolates described previously[25].  830 
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 831 

Fig. 2| Illustration of modeling approach. a, Schematic illustration of binding kinetics (adapted 832 

from[52]). The grey triangles depict the drug target molecules, and the orange circles represent 833 

antibiotic molecules within bacteria. The arrows indicate individual binding and unbinding 834 

events of the antibiotic to its target molecule in the cell. 𝑘T' is the adjusted forward reaction rate, 835 
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kr is the reverse reaction rate, A is the concentration of antibiotics inside the bacterium, x is the 836 

number of bound targets, θ is the number of targets and Bx is the number of bacteria with x bound 837 

targets. b, Modeled sample time-kill curve, in which the sum of bacteria in all binding states (i.e., 838 

the entire population of living bacteria) is followed over time after exposure to antibiotics. The 839 

vertical dotted lines indicate the time points depicted in (c); 1 min (grey), 14 min (yellow), and 840 

80 min (purple). c, The percentage of bound antibiotic targets in the bacterial population at 841 

indicated time points. d, Illustration of how the partial differential equation describes the 842 

bacterial population as a surface in a three-dimensional coordinate system, the dimensions of 843 

which represent percent bound target (x-axis), time (y-axis), and number of bacteria (z-axis). The 844 

three time points shown in (c) represent two-dimensional cross-sections at different points of the 845 

y-axis. e, Overview of used parameters and functions.  846 
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 847 

Fig. 3| Model predictions for the MIC and the bacteriostatic and bactericidal effects of 848 

ciprofloxacin. a, Model fit to experimental time-kill curves. The points indicate the 849 

experimental data of three independent replicates, and the lines indicate the model fit. Each color 850 

indicates a ciprofloxacin concentration as reported in the figure. b, The blue line indicates the 851 

bacteriostatic effect (r(x), replication rate) of ciprofloxacin and the red line the bactericidal effect 852 

(δ(x), death rate) as a function of the number of bound targets predicted by the model fit in (a). 853 
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The values of the fitted parameters are listed in Supplementary Tab. S2. c, The net growth rate as 854 

determined by the slope of a line connecting the initial bacterial density and the final bacterial 855 

density of a time-kill curve at 18 h on a logarithmic scale, is given as function of the drug 856 

concentration (blue). The dotted horizontal line indicates zero net growth, and the intersection 857 

with the blue line predicts the MIC (0.0139 mg/mL).  858 
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 859 

Fig. 4| Prediction of relative antibiotic target molecule content from time-kill curves. a, 860 

Dose-response curves of E. coli expressing gyrA and gyrB under the same IPTG-inducible 861 

promoter (SoA3329) grown in the presence of 10 µM IPTG (mild overexpression; red) and 100 862 

µM IPTG (strong overexpression; yellow). A control strain (SoA3330), which expresses wild-863 

type GyrAB levels and contains a mock plasmid, is grown in the absence of inducer (blue). The 864 

x-axis indicates the ciprofloxacin concentration, and the y-axis indicates the fold change in 865 

colony forming units over time. The dotted lines indicate experimental data, and the solid lines 866 

indicate the model fit. The best model fit was obtained for relative target molecule contents of 867 

131 % (mild overexpression) and 202 % (strong overexpression) relative to the control strain 868 

(WT). b, Death rates of E. coli expressing different levels of GyrAB. The colors represent 869 

GyrAB expression conditions as in (a). The x-axis shows the percentage of bound antibiotic 870 
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target normalized to the control strain; the y-axis shows the death rate d(x). Each line represents 871 

the best fit for d(x). c, Western blot analysis of GyrA&B in the strains/conditions shown in (a). 872 

CRP (cAMP receptor protein) was used as loading control. A representative example of six 873 

replicates is shown; see Supplementary Fig. S2 for full blots. d, comparison of theoretical 874 

prediction (from (b), solid colors) and GyrA2B2 tetramer levels estimated from relative GyrA&B 875 

monomer levels (quantified in (c), translucent colors). For the experimental measurements, the 876 

bars indicate the mean, and the whiskers represent the 95 % confidence interval.  877 
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 878 

Fig. 5| Model prediction of MIC and target occupancy at MIC for ampicillin. a, Model fit to 879 

previously published time-kill curves[31]. The points represent experimental data, and the lines 880 

represent the fit of the model. Each color indicates a single ampicillin concentration, as described 881 

in the legend. b, Replication (blue) and death (red) rates as a function of the number of bound 882 

targets predicted by the model fit in (a). The black line indicates the predicted distribution of 883 

target occupancies in a bacterial population (both living and dead cells) exposed to ampicillin at 884 
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the MIC for 18 h. c, The net growth rate, as determined by the slope of a line connecting the 885 

initial bacterial density and the bacterial density at 18 h on a logarithmic scale predicted from the 886 

model fit in (a), is shown as function of the drug concentration (blue). The dotted horizontal line 887 

indicates zero net growth, and the intersection with the blue line predicts the MIC (2.6 mg/mL).  888 
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 889 

Fig. 6| Predicted mutation selection windows for E. coli exposed to ciprofloxacin. a, The 890 

drug concentration of ciprofloxacin is shown on the x-axes, and the average bacterial net growth 891 

rate in the first 15 min (grey panel), 45 min (yellow panel), and 18 h (purple panel) of exposure 892 

is given on the y-axes. The blue line represents the wild-type strain based on the fits shown in 893 

Fig. 3, and the red line represents a strain with a hypothetical resistance mutation that decreases 894 

the binding rate (kf) 100-fold and imparts a 15 % fitness cost. The horizontal dotted line indicates 895 

no net growth. The vertical dotted line indicates where the resistant strain becomes more fit than 896 

the wild-type, the solid vertical line indicates the MIC of the wild-type, and the dashed vertical 897 

line indicates the MIC of the resistant strain. b, Modeled time kill curves of the resistant strain 898 

for ciprofloxacin concentrations at which there is no growth at 15 min (grey; MIC15 min = 7 899 

mg/L), 45 min (yellow; MIC45 min = 3 mg/L) and 18 h (purple; MIC18 h = 1.27 mg/L). The 900 

horizontal dotted line indicates the initial population size; the vertical dotted lines represent the 901 

time points at which the initial and final population size is the same. c, The mutation selection 902 
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window depends on the time at which bacterial growth is observed. The x-axis shows the 903 

observed time at which replication rates were determined, the y-axis shows ciprofloxacin 904 

concentrations. The dotted curve shows the ciprofloxacin concentration at which the resistant 905 

becomes fitter than the WT (FitnessResistant > FitnessWT), the solid line the MIC of the WT 906 

(MICWT), and the dashed line the MIC of the resistant strain (MICResistant). The area between the 907 

dotted and dashed line indicates the competitive resistance selection window. 908 
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