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Abstract 13 

Gene regulatory networks are powerful tools which facilitate hypothesis generation and candidate 14 
gene discovery. However, the extent to which the network predictions are biologically relevant is 15 
often unclear. Recently, as part of an analysis of the RefSeqv1.0 wheat transcriptome, a GENIE3 16 
network which predicted targets of wheat transcription factors was produced. Here we have used an 17 
independent and publicly-available RNA-Seq dataset to validate the predictions of the wheat GENIE3 18 
network for the senescence-regulating transcription factor NAM-A1 (TraesCS6A02G108300). We re-19 
analysed the RNA-Seq data against the RefSeqv1.0 genome and identified a de novo set of 20 
differentially expressed genes (DEGs) between the wild-type and nam-a1 mutant which recapitulated 21 
the known role of NAM-A1 in senescence and nutrient remobilisation. We found that the GENIE3-22 
predicted target genes of NAM-A1 overlap significantly with the de novo DEGs, more than would be 23 
expected for a random transcription factor. Based on high levels of overlap between GENIE3-24 
predicted target genes and the de novo DEGs, we also identified a set of candidate senescence 25 
regulators. We then explored genome-wide trends in the network related to polyploidy and 26 
homoeolog expression levels and found that only homoeologous transcription factors are likely to 27 
share predicted targets in common. However, homoeologs in dynamic triads, i.e. with higher variation 28 
in homoeolog expression levels across tissues, are less likely to share predicted targets than stable 29 
triads. This suggests that homoeologs in dynamic triads are more likely to act on distinct pathways. 30 
This work demonstrates that the wheat GENIE3 network can provide biologically-relevant predictions 31 
of transcription factor targets, which can be used for candidate gene prediction and for global analyses 32 
of transcription factor function. The GENIE3 network has now been integrated into the KnetMiner 33 
web application, facilitating its use in future studies. 34 

 35 
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Introduction 37 

Transcriptional regulation of gene expression is fundamental to all biological processes. Increasingly, 38 
this is studied using large-scale datasets obtained from RNA-Sequencing (RNA-Seq) experiments 39 
across multiple tissues, genotypes, treatments, and timepoints. As library preparation and sequencing 40 
costs fall, more and more RNA-Seq datasets are being published, providing a wealth of transcriptional 41 
information. These datasets are then available for integration into large-scale gene regulatory 42 
networks covering various biological conditions. In wheat (Triticum aestivum), genomic and 43 
transcriptomic analysis has historically been hampered by its large, repetitive polyploid genome [1]. 44 
More recently, a high-quality genome and gene annotation has facilitated transcriptomics work in 45 
wheat [1, 2]. This has allowed the use of substantial RNA-Seq datasets to build gene regulatory 46 
networks and predict transcription factors involved in complex processes such as senescence [3] and 47 
grain development [4, 5]. However, these studies typically use bespoke RNA-Seq datasets to generate 48 
the regulatory networks, rather than exploiting publicly-available data. 49 

Combining the data across multiple RNA-Seq studies allows new hypothesis generation beyond those 50 
possible in the initial individual publications. A key difficulty, however, in using publicly available 51 
datasets is the lack of consistency in metadata (e.g. relating to the experimental conditions, tissue 52 
sampling, developmental stage). Without clear labelling of sampling conditions, it is difficult, if not 53 
impossible, to compare RNA-Seq datasets that originated from different studies. While international 54 
efforts to standardise experimental data exist [6, 7], often these are not followed by researchers when 55 
publishing. To address this, a large effort was recently taken in polyploid wheat to integrate publicly-56 
available RNA-Seq datasets into a common database (expVIP) [8]. This platform uses common 57 
metadata terms, manually annotated by the curators, to allow comparison between RNA-Seq datasets 58 
from different studies. This database has been updated with new wheat gene annotations, most 59 
recently following the release of the wheat reference genome (RefSeqv1.0) [2].  60 

These large curated sets of transcriptome data can now be mined to build new gene regulatory 61 
networks covering many biological processes in wheat. Using 850 RNA-Seq datasets combined from 62 
multiple independent studies, gene co-expression networks for root, leaf, spike, and grain tissues, as 63 
well as abiotic and biotic stresses, were developed [2]. This same study also generated a network of 64 
predicting transcription factor - target relationships using the 850 independent RNA-Seq samples 65 
from a wide range of developmental, tissue, genotypes and stress conditions [2]. This network was 66 
created with the GENIE3 algorithm, which uses a Random Forests approach to predict the strength of 67 
putative regulatory links between a target gene and the expression pattern of input genes (i.e. 68 
transcription factors) [9]. The program produces a ranked list output of each pairwise comparison 69 
ranked from the most confident to the least confident regulatory connection. GENIE3 was able to 70 
recapitulate known genetic regulatory networks in Escherichia coli when first tested. Since its 71 
introduction, the GENIE3 algorithm has been used to identify tissue-specific gene regulatory 72 
networks in maize [10] and key regulatory genes in glaucoma [11], as well as to study the drought 73 
response in sunflower [12]. Previous studies have integrated the GENIE3 network predictions with 74 
ChIP-Seq and other proteomic and transcriptomic data and found that the GENIE3 predictions do 75 
correspond with independent biological datasets [10, 13].  76 

Here we have conducted a series of analyses to investigate whether the GENIE3 network provides 77 
biologically-relevant information in polyploid wheat.  As a first case study, we re-analysed the RNA-78 
Seq datasets from Pearce et al. [14] which examined gene expression of the NAC transcription factor 79 
NAM-A1. This transcription factor is known to affect monocarpic senescence and nutrient 80 
remobilisation in polyploid wheat, affecting gene expression even before visual signs of senescence 81 
can be observed (e.g. 12 days after anthesis in flag leaf) [14, 15]. We compared the differentially 82 
expressed genes between wild-type and nam-a1 mutant lines with the GENIE3 predicted targets of the 83 
NAM-A1 transcription factor [14]. This publicly-available RNA-Seq data was not used in the 84 
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generation of the GENIE3 network, thus serving as an independent dataset for validation purposes. 85 
We then explored the GENIE3 network for genome-wide trends relating to polyploidy and 86 
investigated the putative functions of targets for wheat transcription factors. Finally, we integrated the 87 
GENIE3 network into the KnetMiner web application [16] to facilitate exploration of the data within a 88 
wider context. 89 

 90 

Methods 91 

GENIE3 92 

The GENIE3 network was previously published in [2] and made available at 93 
https://doi.org/10.5447/ipk/2018/7. In brief, it utilised a set of 850 publicly-available RNA-Seq 94 
samples in a Random Forests approach to predict targets of wheat 3,384 transcription factors [9]. The 95 
top one million connections in the network were used for all analyses in the paper, consistent with 96 
previous studies [2, 10]. Target genes of particular transcription factors were extracted from the 97 
network as in “Genie3_Statistics_SharedRatios_RNASeqDEGs_Figure1.Rmd” at  98 
https://github.com/Uauy-Lab/GENIE3_scripts/ .  99 

RNA-Seq analysis 100 

Mapping 101 

Publicly-available reads from [14] were downloaded from 102 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60635. Reads from the wild-type and nam-103 
a1 (gpc-a1) mutant lines from 12 and 22 days after anthesis (DAA) were pseudoaligned with kallisto 104 
(v 0.43.1) [17] against the v1.1 annotation from the RefSeq genome v1.0 [1] using standard settings 105 
for single reads (--single -b 30 -l 200 -s 20) (Supplementary Table 1). Only the A and B genomes of 106 
RefSeqv1.0 were used for the pseudoalignment, as the raw reads were derived from tetraploid cv. 107 
Kronos plants.  108 

Differential Expression Analysis 109 

Gene expression levels (transcript per million, TPM) were determined using the R package Sleuth 110 
[18] using the default settings for the Wald test (sleuth_wt; v 0.30.0). We compared the expression of 111 
genes between the wild-type and nam-a1 mutant samples at 12 and 22 DAA. We used the cut-off of q 112 
< 0.05 to identify differentially expressed genes, where q is the p-value adjusted for false discovery 113 
rate using the Benjamini-Hochberg correction. The list of differentially expressed genes for each 114 
timepoint is reported in Supplementary Table 2. 115 

Methods for ID conversion and comparison 116 

The genes and contigs identified as differentially expressed in the original [14] study were converted 117 
to RefSeqv1.1 gene models where possible using BLASTn [19]. Briefly, the differentially expressed 118 
sequences were extracted from the IWGSC CSS genome [20] and compared with BLASTn (v 2.2.3; -119 
num_alignments 1 -outfmt 6) against the RefSeq v1.1 transcriptome (including both high and low 120 
confidence gene models). The BLAST hit with the greatest percent identity to the original CSS 121 
sequence was assigned as the equivalent RefSeqv1.1 gene model. The scripts used for this analysis are 122 
found at https://github.com/Uauy-Lab/GENIE3_scripts, ExtractCDS_fromPearceDEGs.py and 123 
BLAST_Pearce_cds_against_HC_and_LC.sh. 124 

Comparison of the Differentially Expressed Genes with GENIE3 125 

Calculation of Shared Ratios 126 
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We calculated the level of overlap or shared genes between different transcription factors or datasets 127 
as follows: 128 

|𝐴⋂𝐵|

|𝐴|
 129 

Where A and B are sets of genes, and |A| < |B|. 130 

For example, given two sets of genes A and B, where A contains 5 genes and B contains 10 genes, if 131 
they share two genes in common the shared ratio is 2/5, or 0.4. 132 

This calculation was carried out as implemented in R scripts available at https://github.com/Uauy-133 
Lab/GENIE3_scripts. It was used to create the distribution of shared targets between transcription 134 
factors and the differentially expressed genes, as well as between the predicted targets of any two 135 
transcription factors. 136 

Distributions of Shared Ratios 137 

Initially, we analysed the shared ratios between transcription factors in the GENIE3 network and the 138 
set of differentially expressed genes obtained from the re-analysed NAM-A1 RNA-Seq data. The 139 
target genes of 1000 randomly selected transcription factors were compared against the differentially 140 
expressed genes at 12 and 22 DAA to obtain the distribution of shared ratios (Figure 1B). This 141 
calculation was also carried out individually for the targets of NAM-A1 against both timepoints, as 142 
implemented in https://github.com/Uauy-143 

Lab/GENIE3_scripts/Genie3_Statistics_SharedRatios_RNASeqDEGs_Figure1.Rmd.  144 

Following this, the shared ratio was calculated for 1000 randomly selected pairs of transcription 145 
factors from the GENIE3 network (implemented in https://github.com/Uauy-Lab/GENIE3_scripts/ 146 
Genie3_Statistics_SharedRatios_AllTFs_AllTFFamilies_Fig3_SuppFig2.Rmd) (see Figure 3A). The 147 
same analysis was carried out for individual transcription factor super-families, based on the family 148 
assignments from https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-149 
Gonzalez_etal_2018-06025-Transcriptome-150 
Landscape/data/data_tables/transcription_factors_to_use_high_confidence.csv [2]. All pairs selected 151 
were unique, and where a transcription factor family was not large enough to contain 1000 unique 152 
pairs, the maximum number of unique pairs was sampled (e.g. in the family CCAAT_HAP3, N=3 and 153 
thus the number of unique pairs sampled was 6). This calculation was also carried out for all 154 
homoeolog pairs, where triads were classified as in 155 
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-156 
Transcriptome-Landscape/data/TablesForExploration/Triads.rds [2]. The subset used for this analysis 157 
only included syntenic 1:1:1 triads (see [2] for definition), resulting in a total of 708 triads and 2,124 158 
individual genes. This was implemented in https://github.com/Uauy-Lab/GENIE3_scripts/ 159 
Genie3_Statistics_SharedRatios_Homoeologs_MovementCategories_Figure4_SuppFig3.Rmd. 160 

Movement Ratios 161 

The shared ratios of homoeologous pairs were also distinguished by movement classifications, as 162 
defined previously [2]. In brief, triads were classified into three categories (“Dynamic”, “Middle 80”, 163 
and “Stable”) based on variation in their homoeolog expression bias across tissues. Dynamic triads 164 
show more variation in relative homoeolog expression levels across tissues than stable triads. The 165 
assignment of triads to each category is found here: 166 
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-167 
Transcriptome-Landscape/data/Triad_Subsets_Movement/. Triads in the 168 
“HC_CS_no_stress_movement_top_10pc.txt” file were defined as Dynamic, the 169 
“HC_CS_no_stress_movement_middle_80pc.txt” as Mid 80, and the 170 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2019. ; https://doi.org/10.1101/684183doi: bioRxiv preprint 

https://github.com/Uauy-Lab/GENIE3_scripts
https://github.com/Uauy-Lab/GENIE3_scripts
https://github.com/Uauy-Lab/GENIE3_scripts/Genie3_Statistics_SharedRatios_RNASeqDEGs_Figure1.Rmd
https://github.com/Uauy-Lab/GENIE3_scripts/Genie3_Statistics_SharedRatios_RNASeqDEGs_Figure1.Rmd
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/data_tables/transcription_factors_to_use_high_confidence.csv
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/data_tables/transcription_factors_to_use_high_confidence.csv
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/data_tables/transcription_factors_to_use_high_confidence.csv
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/TablesForExploration/Triads.rds
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/TablesForExploration/Triads.rds
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/Triad_Subsets_Movement/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/Triad_Subsets_Movement/
https://doi.org/10.1101/684183
http://creativecommons.org/licenses/by-nc/4.0/


“HC_CS_no_stress_movement_low_10pc.txt” as Stable. This analysis was implemented in  171 
“Genie3_Statistics_SharedRatios_Homoeologs_MovementCategories_Figure4_SuppFig3.Rmd” at 172 
https://github.com/Uauy-Lab/GENIE3_scripts. 173 

Developmental Expression Datasets 174 

Public datasets were used for the expression analysis in Figure 2. The developmental time course was 175 
first published in [2], from the spring wheat cv. Azhurnaya. This dataset was included in the 176 
generation of the GENIE3 network. The senescence-specific time course was first published in [3], 177 
from the spring wheat cultivar Bobwhite, and was not included in the GENIE3 network.  178 

Gene Ontology (GO) term analysis 179 

GO-term enrichment analysis was carried out as previously described in [3], using the GOSeq (v 180 
1.34.1) package in R [21]. 181 

Data visualisation, manipulation, and statistical analyses. 182 

Graphs were made in R, principally using the ggplot2 (v 3.1.1)[22] and ggpubr (v 0.2)[23] packages 183 
as well as the “aheatmap” function of the NMF package (v 0.21.0)[24]. Networks in Figures 3B and C 184 
were visualised using Cytoscape (v 3.7.1) [25]. Data manipulation was also carried out in R, using the 185 
packages dplyr (v 0.8.0.1)[26] and tidyr (v 0.8.3)[27] in scripts as linked throughout the methods. 186 
Statistical analyses were carried out in R, as detailed in the results section. The sign test was carried 187 
out using the R package BSDA (v 1.2.0) [28]. 188 

 189 

Results 190 

RNA-Seq analysis 191 

In 2014, Pearce et al. analysed the differences in gene expression between wild type (WT) Kronos, a 192 
tetraploid wheat cultivar, and a NAM-A1 loss-of-function mutant (nam-a1 or gpc-a1) which contained 193 
a premature stop codon (W114*) [14]. Here, we reanalysed the RNA-Seq datasets for the wild-type 194 
and nam-a1 single mutant lines at 12 and 22 DAA using the most recent wheat genome annotation 195 
[1]. Reads were pseudoaligned to the A and B genomes of the RefSeqv1.1 transcriptome using 196 
kallisto [17], a software which has been shown to differentiate well between homoeologs during 197 
alignment and is thus appropriate for use with polyploid wheat [2, 8]. Each sample contained on 198 
average 35 million reads, with the exception of one sample with 85 million reads, of which on average 199 
78% were aligned to the transcriptome (Supplementary Table 1). 200 

To identify genes differentially expressed between the WT and nam-a1 mutant at the two 201 
developmental timepoints (12 and 22 DAA) we used sleuth, a program designed for analysis of RNA-202 
Seq experiments for which transcript abundances have been quantified with kallisto [18]. Using a 203 
relatively relaxed cut-off of q < 0.05, we identified 866 differentially expressed genes (DEGs) 204 
between WT and the nam-a1 mutant at 12 DAA and 130 DEG at 22 DAA (Supplementary Table 2). 205 
This set of DEGs will be referred to as the de novo DEGs throughout the paper. We carried out gene 206 
ontology (GO) term enrichment analysis on the two sets of DEGs and found that DEGs at both 207 
timepoints are highly enriched for terms related to metal ion transport, including zinc, manganese, and 208 
copper (p < 0.001, adjusted for false discovery rate; Supplementary File 2). This correlates closely 209 
with the findings from the original analysis, which found that GO terms related to transporter function 210 
were highly regulated by NAM-A1 [14]. This also supports previous physiological studies of the NAM 211 
genes which found them to be important in nutrient remobilisation and transport [15, 29]. 212 
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We used BLASTn to compare the differentially expressed sequences from the Pearce dataset to the 213 
RefSeqv1.1 transcriptome annotation which was used for the de novo analysis [1]. We successfully 214 
assigned 453 out of 517 DEG identified by Pearce et al. to RefSeqv1.1 gene models (442/504 DEG at 215 
12 DAA and 11/13 DEG 22 DAA). Based on this common nomenclature, we then directly compared 216 
the de novo DEGs identified by sleuth with the DEGs identified originally [14]. At 12 DAA, 177 of 217 
the 442 DEGs (40%) were present in the de novo differential expression set, whereas at 22 DAA, 7 of 218 
the 11 DEGs (64%) were found in the de novo set. 219 

At both developmental time points, our reanalysis identified more transcripts as significantly 220 
differential expressed compared to the original Pearce et al. study. This may be due to the more liberal 221 
significance cut off used (q < 0.05) in the current analysis and/or the fact that a combination of four 222 
statistical tests were used to reduce false positive discoveries in the original study [14]. To determine 223 
the impact of the cut-off value on the calling of DEGs, we ranked the de novo DEGs by q-value and 224 
recorded the position of the 177 shared DEGs at 12 DAA. We found that the majority of shared DEGs 225 
(53%) ranked in the top quarter of the list of de novo DEGs (Supplementary Figure 1). However, 9% 226 
of the common DEGs were found in the bottom quarter of the de novo DEGs. This suggests that the 227 
cut-off value of q < 0.05 was an appropriate level to maximise the identification of relevant DEGs.  228 

The GENIE3 network predictions overlap with known DEGs 229 

To investigate whether the GENIE3 network provides biologically relevant information, we compared 230 
the GENIE3 predicted targets for NAM-A1 against the list of differentially expressed genes identified 231 
between the wild-type and nam-a1 mutants from the de novo RNA-Seq analysis. As the RNA-Seq 232 
experiment was carried out in tetraploid wheat, we only considered target genes on the A or B 233 
genome. We focussed on the 12 DAA and 22 DAA timepoints, which captured the onset and 234 
intermediate stages of senescence, respectively. At 12 DAA, we found that of the 79 genes predicted 235 
to be targets of NAM-A1 in the GENIE3 network, 12 were shared with the set of de novo DEGs 236 
(15.2%; Figure 1A). However, at 22 DAA only 4 of the 79 GENIE3 predicted targets were shared 237 
with the DEGs (5.1%; Figure 1A). The decrease in overlap between 12 and 22 DAA is consistent with 238 
NAM-A1 primarily acting early in senescence [14, 15].  239 

We then compared the lists of DEGs at 12 and 22 DAA against the targets of all 3,384 transcription 240 
factors included in the GENIE3 dataset (Figure 1B). The median number of shared targets between 241 
the DEGs and predicted targets of a given transcription factor was 0, with a maximum of 33.3%. 242 
Comparing the overlap between random transcription factors and the RNA-Seq dataset, we found a 243 
significantly higher level of overlap between the GENIE3-predicted targets of NAM-A1 and genes 244 
differentially expressed in the nam-a1 mutant at both timepoints (p < 2.2e-16, Sign Test; Figure 1B). 245 
This result suggests that the GENIE3 network has value in directing focus towards targets with 246 
independent experimental support.  247 
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 248 
Figure 1: GENIE3 predicts targets of NAM-A1 that overlap with genes differentially expressed in nam-a1 249 
mutants. (A) More overlapping genes are identified at 12 DAA (15.2% of the GENIE3 targets) than at 22 DAA 250 
(5.1%). (B) Most transcription factors share very few predicted targets with the nam-a1 differentially expressed 251 
genes, with a distribution skewed strongly towards 0. At both time points, the predicted targets of NAM-A1 252 
overlap significantly more with the nam-a1 DEG than would be expected by chance (Sign Test, p < 0.001). 253 
Note that the x-axis is capped at 0.25, to emphasize the skew of the distributions towards zero. “Ratio” refers to 254 
the shared ratio of targets between the DEGs and the GENIE3 transcription factors. 255 

Identification of senescence associated transcription factors 256 

We hypothesised that transcription factors which also share predicted targets with the de novo DEGs 257 
may have roles in senescence. We therefore identified transcription factors that had a higher 258 
percentage of shared targets with the de novo DEGs than NAM-A1 itself (Figure 2C, Supplementary 259 
Table 3). In total, we identified 20 such transcription factors, 0.6% of all transcription factors in the 260 
network. Five transcription factors were identified through comparison to the 12 DAA DEGs, 11 with 261 
the 22 DAA DEGs, and a further four which had a higher shared ratio at both time points. We 262 
obtained expression data for all 20 of the transcription factors across a developmental time-course and 263 
a senescence-specific time-course [2, 3]. A diverse range of transcription factor families were 264 
represented, including four NACs, from the same family as NAM-A1 (Supplementary Table 3). Only 265 
one pair of homoeologs was identified, from the C2C2-CO-like family. Using the developmental 266 
time-course, we calculated the fold-change in gene expression between non-senescing tissues and 267 
senescing leaf tissues as previously described [3]. We found that 14 of the 20 genes showed an 268 
increase in expression in the senescing tissues, four of which were enriched more than two-fold 269 
(Figure 2A). Based on a published analysis of the senescence-specific time-course,  six of the 20 270 
transcription factors were identified as differentially regulated during flag leaf senescence in wheat 271 
[3]. Analysis of the GENIE3 predicted targets for these 20 genes identified nine transcription factors 272 
which shared at least one target gene with NAM-A1 (Figure 2B).  273 

To investigate the potential functions of these 20 transcription factors further, we identified GO terms 274 
which were enriched in the GENIE3-predicted targets of these transcription factors (Supplementary 275 
Table 3; Supplementary File 2). At 12 DAA, the targets of three of the nine transcription factors were 276 
enriched for transporter-related GO terms, while others were enriched for senescence-related GO 277 
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terms such as catabolism, phosphatase activity, and chlorophyll biosynthesis. Of the transcription 278 
factors identified at 22 DAA, GO terms related to transporters, senescence, circadian rhythms, and 279 
stress responses were enriched in the GENIE3-predicted targets. By integrating the information from 280 
the GENIE3 network with independent senescence-related expression data, we were able to identify a 281 
robust set of candidate senescence-associated transcription factors to prioritise for functional 282 
characterisation. 283 

 284 
Figure 2: Candidate senescence regulators. Twenty transcription factors were identified which had a higher 285 
shared ratio between the GENIE3-predicted targets and the RNA-Seq DEGs than NAM-A1 itself. (A) Their 286 
expression pattern is shown across a developmental time course [2] and a senescence-specific time course [3]. 287 
The TPM reported is averaged across three samples of the same tissue and timepoint from each dataset. Genes 288 
upregulated in senescence are highlighted with a light blue box, and those with a greater than 2-fold increase are 289 
highlighted with a purple box (left side). Genes present in the list of 341 candidate transcription factors based on 290 
the senescence time course in Borrill et al. 2019 are indicated with a green asterisk [3]. (B) The number of 291 
targets shared between the transcription factors and NAM-A1. (C) The shared ratio for each gene against the 12 292 
DAA (grey) and 22 DAA (black) DEGs. Note that genes which had a higher shared ratio at both 12 and 22 293 
DAA are shown with split bars. 294 
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Non-homoeologous transcription factors share few targets in the GENIE3 network. 295 

After establishing that the GENIE3 network can provide biologically-relevant predictions, we then 296 
turned to using the network to interrogate genome-wide patterns in transcription factor targets. We 297 
first investigated the extent to which transcription factors share the same targets. To do this, we 298 
carried out pairwise comparisons between randomly selected transcription factors and calculated the 299 
overlap between their targets. Following 1,000 iterations, we found that any two random transcription 300 
factors typically have no targets in common, with a median and 3rd quartile shared ratio of 0%. The 301 
distribution was highly positively skewed, as the vast majority of comparisons shared 0 targets 302 
(Figure 3A, B; Table 1). However, there was a long tail to the right of the graph, highlighting that in 303 
some cases, certain transcription factors do share a substantial portion of targets. 304 

Table 1: Summary statistics for the shared ratio distributions. 305 

Category Minimum 1st 

Quartile 

Median Mean 3rd 

Quartile 

Maximum Number of 

Comparisons 

All TFs 0 0 0 0.04 0 0.83 1,000 

NACs 0 0 0 0.02 0 0.82 1,000 

C2C2_Dofs 0 0 0 0.02 0 0.80 1,000 

Homoeologs 0 0.21 0.41 0.40 0.59 0.92 2,124 

Stable 0 0.25 0.43 0.41 0.57 0.88 132 

Mid 80 0 0.20 0.39 0.39 0.57 0.92 1,590 

Dynamic 0 0.15 0.36 0.35 0.53 0.85 156 

 306 

The set of transcription factors in the GENIE3 network was then split into separate transcription factor 307 
super-families, as previously annotated [1]. The same analysis was performed within each 308 
transcription factor family, carrying out pairwise comparisons between transcription factor targets. 309 
We found that for the majority of transcription factor families, the distributions of shared targets were 310 
very similar to that found for the full set, as illustrated by the representative NAC and C2C2-Dof 311 
families (Figure 3A, Table 1; Supplementary Figure 2). Not all transcription factor families were large 312 
enough to support 1,000 unique pairwise comparisons, and in these cases the distribution clearly 313 
deviates from the whole (e.g. in CCAAT_HAP3, N = 3).  314 

Roughly 70% of wheat homoeolog triads (composed of A, B, and D genome copies) show balanced 315 
expression patterns, that is, similar relative abundance of transcripts from the three homoeologs across 316 
tissues [2]. We therefore hypothesized that homoeologs would be more likely to share predicted 317 
targets than randomly selected transcription factors, even within the same family. To test this, we 318 
randomly selected syntenic triads from the GENIE3 dataset, and calculated the percentage of shared 319 
genes for each of the three pairwise comparisons (A-B, A-D, B-D). This was carried out for the 708 320 
syntenic triads included in the network, a total of 2,124 pairwise comparisons, and showed that 321 
homoeologs are indeed more likely to share targets with each other than randomly selected triads are 322 
(Figure 3A, C, Table 1). 323 

 324 
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 325 

Figure 3: Non-homoeologous transcription factors share few targets in the GENIE3 network. (A) 326 
Comparison of the shared targets of 1000 random transcription factor pairs found that the majority of 327 
transcription factors share few to no targets in common. This was also found to be the case within the majority 328 
of transcription factor families, showing here NAC and C2C2_Dof transcription factors. However, pairs of 329 
homoeologous transcription factors shared many more targets in common, with a mean shared ratio of 39.7%. 330 
(B) An example of shared overlap between two homoeologous transcription factors, the NAC transcription 331 
factors NAM-A1 (TraesCS6A01G108300) and NAM-D1 (TraesCS6D01G096300) is shown, with the two 332 
homoeologs sharing 62% of possible targets. (C) The two randomly chosen transcription factors, in this case 333 
TraesCS1D01G436500 (Sigma 70-like family) and TraesCS4B01G383400 (HSF family), share no targets.  334 

Dynamic triads share fewer targets than stable triads 335 

Wheat genome triads can be classified into different categories based on how the expression levels of 336 
the homoeologs varies across tissues [2]. So-called ‘dynamic’ triads represent the 10% of triads which 337 
show the highest variation in relative expression levels of the different homoeologs across tissues, 338 
while ‘stable’ triads represent the 10% of triads with the lowest variation. Dynamic triads are under 339 
more relaxed selection pressure and we hypothesised that they may represent the initial steps toward 340 
neo or sub-functionalization of wheat homoeologs [2]. This hypothesis would suggest that 341 
homoeologs in dynamic triads are more likely to have distinct functions, and thus may be less likely 342 
to share predicted targets. To test this, we compared the level of overlap between targets of 343 
homoeologous transcription factors in dynamic and stable triads, as well as the ‘Mid 80’ intermediate 344 
set. We found that the dynamic triads do indeed have significantly less overlap in targets than the 345 
stable triads (p < 0.05, Wilcox test; Figure 4A; Table 1), supporting the neo/sub-functionalization 346 
hypothesis.  347 

We next examined whether the targets of a transcription factor may hold signatures of the 348 
evolutionary origin of that transcription factor. We hypothesized that a transcription factor is more 349 
likely to have targets that reside on the same genome as the transcription factor itself; e.g. GENIE3-350 
predicted targets for an A genome transcription factor will be enriched for A genome targets 351 
compared to B and D genome targets. We found no significant association between the genome of 352 
origin of the transcription factor and the genomes of its targets (Figure 4B). Likewise, we found no 353 
significant association between transcription factor genome and target genome when triads were 354 
assigned into their respective movement categories. For example, an A genome transcription factor 355 
from a Dynamic triad had similar numbers of GENIE3-predicted targets from each of the three 356 
genomes. (Supplementary Figure 3).  357 
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 358 

Figure 4: The effect of relative homoeolog expression variation on shared ratios. (A) There is a significant 359 
reduction in shared targets between homoeologs in dynamic triads compared to stable triads (Wilcox test, p = 360 
0.021). There is a near-significant decrease between the Mid 80 subset and the Dynamic triads (p = 0.051), and 361 
a slight non-significant decrease from Stable to Mid 80 triads (p = 0.21). (B) We found no evidence that 362 
transcription factors from a specific genome were more or less likely to have targets from the same genome 363 
(Two-sample Kolmogorov Smirnov test, FDR adjusted). 364 

GO-term enrichment of predicted targets suggests novel biological functions 365 

We next examined if we could use the GENIE3-predicted targets to gain a more general overview of 366 
functional trends within transcription factor families. Using the GO terms described in [2], we carried 367 
out a GO-term enrichment on the targets of individual transcription factor families (Supplementary 368 
File 2). To test the validity of this method, we first checked the predicted GO terms of the Heat Stress 369 
Factor (HSF) transcription factor family. Based on their known role in responding to heat and light 370 
stress [30], we expected to see GO terms highly enriched for heat and light stress responses. This was 371 
the case, suggesting that this approach can provide accurate insights into the large-scale functions of 372 
transcription factor families.  373 

We then identified enriched GO terms for the remaining 56 transcription factor families. Some 374 
families were enriched for few or no GO terms, and we found that this was typically the case for 375 
families with few members. We restricted our analysis, therefore, to the 34 transcription factor 376 
families with at least 30 members. In many cases, enriched GO terms supported known functions of 377 
transcription factor families. For example, the MADS_II family was enriched for, amongst other 378 
terms, floral organ identity (GO:0010093) which corresponds to their known role in flower patterning 379 
in wheat and other species [31]. The mTERF family was strongly enriched for chloroplast-related 380 
terms, corroborating their known role in organelle function [32, 33] while the WRKY family was 381 
highly enriched for stress-response GO terms [34-36].  382 

Beyond the expected enriched GO terms, we also identified some cases where highly significantly 383 
enriched GO terms may point towards a previously unknown function within that transcription factor 384 
family. For example, one of the more highly enriched GO terms for the C2C2-Dof family is positive 385 
gravitropism (GO:0009958). This, combined with other GO terms related to amyloplasts and auxin 386 
responses, suggests that members of the C2C2-Dof family may play a role in regulating the 387 
gravitropic growth of roots [37]. We also see that the TUB family, of Tubby-like transcription factors, 388 
is highly enriched in cell-cycle related GO terms. This includes specific terms involved in microtubule 389 
movement and spindle formation (GO:0007018 and GO:0051225) as well as in regulation of cell 390 
cycle progression and transition (GO:0010389, GO:0051726 and GO:0000911). Plant TUB proteins 391 
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contain an F-box domain, suggesting they may function in tandem with other F-box-containing 392 
proteins, such as SCF E3 ubiquitin ligases, which also regulate the cell cycle in plants [38]. 393 

The GENIE3 network is accessible through KnetMiner 394 

We have made the GENIE3 network available in the KnetMiner discovery platform for wheat 395 
(https://knetminer.rothamsted.ac.uk/) [39]. The top one million TF-target predictions were integrated 396 
onto the wheat genome-scale knowledge graph [16] as directed relations between genes (A regulates 397 
B). The interaction weight for each predicted relationship was also included in the network, where 398 
larger weights correspond to more strongly supported relationships. The data is accessible in 399 
conjunction with other information types (e.g. protein-protein interactions, literature co-occurrence, 400 
ontologies, homology, etc.) and can be searched through the KnetMiner web-app or web-services.  401 

KnetMiner can be searched using keywords, genes or genomic regions to identify connections 402 
between genes and hidden links to complex traits. Searching for “NAM-A1” returns two hits, 403 
TRAESCS6A02G108300 and TRAESCS6D02G096300, which correspond to NAM-A1 and its D-404 
genome homoeolog NAM-D1, respectively. Using the KnetMiner network, we can visualise the 405 
relationships between NAM-A1 and NAM-D1, seeing, for example, that they target each other in the 406 
GENIE3 network (Figure 5). Associated traits are also included in the network, linking NAM-A1 and 407 
NAM-D1 to “Grain Protein Content” (Figure 5). Links to orthologous genes in other species are also 408 
included in the network, such as the Arabidopsis thaliana orthologue ANAC018 (Figure 5).  409 

 410 

Figure 5: The KnetMiner network depicts connections with NAM-A1. The wheat transcription factors NAM-411 
A1 and its homoeolog NAM-D1 target each other in the GENIE3 network (purple arrows) and share some target 412 
genes (blue triangles) in common. The network also identifies traits associated to genes (green pentagons), such 413 
as “Protein Content” for NAM-A1, NAM-D1, and the A. thaliana orthologue ANAC018. The legend below the 414 
network describes the meaning of each shape in the network. Not all connections present in the KnetMiner 415 
network are depicted in the figure; only a subset are shown for clarity. 416 

 417 

Discussion 418 

Here we have shown that a GENIE3 network provides biologically-informative predictions of targets 419 
for transcription factors in polyploid wheat. We have used the network in conjunction with 420 
independent RNA-Seq datasets to identify a set of candidate senescence regulators. We have also 421 
shown the value of the network to analyse genome-wide patterns of homoeologous transcription 422 
factors and transcription factor families. 423 
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Re-analysis of an RNA-Seq dataset identifies a high-quality set of differentially expressed genes. 424 

In our analysis of the GENIE3 network, we used a previously published RNA-Seq dataset to validate 425 
its ability to predict the targets of a well characterised transcription factor, NAM-A1 [15]. In doing so, 426 
we needed to re-align the raw RNA-Seq reads to the most current transcriptome, RefSeqv1.1 [1]. 427 
After carrying out de novo pseudoalignment and differential expression analysis, we obtained a larger 428 
set of differentially expressed genes between the wild-type and mutant nam-a1 lines than the original 429 
study [14]. In part, this is likely due to the less strict cut-off used in our study (q < 0.05). In the 430 
original study [14], a combination of four statistical tests were used to reduce the number false 431 
positive discoveries. However, as our intention was not to reduce the rate of false positives, but rather 432 
that of false-negatives or incorrectly removed genes, we used a less stringent cut-off, based solely on 433 
adjusting the original q-values for false discovery rate. We found that the DEGs identified in Pearce et 434 
al. [14] were found throughout the de novo list of DEGs, suggesting that the cut off chosen was not 435 
overly generous (Supplementary Figure 1). We also closely recapitulated their findings in that our de 436 
novo DEGs were highly enriched for metal ion transport-related GO terms, indicating that the de novo 437 
DEGs are consistent with NAM-A1 function. These enrichment results also corroborate our 438 
understanding of NAM-A1 as a critical regulator of nutrient remobilisation during senescence. 439 

The GENIE3 network provides biologically relevant transcription factor - target relationships. 440 

Gene networks are increasingly used in plant genetics research as a way to establish relationships 441 
across large gene sets and for hypothesis-generation. Initial assessment of the biological relevance of 442 
these gene networks often rely on enrichment analyses using GO terms. These methods are useful in 443 
identifying trends within large gene sets, as we found when carrying out GO term enrichment of 444 
transcription factor families. The targets of families with known functions, such as the Heat Stress 445 
Factors, were enriched for the expected GO terms [30]. However, these enrichment analyses are 446 
limited by the information that is used to develop the GO terms themselves. Very few GO term 447 
annotations are supported by experimental evidence even in model species such as Arabidopsis 448 
thaliana [40]. GO terms associated to the RefSeqv1.0 transcriptome were based primarily on 449 
automated annotation and orthologues in other plant species, with over 96% of the GO terms assigned 450 
to genes based on inference from sequence orthology (ISO) [1]. As a result, while enrichment 451 
analyses with GO terms can provide useful information particularly with large-scale datasets, they 452 
must be combined with external data to validate their predictions.    453 

As a result, while the GO term enrichment analyses suggested that the network produced biologically 454 
relevant results, validation of the network required the use of experimentally-derived data. By using 455 
independent RNA-Seq datasets, which were not used in the creation of the GENIE3 network, we were 456 
able to show that the predictions made by the in silico network hold up under comparison to in vivo 457 
datasets. It is important to note, however, that the overlap between the predicted targets of NAM-A1 458 
and the differentially expressed genes from the RNA-Seq data is far from complete. At 12 DAA, the 459 
timepoint where NAM-A1 is thought to first start exerting its effect, only 12 genes are shared out of 79 460 
predicted genes and 866 differentially expressed genes. While this gives a shared ratio of 461 
approximately 15%, significantly higher than that expected by chance, the GENIE3 network and the 462 
differentially expressed genes do not contain identical targets. However, based on the differences in 463 
the datasets used, it is likely that a large portion of this discrepancy is due to the fact that the GENIE3 464 
network was derived from 850 distinct RNA-Seq samples, spanning different tissues, ages, stresses, 465 
and varieties, while the RNA-Seq dataset came from single timepoints taken from flag leaf tissue [1, 466 
14]. While NAM-A1 is expressed in the flag leaf during senescence, it is also expressed in the 467 
peduncle during senescence [2, 8], and at lower levels in various leaf, stem, and even spike tissues 468 
during development (Supplementary Figure 4). It’s possible that many, if not most, of the predicted 469 
targets from the GENIE3 network may be regulated or influenced in some way by NAM-A1, but not in 470 
the flag leaf and at the precise 12 DAA and 22 DAA timepoints captured in the independent RNA-Seq 471 
data. 472 
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The GENIE3 network can be used for hypothesis generation with large gene sets. 473 

The fact that any two random transcription factors share, on average, zero targets in common in the 474 
GENIE3 network highlights that the network is not overwhelmed by spurious connections between 475 
transcription factors and biologically irrelevant targets. The network is also not so conservative that 476 
transcription factors with similar functions share no targets in common, as is made clear by the more 477 
normally-distributed homoeologs (Figure 3A). Nevertheless, as most transcription factors do not share 478 
targets, this suggests that the original cut-off chosen for the network (1,000,000 connections) was 479 
appropriately stringent to avoid noisy, low-confidence connections.  480 

The presence of overlapping targets between transcription factors suggests that the transcription 481 
factors may be acting in similar pathways. However, it is important to recognise the limitations of the 482 
network, in particular that predicted targets of a transcription factor are not necessarily true targets. 483 
Therefore, integrating the GENIE3 network with other sources of regulatory information, such as 484 
RNA-Seq datasets as demonstrated here, can provide cumulative evidence towards new hypotheses 485 
and candidate genes. By combining the DEGs obtained from a nam-a1 mutant line and the GENIE3 486 
network, we have produced a set of candidate transcription factors which may act in the same or 487 
similar pathways as NAM-A1. We have then compared these candidates with an independent 488 
senescence time-course [3], highlighting six candidate genes which were identified through both 489 
methods and are good candidates for further exploration. Moving forwards, information generated 490 
from networks such as the GENIE3 will need to be validated functionally and in planta. Recently, 491 
NAM-A2, a previously uncharacterised member of the NAM family of transcription factors, was 492 
predicted to be involved in senescence based on expression and network data [3]. The function of this 493 
transcription factor was then validated using independent mutant TILLING lines [41] demonstrating 494 
the ability of the networks to predict biologically-relevant candidates.  495 

Homoeolog expression variation in dynamic triads may be indicative of functional divergence. 496 

Previous work showed that triads of homoeologs can display variable patterns of genome dominance 497 
across different tissues [2]. Triads with the most variable relative homoeolog expression patterns, 498 
‘Dynamic’ triads, were also found to have higher Ka/Ks values, suggesting they were under reduced 499 
selection pressure. It was proposed that the variation in relative expression patterns across tissues 500 
arises as a result of this relaxed selection pressure, facilitating both neo- and sub-functionalisation 501 
following polyploidy. We found that dynamic triads were less likely to share GENIE3 targets in 502 
common than stable triads, supporting the hypothesis that dynamic triads are in the process of 503 
diverging functionally (Figure 4B). However, we found no correlation between the genome of origin 504 
of the transcription factor and the target genomes in dynamic triads (Supplementary Figure 3).  505 

At what stage, then, did the targets of homoeologs in dynamic triads begin to diverge? These results 506 
may suggest that the variation in expression seen between the homoeologs arose following 507 
polyploidisation, as there is no bias towards the genome of origin. However, we do not know enough 508 
about the behaviour of transcription factors following polyploidisation to draw clear conclusions. For 509 
example, we do not know to what extent transcription factors gain the ability to regulate 510 
homoeologous genes on other genomes after hybridisation. The application of methods such as ChIP-511 
Seq [42], DAP-Seq [43], and large-scale yeast two-hybrid interaction screens [44] to transcription 512 
factors in diploid and polyploid wheat will provide experimental data on homoeologous transcription 513 
factor interactions and binding preferences. Until these datasets become available it is premature to 514 
draw conclusions on the evolutionary origins of transcription factor homoeolog functional divergence. 515 
Nevertheless, genome-wide analyses of datasets such as the GENIE3 network and the expression 516 
datasets on expVIP have pointed to the dynamic triads as a source of genetic functional variation [2, 517 
8]. 518 

 519 
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Conclusions 520 

Using publicly available datasets, we have shown that the wheat GENIE3 network provides 521 
biologically-relevant information that can be used to guide hypothesis generation in wheat. The utility 522 
of the network lies particularly in enrichment analyses of larger gene sets and in integration with other 523 
datasets, such as independent RNA-Seq experiments, for candidate gene selection. New germplasm 524 
resources in wheat, such as the in silico TILLING resource [41], can be rapidly leveraged for 525 
functional characterisation of candidate genes in planta. Transgenic approaches such as CRISPR [45] 526 
and virus-induced gene silencing (VIGS) [46] can now be used in wheat to validate gene function. 527 
The GENIE3 network can be accessed through the KnetMiner web application and using R scripts 528 
available from https://github.com/Uauy-Lab/GENIE3_scripts. We predict that gene regulatory 529 
networks such as GENIE3 will play an increasingly important role in wheat genetics as more 530 
transcriptomic datasets become publicly available. 531 
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