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Abstract 13 

Gene regulatory networks are powerful tools which facilitate hypothesis generation and candidate 14 
gene discovery. However, the extent to which the network predictions are biologically relevant is 15 
often unclear. Recently, as part of an analysis of the RefSeqv1.0 wheat transcriptome, a GENIE3 16 
network which predicted targets of wheat transcription factors was produced. Here we have used an 17 
independent and publicly-available RNA-Seq dataset to validate the predictions of the wheat GENIE3 18 
network for the senescence-regulating transcription factor NAM-A1 (TraesCS6A02G108300). We re-19 
analysed the RNA-Seq data against the RefSeqv1.0 genome and identified a de novo set of 20 
differentially expressed genes (DEGs) between the wild-type and nam-a1 mutant which recapitulated 21 
the known role of NAM-A1 in senescence and nutrient remobilisation. We found that the GENIE3-22 
predicted target genes of NAM-A1 overlap significantly with the de novo DEGs, more than would be 23 
expected for a random transcription factor. Based on high levels of overlap between GENIE3-24 
predicted target genes and the de novo DEGs, we also identified a set of candidate senescence 25 
regulators. We then explored genome-wide trends in the network related to polyploidy and 26 
homoeolog expression levels and found that only homoeologous transcription factors are likely to 27 
share predicted targets in common. However, homoeologs in dynamic triads, i.e. with higher variation 28 
in homoeolog expression levels across tissues, are less likely to share predicted targets than stable 29 
triads. This suggests that homoeologs in dynamic triads are more likely to act on distinct pathways. 30 
This work demonstrates that the wheat GENIE3 network can provide biologically-relevant predictions 31 
of transcription factor targets, which can be used for candidate gene prediction and for global analyses 32 
of transcription factor function. The GENIE3 network has now been integrated into the KnetMiner 33 
web application, facilitating its use in future studies. 34 

 35 
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Introduction 37 

Transcriptional regulation of gene expression is fundamental to all biological processes. Increasingly, 38 
this is studied using large-scale datasets obtained from RNA-Sequencing (RNA-Seq) experiments 39 
across multiple tissues, genotypes, treatments, and timepoints. As library preparation and sequencing 40 
costs fall, more and more RNA-Seq datasets are being published, providing a wealth of transcriptional 41 
information. These datasets are then available for integration into large-scale gene regulatory 42 
networks covering various biological conditions. In wheat (Triticum aestivum), genomic and 43 
transcriptomic analysis has historically been hampered by its large, repetitive polyploid genome [1]. 44 
More recently, a high-quality genome and gene annotation has facilitated transcriptomics work in 45 
wheat [1, 2]. This has allowed the use of substantial RNA-Seq datasets to build gene regulatory 46 
networks and predict transcription factors involved in complex processes such as senescence [3] and 47 
grain development [4, 5]. However, these studies typically use bespoke RNA-Seq datasets to generate 48 
the regulatory networks, rather than exploiting publicly-available data. 49 

Combining the data across multiple RNA-Seq studies allows new hypothesis generation beyond those 50 
possible in the initial individual publications. A key difficulty, however, in using publicly available 51 
datasets is the lack of consistency in metadata (e.g. relating to the experimental conditions, tissue 52 
sampling, developmental stage). Without clear labelling of sampling conditions, it is difficult, if not 53 
impossible, to compare RNA-Seq datasets that originated from different studies. While international 54 
efforts to standardise experimental data exist [6, 7], often these are not followed by researchers when 55 
publishing. To address this, a large effort was recently taken in polyploid wheat to integrate publicly-56 
available RNA-Seq datasets into a common database (expVIP) [8]. This platform uses common 57 
metadata terms, manually annotated by the curators, to allow comparison between RNA-Seq datasets 58 
from different studies. This database has been updated with new wheat gene annotations, most 59 
recently following the release of the wheat reference genome (RefSeqv1.0) [2].  60 

These large curated sets of transcriptome data can now be mined to build new gene regulatory 61 
networks covering many biological processes in wheat. Using 850 RNA-Seq datasets combined from 62 
multiple independent studies, gene co-expression networks for root, leaf, spike, and grain tissues, as 63 
well as abiotic and biotic stresses, were developed [2]. This same study also generated a network of 64 
predicting transcription factor - target relationships using the 850 independent RNA-Seq samples 65 
from a wide range of developmental, tissue, genotypes and stress conditions [2]. This network was 66 
created with the GENIE3 algorithm, which uses a Random Forests approach to predict the strength of 67 
putative regulatory links between a target gene and the expression pattern of input genes (i.e. 68 
transcription factors) [9]. The program produces a ranked list output of each pairwise comparison 69 
ranked from the most confident to the least confident regulatory connection. GENIE3 was able to 70 
recapitulate known genetic regulatory networks in Escherichia coli when first tested. Since its 71 
introduction, the GENIE3 algorithm has been used to identify tissue-specific gene regulatory 72 
networks in maize [10] and key regulatory genes in glaucoma [11], as well as to study the drought 73 
response in sunflower [12]. Previous studies have integrated the GENIE3 network predictions with 74 
ChIP-Seq and other proteomic and transcriptomic data and found that the GENIE3 predictions do 75 
correspond with independent biological datasets [10, 13].  76 

Here we have conducted a series of analyses to investigate whether the GENIE3 network provides 77 
biologically-relevant information in polyploid wheat.  As a first case study, we re-analysed the RNA-78 
Seq datasets from Pearce et al. [14] which examined gene expression of the NAC transcription factor 79 
NAM-A1. This transcription factor is known to affect monocarpic senescence and nutrient 80 
remobilisation in polyploid wheat, affecting gene expression even before visual signs of senescence 81 
can be observed (e.g. 12 days after anthesis in flag leaf) [14, 15]. We compared the differentially 82 
expressed genes between wild-type and nam-a1 mutant lines with the GENIE3 predicted targets of the 83 
NAM-A1 transcription factor [14]. This publicly-available RNA-Seq data was not used in the 84 
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generation of the GENIE3 network, thus serving as an independent dataset for validation purposes. 85 
We then explored the GENIE3 network for genome-wide trends relating to polyploidy and 86 
investigated the putative functions of targets for wheat transcription factors. Finally, we integrated the 87 
GENIE3 network into the KnetMiner web application [16] to facilitate exploration of the data within a 88 
wider context. 89 

 90 

Methods 91 

GENIE3 92 

The GENIE3 network was previously published in [2] and made available at 93 
https://doi.org/10.5447/ipk/2018/7. In brief, it utilised a set of 850 publicly-available RNA-Seq 94 
samples in a Random Forests approach to predict targets of wheat 3,384 transcription factors [9]. The 95 
top one million connections in the network were used for all analyses in the paper, consistent with 96 
previous studies [2, 10]. Target genes of particular transcription factors were extracted from the 97 
network as in “Genie3_Statistics_SharedRatios_RNASeqDEGs_Figure1.Rmd” at  98 
https://github.com/Uauy-Lab/GENIE3_scripts/ .  99 

RNA-Seq analysis 100 

Mapping 101 

Publicly-available reads from [14] were downloaded from 102 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60635. Reads from the wild-type and nam-103 
a1 (gpc-a1) mutant lines from 12 and 22 days after anthesis (DAA) were pseudoaligned with kallisto 104 
(v 0.43.1) [17] against the v1.1 annotation from the RefSeq genome v1.0 [1] using standard settings 105 
for single reads (--single -b 30 -l 200 -s 20) (Supplementary Table 1). Only the A and B genomes of 106 
RefSeqv1.0 were used for the pseudoalignment, as the raw reads were derived from tetraploid cv. 107 
Kronos plants.  108 

Differential Expression Analysis 109 

Gene expression levels (transcript per million, TPM) were determined using the R package Sleuth 110 
[18] using the default settings for the Wald test (sleuth_wt; v 0.30.0). We compared the expression of 111 
genes between the wild-type and nam-a1 mutant samples at 12 and 22 DAA. We used the cut-off of q 112 
< 0.05 to identify differentially expressed genes, where q is the p-value adjusted for false discovery 113 
rate using the Benjamini-Hochberg correction. The list of differentially expressed genes for each 114 
timepoint is reported in Supplementary Table 2. 115 

Methods for ID conversion and comparison 116 

The genes and contigs identified as differentially expressed in the original [14] study were converted 117 
to RefSeqv1.1 gene models where possible using BLASTn [19]. Briefly, the differentially expressed 118 
sequences were extracted from the IWGSC CSS genome [20] and compared with BLASTn (v 2.2.3; -119 
num_alignments 1 -outfmt 6) against the RefSeq v1.1 transcriptome (including both high and low 120 
confidence gene models). The BLAST hit with the greatest percent identity to the original CSS 121 
sequence was assigned as the equivalent RefSeqv1.1 gene model. The scripts used for this analysis are 122 
found at https://github.com/Uauy-Lab/GENIE3_scripts, ExtractCDS_fromPearceDEGs.py and 123 
BLAST_Pearce_cds_against_HC_and_LC.sh. 124 

Comparison of the Differentially Expressed Genes with GENIE3 125 

Calculation of Shared Ratios 126 
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We calculated the level of overlap or shared genes between different transcription factors or datasets 127 
as follows: 128 

|𝐴⋂𝐵|

|𝐴|
 129 

Where A and B are sets of genes, and |A| < |B|. 130 

For example, given two sets of genes A and B, where A contains 5 genes and B contains 10 genes, if 131 
they share two genes in common the shared ratio is 2/5, or 0.4. 132 

This calculation was carried out as implemented in R scripts available at https://github.com/Uauy-133 
Lab/GENIE3_scripts. It was used to create the distribution of shared targets between transcription 134 
factors and the differentially expressed genes, as well as between the predicted targets of any two 135 
transcription factors. 136 

Distributions of Shared Ratios 137 

Initially, we analysed the shared ratios between transcription factors in the GENIE3 network and the 138 
set of differentially expressed genes obtained from the re-analysed NAM-A1 RNA-Seq data. The 139 
target genes of 1000 randomly selected transcription factors were compared against the differentially 140 
expressed genes at 12 and 22 DAA to obtain the distribution of shared ratios (Figure 1B). This 141 
calculation was also carried out individually for the targets of NAM-A1 against both timepoints, as 142 
implemented in https://github.com/Uauy-143 

Lab/GENIE3_scripts/Genie3_Statistics_SharedRatios_RNASeqDEGs_Figure1.Rmd.  144 

Following this, the shared ratio was calculated for 1000 randomly selected pairs of transcription 145 
factors from the GENIE3 network (implemented in https://github.com/Uauy-Lab/GENIE3_scripts/ 146 
Genie3_Statistics_SharedRatios_AllTFs_AllTFFamilies_Fig3_SuppFig2.Rmd) (see Figure 3A). The 147 
same analysis was carried out for individual transcription factor super-families, based on the family 148 
assignments from https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-149 
Gonzalez_etal_2018-06025-Transcriptome-150 
Landscape/data/data_tables/transcription_factors_to_use_high_confidence.csv [2]. All pairs selected 151 
were unique, and where a transcription factor family was not large enough to contain 1000 unique 152 
pairs, the maximum number of unique pairs was sampled (e.g. in the family CCAAT_HAP3, N=3 and 153 
thus the number of unique pairs sampled was 6). This calculation was also carried out for all 154 
homoeolog pairs, where triads were classified as in 155 
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-156 
Transcriptome-Landscape/data/TablesForExploration/Triads.rds [2]. The subset used for this analysis 157 
only included syntenic 1:1:1 triads (see [2] for definition), resulting in a total of 708 triads and 2,124 158 
individual genes. This was implemented in https://github.com/Uauy-Lab/GENIE3_scripts/ 159 
Genie3_Statistics_SharedRatios_Homoeologs_MovementCategories_Figure4_SuppFig3.Rmd. 160 

Movement Ratios 161 

The shared ratios of homoeologous pairs were also distinguished by movement classifications, as 162 
defined previously [2]. In brief, triads were classified into three categories (“Dynamic”, “Middle 80”, 163 
and “Stable”) based on variation in their homoeolog expression bias across tissues. Dynamic triads 164 
show more variation in relative homoeolog expression levels across tissues than stable triads. The 165 
assignment of triads to each category is found here: 166 
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-167 
Transcriptome-Landscape/data/Triad_Subsets_Movement/. Triads in the 168 
“HC_CS_no_stress_movement_top_10pc.txt” file were defined as Dynamic, the 169 
“HC_CS_no_stress_movement_middle_80pc.txt” as Mid 80, and the 170 
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“HC_CS_no_stress_movement_low_10pc.txt” as Stable. This analysis was implemented in  171 
“Genie3_Statistics_SharedRatios_Homoeologs_MovementCategories_Figure4_SuppFig3.Rmd” at 172 
https://github.com/Uauy-Lab/GENIE3_scripts. 173 

Developmental Expression Datasets 174 

Public datasets were used for the expression analysis in Figure 2. The developmental time course was 175 
first published in [2], from the spring wheat cv. Azhurnaya. This dataset was included in the 176 
generation of the GENIE3 network. The senescence-specific time course was first published in [3], 177 
from the spring wheat cultivar Bobwhite, and was not included in the GENIE3 network.  178 

Gene Ontology (GO) term analysis 179 

GO-term enrichment analysis was carried out as previously described in [3], using the GOSeq (v 180 
1.34.1) package in R [21]. 181 

Data visualisation, manipulation, and statistical analyses. 182 

Graphs were made in R, principally using the ggplot2 (v 3.1.1)[22] and ggpubr (v 0.2)[23] packages 183 
as well as the “aheatmap” function of the NMF package (v 0.21.0)[24]. Networks in Figures 3B and C 184 
were visualised using Cytoscape (v 3.7.1) [25]. Data manipulation was also carried out in R, using the 185 
packages dplyr (v 0.8.0.1)[26] and tidyr (v 0.8.3)[27] in scripts as linked throughout the methods. 186 
Statistical analyses were carried out in R, as detailed in the results section. The sign test was carried 187 
out using the R package BSDA (v 1.2.0) [28]. 188 

 189 

Results 190 

RNA-Seq analysis 191 

In 2014, Pearce et al. analysed the differences in gene expression between wild type (WT) Kronos, a 192 
tetraploid wheat cultivar, and a NAM-A1 loss-of-function mutant (nam-a1 or gpc-a1) which contained 193 
a premature stop codon (W114*) [14]. Here, we reanalysed the RNA-Seq datasets for the wild-type 194 
and nam-a1 single mutant lines at 12 and 22 DAA using the most recent wheat genome annotation 195 
[1]. Reads were pseudoaligned to the A and B genomes of the RefSeqv1.1 transcriptome using 196 
kallisto [17], a software which has been shown to differentiate well between homoeologs during 197 
alignment and is thus appropriate for use with polyploid wheat [2, 8]. Each sample contained on 198 
average 35 million reads, with the exception of one sample with 85 million reads, of which on average 199 
78% were aligned to the transcriptome (Supplementary Table 1). 200 

To identify genes differentially expressed between the WT and nam-a1 mutant at the two 201 
developmental timepoints (12 and 22 DAA) we used sleuth, a program designed for analysis of RNA-202 
Seq experiments for which transcript abundances have been quantified with kallisto [18]. Using a 203 
relatively relaxed cut-off of q < 0.05, we identified 866 differentially expressed genes (DEGs) 204 
between WT and the nam-a1 mutant at 12 DAA and 130 DEG at 22 DAA (Supplementary Table 2). 205 
This set of DEGs will be referred to as the de novo DEGs throughout the paper. We carried out gene 206 
ontology (GO) term enrichment analysis on the two sets of DEGs and found that DEGs at both 207 
timepoints are highly enriched for terms related to metal ion transport, including zinc, manganese, and 208 
copper (p < 0.001, adjusted for false discovery rate; Supplementary File 2). This correlates closely 209 
with the findings from the original analysis, which found that GO terms related to transporter function 210 
were highly regulated by NAM-A1 [14]. This also supports previous physiological studies of the NAM 211 
genes which found them to be important in nutrient remobilisation and transport [15, 29]. 212 
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We used BLASTn to compare the differentially expressed sequences from the Pearce dataset to the 213 
RefSeqv1.1 transcriptome annotation which was used for the de novo analysis [1]. We successfully 214 
assigned 453 out of 517 DEG identified by Pearce et al. to RefSeqv1.1 gene models (442/504 DEG at 215 
12 DAA and 11/13 DEG 22 DAA). Based on this common nomenclature, we then directly compared 216 
the de novo DEGs identified by sleuth with the DEGs identified originally [14]. At 12 DAA, 177 of 217 
the 442 DEGs (40%) were present in the de novo differential expression set, whereas at 22 DAA, 7 of 218 
the 11 DEGs (64%) were found in the de novo set. 219 

At both developmental time points, our reanalysis identified more transcripts as significantly 220 
differential expressed compared to the original Pearce et al. study. This may be due to the more liberal 221 
significance cut off used (q < 0.05) in the current analysis and/or the fact that a combination of four 222 
statistical tests were used to reduce false positive discoveries in the original study [14]. To determine 223 
the impact of the cut-off value on the calling of DEGs, we ranked the de novo DEGs by q-value and 224 
recorded the position of the 177 shared DEGs at 12 DAA. We found that the majority of shared DEGs 225 
(53%) ranked in the top quarter of the list of de novo DEGs (Supplementary Figure 1). However, 9% 226 
of the common DEGs were found in the bottom quarter of the de novo DEGs. This suggests that the 227 
cut-off value of q < 0.05 was an appropriate level to maximise the identification of relevant DEGs.  228 

The GENIE3 network predictions overlap with known DEGs 229 

To investigate whether the GENIE3 network provides biologically relevant information, we compared 230 
the GENIE3 predicted targets for NAM-A1 against the list of differentially expressed genes identified 231 
between the wild-type and nam-a1 mutants from the de novo RNA-Seq analysis. As the RNA-Seq 232 
experiment was carried out in tetraploid wheat, we only considered target genes on the A or B 233 
genome. We focussed on the 12 DAA and 22 DAA timepoints, which captured the onset and 234 
intermediate stages of senescence, respectively. At 12 DAA, we found that of the 79 genes predicted 235 
to be targets of NAM-A1 in the GENIE3 network, 12 were shared with the set of de novo DEGs 236 
(15.2%; Figure 1A). However, at 22 DAA only 4 of the 79 GENIE3 predicted targets were shared 237 
with the DEGs (5.1%; Figure 1A). The decrease in overlap between 12 and 22 DAA is consistent with 238 
NAM-A1 primarily acting early in senescence [14, 15].  239 

We then compared the lists of DEGs at 12 and 22 DAA against the targets of all 3,384 transcription 240 
factors included in the GENIE3 dataset (Figure 1B). The median number of shared targets between 241 
the DEGs and predicted targets of a given transcription factor was 0, with a maximum of 33.3%. 242 
Comparing the overlap between random transcription factors and the RNA-Seq dataset, we found a 243 
significantly higher level of overlap between the GENIE3-predicted targets of NAM-A1 and genes 244 
differentially expressed in the nam-a1 mutant at both timepoints (p < 2.2e-16, Sign Test; Figure 1B). 245 
This result suggests that the GENIE3 network has value in directing focus towards targets with 246 
independent experimental support.  247 
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 248 
Figure 1: GENIE3 predicts targets of NAM-A1 that overlap with genes differentially expressed in nam-a1 249 
mutants. (A) More overlapping genes are identified at 12 DAA (15.2% of the GENIE3 targets) than at 22 DAA 250 
(5.1%). (B) Most transcription factors share very few predicted targets with the nam-a1 differentially expressed 251 
genes, with a distribution skewed strongly towards 0. At both time points, the predicted targets of NAM-A1 252 
overlap significantly more with the nam-a1 DEG than would be expected by chance (Sign Test, p < 0.001). 253 
Note that the x-axis is capped at 0.25, to emphasize the skew of the distributions towards zero. “Ratio” refers to 254 
the shared ratio of targets between the DEGs and the GENIE3 transcription factors. 255 

Identification of senescence associated transcription factors 256 

We hypothesised that transcription factors which also share predicted targets with the de novo DEGs 257 
may have roles in senescence. We therefore identified transcription factors that had a higher 258 
percentage of shared targets with the de novo DEGs than NAM-A1 itself (Figure 2C, Supplementary 259 
Table 3). In total, we identified 20 such transcription factors, 0.6% of all transcription factors in the 260 
network. Five transcription factors were identified through comparison to the 12 DAA DEGs, 11 with 261 
the 22 DAA DEGs, and a further four which had a higher shared ratio at both time points. We 262 
obtained expression data for all 20 of the transcription factors across a developmental time-course and 263 
a senescence-specific time-course [2, 3]. A diverse range of transcription factor families were 264 
represented, including four NACs, from the same family as NAM-A1 (Supplementary Table 3). Only 265 
one pair of homoeologs was identified, from the C2C2-CO-like family. Using the developmental 266 
time-course, we calculated the fold-change in gene expression between non-senescing tissues and 267 
senescing leaf tissues as previously described [3]. We found that 14 of the 20 genes showed an 268 
increase in expression in the senescing tissues, four of which were enriched more than two-fold 269 
(Figure 2A). Based on a published analysis of the senescence-specific time-course,  six of the 20 270 
transcription factors were identified as differentially regulated during flag leaf senescence in wheat 271 
[3]. Analysis of the GENIE3 predicted targets for these 20 genes identified nine transcription factors 272 
which shared at least one target gene with NAM-A1 (Figure 2B).  273 

To investigate the potential functions of these 20 transcription factors further, we identified GO terms 274 
which were enriched in the GENIE3-predicted targets of these transcription factors (Supplementary 275 
Table 3; Supplementary File 2). At 12 DAA, the targets of three of the nine transcription factors were 276 
enriched for transporter-related GO terms, while others were enriched for senescence-related GO 277 
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terms such as catabolism, phosphatase activity, and chlorophyll biosynthesis. Of the transcription 278 
factors identified at 22 DAA, GO terms related to transporters, senescence, circadian rhythms, and 279 
stress responses were enriched in the GENIE3-predicted targets. By integrating the information from 280 
the GENIE3 network with independent senescence-related expression data, we were able to identify a 281 
robust set of candidate senescence-associated transcription factors to prioritise for functional 282 
characterisation. 283 

 284 
Figure 2: Candidate senescence regulators. Twenty transcription factors were identified which had a higher 285 
shared ratio between the GENIE3-predicted targets and the RNA-Seq DEGs than NAM-A1 itself. (A) Their 286 
expression pattern is shown across a developmental time course [2] and a senescence-specific time course [3]. 287 
The TPM reported is averaged across three samples of the same tissue and timepoint from each dataset. Genes 288 
upregulated in senescence are highlighted with a light blue box, and those with a greater than 2-fold increase are 289 
highlighted with a purple box (left side). Genes present in the list of 341 candidate transcription factors based on 290 
the senescence time course in Borrill et al. 2019 are indicated with a green asterisk [3]. (B) The number of 291 
targets shared between the transcription factors and NAM-A1. (C) The shared ratio for each gene against the 12 292 
DAA (grey) and 22 DAA (black) DEGs. Note that genes which had a higher shared ratio at both 12 and 22 293 
DAA are shown with split bars. 294 
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