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Abstract 

A major limitation of phenotype prediction in genetics is the ability to model the complexities of                

genetic variation when sample sizes are small. This is especially true in pharmacogenetics, a              

highly translational yet data-limited subfield of genetics. Drug metabolism is a critical facet of              

pharmacogenetics and can have consequences for drug safety and efficacy. CYP2D6 is an             
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important enzyme, metabolizing more than 25% of clinically used drugs. It is highly polymorphic              

which leads to a heterogeneous response to drugs among the population. We present             

Hubble2D6, a set of deep learning models for predicting metabolic activity of CYP2D6 genotype              

and predicting functional classification of CYP2D6 haplotypes. We train our models on 249             

samples, addressing data scarcity by pretraining on simulated data, weakly supervised           

learning, and using a functional representation of genetic variants. We validate our models             

using in vitro data for haplotypes previously unseen by the model and explain 38% of the                

variance with the genotype-based activity predictor and predict haplotype function with an AUC             

of 0.85. We demonstrate a procedure to build a computational model of a complex gene using                

primarily simulated and unlabeled data which can then be used to make functional predictions              

about novel genetic variation, and present a model that may be of clinical significance for an                

important application of genetics.  

Introduction  

Pharmacogenomics has emerged as one of the most clinically actionable subfields of modern             

genetics. With proper use, pharmacogenomics can offer clinical guidance to clinicians to            

provide personalized drug selection and dosing to patients based on genomic markers that             

predict how they will respond to drugs. The Clinical Pharmacogenomics Implementation           

Consortium (CPIC) has issued clinical guidelines for 47 drugs. These guidelines may suggest             

an alternate dose or a different drug altogether based on an individual's genetics1,2. Studies              

have shown that as many as 99% of individuals carry at least one actionable pharmacogenetic               

variant that could lead to prescribing changes in at least 1 medication 3–5. 
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Cytochrome P450 family 2, subfamily D, polypeptide 6 (CYP2D6), is one of the most important               

pharmacogenes. The protein, a hepatic enzyme dimer localized in the endoplasmic reticulum,            

metabolizes more than 25% of clinically used drugs including antidepressants, antipsychotics,           

opioids, antiemetics, antiarrhythmics, β-blockers, and cancer chemotherapeutics6,7. In Nordic         

European countries as many as 16% of inhabitants are on at least one drug metabolized by                

CYP2D6 5. 

Adding to its clinical importance, CYP2D6 is highly polymorphic8. More than 130 haplotypes             

(known as star alleles) comprised of single nucleotide variants (SNVs), insertions and deletions             

(INDELs), and structural variants (SVs) have been discovered and catalogued in           

Pharmacogene Variation Consortium (PharmVar; www.pharmvar.org), many of which are         

known to alter functional activity9,10. Levels of enzymatic activity and gene expression are             

influenced by changes to the DNA in the CYP2D6 locus. Individuals are typically broken into               

one of four metabolizer classes that define CYP2D6 metabolic phenotypes: normal (NM),            

intermediate (IM), poor (PM), and ultrarapid metabolizers (UM). Frequency of metabolizer           

classes varies widely among global populations; PM range from 0.5% to 5.4%, IM range from               

2.8% to 11%, and UM range from 1.4% to 21.2%11. 

CYP2D6 is also prone to structural variation, which can both increase and decrease function 12.              

Copy number variants and hybridizations with the pseudogene CYP2D7 are observed. The            

Estonian Biobank study found that 4.1% of the participants had a copy number aberration 5. In               

addition to CYP2D6, the locus contains two non-functional pseudogenes, CYP2D7 and           

CYP2D8. CYP2D6 and CYP2D7 have a homologous repetitive region downstream which leads            

to gene hybridizations as a result of unequal recombination. Approximately 2% of individuals             

harbor a CYP2D6-2D7 hybrid tandem arrangement which negatively impacts enzymatic          
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function 13. Structural variation in CYP2D6 has strong effects on phenotype: gene duplications of             

functional haplotypes can lead to an individual being an UM, and CYP2D6-2D7 hybridizations             

lead to a non-functional copy of the gene which decreases overall metabolic activity. Structural              

variants have been shown to explain 5% of the variance in metabolic activity of CYP2D614. 

Despite its highly polymorphic nature, CYP2D6 is one of the most clinically actionable             

pharmacogenes. Clinical guidelines providing dosage recommendations for different        

metabolizer classes have been published by CPIC for drugs that are metabolized by CYP2D6.              

Among the drugs with guidances are ones that are frequently prescribed, including opioids and              

antidepressants. Following the guidelines for these drugs could improve patient outcomes by            

decreasing adverse effects or increasing efficacy. It has been suggested that using            

pharmacogenetics guided opioid therapy could be part of a solution for combating the opioid              

epidemic15. 

Pharmacogenetic dosing guidances presume that the clinician has access to the patient’s            

CYP2D6 genotype and that the resulting phenotype can be correctly predicted. There are             

previous efforts to predict CYP2D6 function of haplotypes, the best known is the activity score               

system (AS)16. The AS works by assigning a value to each haplotype (0 for no function alleles,                 

0.5 for decreased function, and 1 for normal function) then summing the scores of all CYP2D6                

star alleles observed in an individual’s genome. The resulting AS for the person’s genotype is               

used to determine the CYP2D6 phenotype. AS value assignment for the haplotypes relies             

heavily on the manual curation of known star alleles through a review of the literature. Most                

often, in vitro experiments and in vivo clinical outcomes are used to make a determination of                

star allele function. Several tools exist to determine star alleles from sequence data 17–19. For              
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example, the tools Astrolabe and Stargazer, identifies patterns of SNVs and SVs in variant              

calling and alignment data and maps them to star alleles. 

Over the past 11 years the AS has demonstrated clinical utility and gained acceptance as a tool                 

to determine the phenotype from genotype, however, it has several limitations as appreciable             

variance exists within a given AS group 20. A number of genetic factors have been proposed to                

explain the limited predictive ability of the AS. (1) Substrate specific effects make assigning a               

single score to each star allele difficult21. (2) There are variants that contribute to phenotype that                

have not yet been discovered, published, catalogued and assigned a star allele, so cannot be               

considered by the AS. (3) Star alleles are assigned a function by gene experts based on in vivo                  

and in vitro evidence in order to be used to predict phenotype. Though computational methods               

could be used to predict function based on individual variants, to date no method to predict                

function for a haplotype has been embraced by the clinical community. However, there are              

many star alleles with conflicting, little, or no evidence of functional status in the published               

literature so function cannot be manually assigned. In fact, there are more than 57 star alleles                

in PharmVar with unknown function.  

Any system that depends on star alleles may also have limited utility in diverse populations               

which have not been well studied. Since star allele definitions depend on what is submitted to                

and catalogued by PharmVar, bias in the ethnic populations represented by sequencing and             

genotyping studies will lead to bias in the frequencies of star alleles found in those populations.                

Indeed, this phenomenon has been documented in the clinical utility of genetic risk scores22.              

Many pharmacogenes have variants found at different frequencies depending on ancestry.           

Issues of ethnic bias in published studies, and therefore the catalogued star alleles, could be               

mitigated with a model that did not rely on curated literature and submitted haplotypes. 
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There exists a need to screen novel genotypes and haplotypes in silico in order to assess                

function. A computational approach to predict metabolic function would allow for screening of             

submitted haplotypes for which no in vitro testing has been done and provide insight to function                

which could be clinically useful for understudied populations where variation has not been             

well-studied or individuals with rare variations. An ideal computational approach would           

comprise the following items: 

● It would be able to consider any possible coding variation in CYP2D6, such that rare or                

novel variants could be assessed as well as known variants. 

● It would  consider non-coding regions. 

● It would provide substrate specific predictions. 

● It would include information about structural variants. 

No methods exist for predicting CYP2D6 phenotype that perform all of these tasks. Methods for               

predicting variant deleteriousness are abundant, but these methods are often developed to be             

general purpose throughout the genome. Even when gene-specific methods exist, these           

methods are focused on prediction of the impact of single variants on function, rather than a set                 

of variants in a genotype on organism-level function. CYP2D6 is a complex gene with complex               

haplotypes and consequential genotypes and an optimal framework for predicting function           

should consider all these factors in unison. 

Deep learning has emerged as a powerful tool that has revolutionized computer vision and has               

been used successfully in genetics23. It is most frequently applied in functional genetics for the               

prediction of motifs, such as transcription factor binding sites24. The power of deep learning in               

computer vision stems from the ability to allow the network to learn features that are important                

for prediction. This is primarily done using convolutional neural networks (CNNs). CNNs can             
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learn spatial, structural, and sequential features, all of which are key features of the genome.               

CNNs have not been used for phenotype prediction, likely due to very limited data and the                

polygenic nature of most phenotypes. Despite the decline in cost of DNA sequencing and rise               

of large biobanks, genetic studies frequently suffer from small sample size. This is especially              

true in pharmacogenetics where identifying and phenotyping patients can be challenging. While            

deep learning may be an attractive solution for many problems, they require large amounts of               

data to successfully learn a new task, and thus our ability to apply neural networks to small data                  

sets with little labeled data is limited.  

We have developed a system, Hubble2D6, that predicts CYP2D6 genotype and haplotype            

function. We present two models: a genotype-based activity predictor for predicting fine-grained            

drug metabolism of genotypes, and a haplotype classifier which can be used to screen              

haplotypes of unknown function. We demonstrate a method to build a computational model of a               

highly polymorphic gene with little labeled data by using simulations and unlabeled data, both              

labeled with the existing gold standard method. We show that creating a neural network model               

that emulates the output of the gold standard method has the flexibility to make predictions               

about previously unseen variants. We generate predictions for 57 CYP2D6 star alleles of             

unknown function. We validate both models using in vitro studies from literature of 46 star               

alleles not previously seen by the models. We additionally perform in silico mutagenesis to              

assess the impact of every possible SNV within the CYP2D6 locus. 
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Methods 

Data 

To train the genotype-based activity predictor we used two data sources, liver microsome data              

with measured metabolic activity and whole genome sequencing (WGS) without CYP2D6           

metabolic measurements. We used 314 liver microsome samples from a prior study to train our               

model 14. The liver microsome data was collected from two sites, 249 samples from St. Jude’s               

Children’s Research Hospital (SJCRH), and 65 samples from University of Washington (UW).            

Sequencing data was from the PGRNseq panel 25. Metabolic activity was measured using two             

substrates: dextromethorphan and metoprolol. Additional data from 475 deeply sequenced          

genomes were used for weakly supervised learning from a separate WGS study26. Sequences             

from both studies had been aligned to hg19 and provided variant data in variant call format                

(VCF) files. Variants from WGS were extracted for the CYP2D6 capture window on the              

PGRNseq panel. Star alleles, CYP2D6 structural variants, and ASs were determined for all             

samples using Stargazer17. We removed 29 samples from the WGS data because they             

contained star alleles with unknown function. 

Data Representation 

We use a functional representation of genetic variants as input for our deep learning models               

(Fig. 1D). Variants are annotated with functional annotations and converted into a vector             

encoding of the nucleotide and its corresponding annotations. We fill in reference calls in the               
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VCFs to include every base in the capture window in order to represent the full gene sequence                 

and annotate every nucleotide in the window (22:42521567-42528984, hg19). 

We use annotations that are known to be important for protein function and gene expression.               

We use the following nine binarized annotations:  

1. If the variant is in a coding region, as defined by RefSeq 27. 

2. If it is rare in the population. Defined as allele frequency among all populations in 

gnoMAD < 0.05. 

3. If it is deleterious.  If it is a coding variant we use the ADME optimized framework 

defined by Zhou et al.  If it is non-coding we use a majority vote of CADD, DANN, and 

FATHMM28–31.  LOFTEE predictions of deleteriousness supercede the other methods, if 

available 32. 

4. If it is an INDEL of any length. INDELs are reduced to the first nucleotide and given the 

INDEL annotation, so as to keep the length of each sequence the same. 

5. If it is in a methylation mark, as defined by UCSC Genome Browser tracks 

wgEncodeHaibMethyl450Gm12878SitesRep1 and 

wgEncodeHaibMethylRrbsGm12878HaibSitesRep1 33,34. 

6. If it is in a DNase hypersensitivity site. UCSC Genome Browser track 

wgEncodeAwgDnaseMasterSites. 

7. If it is in a transcription factor binding site. UCSC Genome Browser tracks tfbsConsSites 

and wgEncodeRegTfbsClusteredV3. 

8. If it is a known CYP2D6 expression quantitative trait loci (eQTL) for any tissue in gTEX 

v6 35.  
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9. If it codes for a residue in the CYP2D6 active site where the substrate binds to the 

protein 36. 

Sequences are annotated using Annovar for all annotations except LOFTEE, which is            

performed using VEP37,38. 

The annotated VCFs are divided into haplotypes for each sample and each haplotype sequence              

is one-hot encoded. Phasing of haplotypes is not performed. The resulting haplotype matrices             

are concatenated together with a zero matrix in between of length 50.  

Model Building 

Activity Predictor 

Training 

We developed a genotype-based activity predictor to predict the measured metabolic activity of             

liver microsomes for dextromethorphan and metoprolol substrates (Fig 1A). The model takes as             

input three items: (1) a genotype matrix of the full gene sequence with a functional               

representation, (2) a vector of structural variation (number of gene copies and counts of gene               

hybridization events), and (3) a binary variable indicating substrate (metoprolol or           

dextromethorphan). The model outputs a continuous variable as a prediction of metabolic            

activity. The model is a CNN that follows the basset architecture, with three convolutional layers               

and two fully connected layers39. Models were trained using Keras v2.2.4 with a Tensorflow              

v1.13.0 backend 40,41. 
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The genotype-based activity predictor was pretrained on simulated CYP2D6 data (Fig 1C).            

Simulations were done by randomly selecting a pair of CYP2D6 star alleles with known function               

(normal, decreased, or no function haplotypes) that do not have structural variants (neither             

hybridizations nor copy numbers are included) and constructing haplotypes with the variants            

associated with the star alleles. To introduce additional diverse training data, alternate alleles             

were sampled for variant sites not associated with any star allele following a uniform distribution               

with the probability of an alternate allele occurring equal to the population level alternate allele               

frequency published in gnoMAD42. We selected 20,000 genotypes of each AS (0, 0.5, 1, 1.5, 2),                

for a total of 100,000 simulated samples used in training, and an additional 20,000 total               

genotypes to use as a test set. No samples with an AS above 2 were selected because                 

structural variants were not included in the pretraining of the model. The model was then               

trained to classify each genotype as its corresponding AS. After pretraining, the weights from              

the convolutional layers were transferred to a new network with the fully connected layers              

randomly initialized (Fig. 1F).  

The model was then trained to predict the measured metabolic activity of the two substrates for                

each sample. Structural variants were determined by Stargazer and included in the model as a               

count of the total number of CYP2D6 copies identified in the sample and a count of the                 

hybridization events. These counts are appended to the vector that is output from the final               

convolutional layer so that they are included as input to the fully connected layers. We trained                

models through 5-fold cross validation, training on three folds, performing model selection using             

the fourth fold, and testing the model on the final fold. Data from SJCRH was used for training,                  

and data from UW was used as a held out validation set. For each fold as many as 159                   

samples were included for training, 53 for validation, and 53 for test, and all 65 samples from                 
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UW were held out for final validation. Data for both substrates is pooled together in the training                 

set, so samples with measurements for both substrates are represented twice.  

Weakly Supervised Learning 

The training data were augmented with unlabeled WGS data in order to perform weakly              

supervised learning, specifically inaccurate supervision 43. Labels were generated for the WGS            

data by training a linear regression model to predict the measured metabolic activity from the               

AS for SJCRH samples based on the three training folds, then predicting the metabolic activity               

of each WGS sample for the two substrates (Fig 1D). The data was then pooled with the                 

labeled data for training of the genotype-based activity predictor. We train an ensemble of ten               

models for each fold, then take the mean of the ten models as the final prediction.  

Model Evaluation 

Models from each fold are evaluated using the coefficient of determination (R2). We calculate              

the mean R2 of the test folds and the mean R2 of the models from each fold on the held out UW                      

data. 

As a baseline, we train a linear regression model to predict metabolic activity of both substrates                

from the AS. A linear model is fit using only the AS as a feature. A coefficient is learned for                    

each AS bin, as in the following equation.  
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The highest AS observed in the training data is 3, hence the linear model learns coefficients up                 

to an AS of 3. We train models using 5-fold cross-validation, with the same sample splits used                 

in the genotype-based activity predictor. 

In silico  mutagenesis 

We perform in silico mutagenesis to interpret the model weights for each variant and the               

model’s ability to predict known deleterious variants. We create a new sequence corresponding             

to each nucleotide position in the CYP2D6 capture window and each its possible alternate              

alleles, yielding 22,257 sequences. The generated sequences are homozygous for the           

alternate allele. The altered sequences are then passed through the genotype-based activity            

predictor and metabolic activity is predicted. We calculate the percent of baseline change for              

each variant sequence by dividing the predicted activity by the predicted activity for the              

reference sequence. 

Star Allele Functional Classifier 

Training 

We train a star allele classifier by fine-tuning the genotype-based activity predictor with an              

added sigmoid activation layer to classify sequences as “normal function” or “reduced function”.             

The model takes as input the genotype matrix and outputs the functional classification. We              

define reduced function as either “no function” or “decreased function” alleles. Increased            

function alleles are not included here, because presently increased function alleles are only             

defined by having multiple copies of a functional allele and copy number variation is not input                

into the star allele classifier. 
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We fine-tune the model on sequences constructed based on star allele definitions in PharmVar.              

We construct sequences for all known star alleles, then retrain the model using only star alleles                

and their suballeles that were observed in either the SJCRH liverbank or WGS data. The               

training set contains 15 star alleles, with 101 total suballeles.  

Evaluation 

We evaluate the model by predicting the function of the remaining 25 star alleles with known                

function that were excluded from the training process, and predict the function of 57 star alleles                

of unknown or uncertain function. We calculate the area under the receiver operator             

characteristic curve for the training and test groups. 

We interpret the weights applied to each variant in the star alleles by the star allele classifier                 

using DeepLIFT44. DeepLIFT compares the activiations of a neural network for a given sample              

against a reference sample, and outputs importance scores for each input feature. We run              

DeepLIFT on each star allele sequence with a CYP2D6*1 reference sequence. This yields             

importance scores for each variant in each star allele that are different from the variants in                

CYP2D6*1.  

Literature Validation 

We validate the genotype-based activity predictor and star allele classifier using in vitro data              

from literature. We identified two sets of studies to use for validation: (1) a functional               

characterization of 49 CYP2D6 star alleles performed using three substrates, and (2) eight in              

vitro studies of eleven CYP2D6 star alleles discovered in Han Chinese subjects using ten              

substrates45–54. We exclude fourteen star alleles which were found in our training data, and              

evaluate on measurements for 46 star alleles that were not in our training data. We use the                 

14 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684357doi: bioRxiv preprint 

https://paperpile.com/c/iEwVQG/0ixwH
https://paperpile.com/c/iEwVQG/34rIe+eTFxE+WCh0q+68uHp+PKNsA+d4siU+DCjGN+gfQiB+2MxU1+5jWv9
https://doi.org/10.1101/684357
http://creativecommons.org/licenses/by/4.0/


 

average metabolic activity (as a percent of CYP2D6*1 activity) across all substrates included in              

the study for each of the star alleles as the measured metabolic activity. 

We construct sequences containing the variants from each star allele, so that the genotype of               

each construct is homozygous for the star allele being tested (e.g. *24/*24). We predict              

metabolic activity of dextromethorphan using the genotype-based activity predictor and compare           

the prediction against the mean metabolic activity for each in vitro tested star allele.              

Additionally, we predict normal vs reduced function using the star allele classifier. To format the               

prediction as a classification problem, we define star alleles with an activity greater than 50% of                

CYP2D6*1 activity as “normal” and those with less than 50% as “reduced”.  

Methods Evaluation 

We analyze the added components of our model by training a base model with one subtracted                

component at a time. We tested the effect of model pretraining, weakly supervised learning,              

and the functional variant representation. We calculate learning curves for models trained by             

dropping out one component at a time. We also calculate learning curves for models trained               

with all components and no components. To test the effect of pretraining the convolutional              

layers were randomly initialized rather than transferred pretrained model. To test the effect of              

weakly supervised learning, the model was trained using only liver microsome samples. To test              

the effect of the functional variant representation we removed the rows from the input matrix               

corresponding to the added annotations. We compare each learning curve to the learning             

curves of the full model and a model trained with no added components (no pretraining, no                

weakly supervised learning, and no functional variant representation). 
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We evaluate the contribution of the annotations included in the functional variant representation             

by training new models by training a new model with a single row removed for each annotation,                 

resulting in thirteen models (four nucleotides, nine annotations). For each annotation, we            

calculate the percent decrease in R2 in the resulting model. 

Results 

Activity Predictor 

Predictions from the genotype-based activity predictor for each substrate and each collection            

site are shown in Fig. 2. A summary of the results compared to the AS is shown in Table 1.                    

The genotype-based activity predictor performed similarly to the AS, with an R2 of 0.71 for the                

dextromethorphan predictions on the UW samples, similar to 0.69 for the AS. Notably, the R2 of                

the metoprolol predictions by the genotype-based activity predictor was lower than that of the              

AS for both collection sites. The pretrained model trained on simulated data predicted the AS of                

20,000 held out simulations with 100% accuracy. 

We perform in silico mutagenesis to interpret the model weights for different types of variants               

and the model’s ability to predict known deleterious variants. The percent change in predicted              

activity from baseline for each variant can be seen in Figure 3. We show that the model has                  

learned to predict variants known to be damaging to metabolic activity, even those that have not                

been previously seen by the model. Variants known to be deleterious in existing star alleles are                

annotated in Fig. 3D. Of the sixteen deleterious star allele associated variants the model had               

only previously seen four but predicts them to have a substantial negative impact on activity. 
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Star Allele Classifier 

We trained a classification model to classify star alleles as normal function or reduced function               

by retraining the genotype-based activity predictor. In Figure 4 we show predictions for each              

star allele. We differentiate between star alleles that were in the training data, those that were                

not, and star alleles of unknown function. For both the training and test set we achieve an                 

accuracy of 100% and an AUC of 1 in predicting normal vs reduced function. 

We interpret the importance of the variants in each star allele to the resulting prediction of the                 

star allele classifier using DeepLIFT using CYP2D6*1 as a background (Fig. 5). Negative             

scores indicate variants that drove the prediction towards reduced function compared to the             

background, while positive scores indicate variants the model positively influence the prediction            

in relation to the background. We show that for haplotypes with known causal variants              

DeepLIFT attributes the largest weights to the causal variants (e.g. *4, *10, *19).  

We predicted function of all 57 star alleles with unknown function and find that we predict 31 of                  

them to be reduced function and 26 to be normal function (Fig. 4). Of the star alleles predicted                  

to be reduced function, four have variants that would likely be loss-of-function variants such as               

frameshift INDELs (e.g. *124) or stop gain variants (e.g. *81, *120, *129). 

Literature Validation 

We sought validation of our model through variants tested in vitro and published in literature.               

We identified one study that had published in vitro data for 49 star alleles with three substrates,                 

and a set of eight papers that tested eleven star alleles identified in the Han Chinese population                 

with ten substrates. We excluded star alleles that were present in our training data, leaving 46                
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star alleles for validation that had never been seen before by our models. We ran both the                 

genotype-based activity predictor and the star allele classifier. We compare the           

dextromethorphan activity predictions from the genotype-based activity predictor and find that           

the predictions correlate with the measured data with an R2 of 0.38. Using a cutoff of 50% of                  

CYP2D6*1 activity for normal vs reduced function, the star allele classifier achieves an AUC of               

0.85 (Figure 5). 

Method Evaluation 

We analyzed the contribution of each of the techniques used in our training process, namely               

pretraining, weakly supervised learning, and the functional variant representation (Fig. 7A).           

Removing the function variant representation leads to the greatest increase in mean squared             

error, followed by weakly supervised learning, then pretraining. Combining all methods and            

evaluating the learning curve shows that the mean squared error (MSE) plateaus after 100              

training samples. In the model with all labeled samples included, removing all components lead              

to a 36% increase in MSE, removing only the functional representation increased MSE by 22%,               

weakly supervised learning 13%, and pretraining 6%. 

We evaluate the contribution of the selected annotations to the functional variant representation             

by creating new models that leave a single annotation out and calculating the percent decrease               

in R2 (Fig 7B). The “deleterious” annotation leads to the greatest decrease in R2 (5.5%), and the                 

“rare” annotation affects the R2 the least (0.6% decrease).  
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Discussion 

Here we present Hubble2D6, a deep learning framework for the prediction of drug metabolic              

function of CYP2D6. We have constructed two models: 1) a genotype-based activity predictor             

that predicts substrate specific CYP2D6 metabolic activity for CYP2D6 genotypes, and 2) a             

classification model that predicts whether a CYP2D6 haplotype will be of normal function or              

reduced function. The two models serve two different purposes. The genotype-based activity            

predictor predicts a continuous enzymatic activity for combinations of haplotypes for either of             

the two substrates the model was trained on, dextromethorphan and metoprolol. The star allele              

classifier outputs normal vs reduced functional predictions of haplotypes which may be useful in              

the screening of haplotypes of unknown function. Both models take in the full CYP2D6 gene               

sequence, including exons, introns, and the regions immediately upstream and downstream of            

the gene, as well as information about structural variants.  

We devised a scheme for training a deep learning model to predict genotype and haplotype               

function with very little data. A frequent problem in genetic studies is limited availability of               

labeled data for making phenotype predictions and inferences about functional impact of            

variants, and deep learning models normally require vast amounts of data. We exploit the              

availability of a well performing baseline method for predicting CYP2D6 function, the AS. The              

AS is a thoughtfully devised tool that performs well in predicting the function of CYP2D6               

genotype. We utilize the AS at multiple points in our method. We pretrain the network on                

simulated data labeled with the AS which yields a network with the AS rules encoded, then,                

while fine tuning the model we include unlabeled CYP2D6 sequences from WGS data labeled              

using the AS. We show that by pretraining a network on simulated data and including labeled                
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using the AS, we can train a CNN that performs as well as the human curated baseline with the                   

ability to assess novel sequences for which functional assignments do not yet exist. Pretraining              

provides the neural network with more than 300x the amount of data available in the training                

set, allowing it to learn properties of the genes important for predicting activity. Related              

approaches have been shown to be effective in computer vision 55,56. Similar pretraining and             

weakly supervised learning approaches may be used for other genes where a baseline method              

exists for predicting function.  

Our approach allows for the input of arbitrary sequences and therefore can make predictions              

about the function of all possible variants and combinations of variants in CYP2D6. Although              

our genotype-based activity predictor does not outperform the AS in terms of variance             

explained, it provides a huge advantage because it allows for predictions of novel variants and               

haplotypes. The output from the genotype-based activity predictor for the star alleles derived             

from literature studies had an R2 of only 0.38, but since many of these had unknown function the                  

AS would not have assigned a functional prediction. New variants and haplotypes are             

frequently being discovered, so the need to assess all variants and combinations of variants is               

an important component of the model. We demonstrate this capability through in silico             

mutagenesis, mutating every base in the gene sequence to its alternate allele (Fig. 3), and by                

predicting the function of all star alleles of unknown function (Fig. 4).  

We predicted the function of all 57 star alleles with unknown function using the star allele                

classifier and found that 31 of them are predicted to be reduced function alleles. Although the                

function remains unknown, four of the unknown star alleles harbor loss-of-function variants that             

would typically lead to a non-functional protein. Functional predictions for these star alleles with              

unknown function may increase the clinical utility of the AS. In silico prediction of haplotype               
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function may be able to provide additional guidance to those wishing to use the AS who                

encounter star alleles of unknown function. 

We evaluate our models on in vitro data for haplotypes that have were previously unseen by the                 

model from two existing studies. Many of these are haplotypes for which no official functional               

designation is available on PharmVar. Additional variability may come from study design            

parameters, such as the expression system, rather than a genetic contribution to changes in              

haplotype function. Finally, the haplotypes from Qian et al are discovered in Han Chinese              

population and our model was developed on samples that are primarily from donors with              

European ancestry. Despite these challenges, we find that the star allele classifier performs             

moderately well in assessing the function of the measured haplotypes. In order to assess the               

performance of the classification model we set a cutoff of 50% of wild-type activity for               

determining “normal” vs “reduced” function. Although there is no official cutoff between normal             

and decreased function alleles we used this cutoff in order to assess model performance. We               

find that the model performs well differentiating between normal and reduced function alleles,             

with an AUC of 0.84. An ideal model would predict normal, decreased, and no function labels                

for haplotypes, however, we were unable to train a model that had high accuracy differentiating               

between the three functional groups. This is likely due to the relatively small number of               

examples of decreased function alleles in the training set. Additionally, there may be alleles              

with increased function, but there are presently no star alleles with increased function that is not                

caused by increased copy number. Differentiating between normal function and reduced           

function may be sufficient for triaging star alleles and giving an indication of function. 

We examined the features that most contribute to prediction of phenotype. In the star alleles               

discovered by Qian et al there are three star alleles containing nucleotide polymorphisms             
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(100C>T) that lead to a P34S amino acid change (*87, *94, *95). This variant is frequently                

found among CYP2D6 star alleles and is the core SNV of *10, which is a decreased function                 

star allele. All three P34S containing star alleles are predicted to be of reduced function by the                 

star allele classifier, however *94 has the highest average activity among all Qian et al star                

alleles with an average activity of 89% of wild type (Fig. 6A). DeepLIFT reveals that the model                 

assigned a negative weight to the P34S variant in *94, which likely lead to its classification as                 

reduced function (Fig. 5). This demonstrates that the model has learned to predict all P34S               

containing star alleles as reduced function. 

We show that the star allele classifier can be interpreted, which may enhance clinical utility (Fig.                

6). Using DeepLIFT, we calculate importance scores for each variant in the star allele which               

provides insight to which variants the model considered to have the biggest impact on function.               

For example, we see that DeepLIFT assigns the largest negative scores to the splicing defect in                

*4 and the frameshift INDEL in *19. This functionality may be critical when evaluating the               

accuracy of the predictions.  

There are several limitations to our CYP2D6 predictive models. First, although we have worked              

to overcome the small amount of labeled data, the minimal data we used could lead to a model                  

that has not learned all possible effects of variants on enzymatic function. The data is limited by                 

natural variation that is observed in the human population, and even further limited to the               

samples used in this study which are predominantly European. Mutagenesis methods could            

yield richer data to learn a more robust model of metabolic activity57. Second, since we only                

consider a narrow window around CYP2D6 we miss opportunities for more distal effects on              

gene expression, such as the long-range enhancer associated with the *2 haplotype 58–60. These             

distal regulatory effects are not captured by the current model, and thus our ability to fully                
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explain the variance in enzymatic activity is limited to the capture region on the PGRNseq               

platform. Third, although we find that the inclusion of structural variants does improve             

prediction, we believe this could be further improved. The copy number and occurrence of              

hybridization events that we include in the model is not associated with either of the input                

haplotypes. If we were able to assign copy number or fusion events with phased data this could                 

improve the predictions in the genotype-based activity predictor. Fourth, samples were not            

phased prior to being input to the model. Phased input was tested but performed worse than                

inputting unphased data. Phase should be important for predicting function, so this finding is              

counterintuitive. Finally, there are factors that affect CYP2D6 metabolic activity outside the            

gene sequence 61–63.  

In conclusion, we have created two models for the prediction of CYP2D6 metabolic activity from               

sequence data that could expand our ability to predict metabolic activity from sequence. Our              

approach has a variety of unique features, which include pretraining a convolutional neural             

network on simulated sequence data, weakly supervised learning on unlabeled data, and a             

functional representation of genetic data that includes annotations. These methods could be            

applied to other genes for which single gene prediction models would be useful. We envision               

that our predictions about CYP2D6 haplotype function may be used to triage star alleles for               

which in vitro testing has not yet been performed.  
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Figure 1. Prediction workflow and model components. Hubble comprises two predictive models,            
a genotype-based activity predictor (A), and a haplotype classifier (B). We utilize three methods              
to address the challenge of data scarcity. First, we pretrain the model using simulated data (C),                
second we use weakly supervised learning to enhance our training data (D), and third, we use a                 
functional variant representation, where each variant is represented as a vector of its nucleotide              
and annotations (E). To train the genotype-based activity predictor, we transfer the            
convolutional layers from the pretrained model to a new model and train it to predict the                
measured metabolic activity of liver microsomes (F, top). Then, to develop the haplotype             
classifier we add a sigmoid activation to the genotype-based activity predictor and fine-tune the              
model on simulated star allele sequences to predict normal function or reduced function (either              
decreased or no function alleles), (F, bottom).  
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Figure 2. Metabolic activity predictions for the genotype-based activity predictor for each of the 
two substrates for samples from both liver banks.  The genotype-based activity predictor was 
trained on data from SJCRH liverbank through 5-fold cross-validation and evaluated on 
samples from the UW liverbank.  The top row shows predictions for the held out test for each of 
the five folds, the bottom row shows predictions for the samples from the UW liverbank.  The 
left column shows predictions for dextromethorphan metabolism, the right column shows 
predictions for metoprolol metabolism.  The colors indicate the AS for each sample.  
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Figure 3. Figure 3. In silico mutagenesis of CYP2D6. In order to interpret the model we mutate                 
every base in CYP2D6 to each possible alternate allele, yielding 21,000 sequences each with a               
SNV from the reference sequence. Each subplot here shows the same data, with the x-axis               
indicating the location of the SNV, and the y-axis indicating the predicted change in activity from                
wild type. The top left plot shows exons colored in red and noncoding variants colored in                
yellow. The top right plot highlights all variants that were observed in the training data in blue,                 
variants not previously seen by the model are in gray. The bottom left plot displays variants in                 
orange that have been observed in gnoMAD, previously unobserved variants are shown in gray.              
The bottom right plot shows variants that are in existing star alleles in magenta, with several of                 
the known loss-of-function amino acid changes annotated. Variants not in existing star alleles             
are shown in gray. 
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Figure 4 Star allele classifier predictions.  Here we show the scores output from the star allele 
classifier for each star allele sequence.  Star alleles are shown along the y-axis, with boxes 
differentiating whether the star allele was in the training set, the test set, or if it is of unknown 
function.  Along the x-axis is the score for each star allele.  Box plots are shown for star alleles 
with more than one sub allele.  Scores greater than 0.5 correspond to predictions of normal 
function, and a score less than 0.5 indicates a prediction of reduced function.  Star alleles are 
sorted by the median score from the model.  
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Figure 5. Variant importance scores for selected star alleles. Here we show variant importance              
scores from DeepLIFT that serve as a means to interpret the star allele classifier. The x-axis                
indicates the position of the variant in CYP2D6, the y-axis indicates the relative importance              
score. Negative scores indicate that the variant led the model to predict reduced function              
compared to the background allele, CYP2D6*1. The colors of each point represent the             
nucleotide or annotation that received the largest weight from the model, in terms of absolute               
value. Exons are shown in beige as a reference. The variant with the largest absolute weights                
are annotated with either the amino acid change they cause or the variant type.  
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Figure 6. Measured vs predicted activity for star alleles of unknown function with in vitro data. 
Here we show predictions of 26 star alleles that do not have functional assignment but do have 
in vitro metabolic data available.  In the top plot we display a bar chart of the measured activity 
for each of the star alleles, with star alleles predicted by the star allele classifier to be normal in 
blue, and predicted to be of reduced function in red.  The bottom left plot displays the same data 
as the top plot as violin plots to highlight the differences in the distributions between studies and 
between predictions from the star allele classifier.  The bottom middle plot shows predictions 
from the genotype-based activity predictor for dextromethorphan metabolism for each of the 26 
star alleles.  The points are colored by which study they came from, with star alleles from Muroi 
et al in green and star alleles from Qian et al in orange.  The R2 was calculated on the star 
alleles from both sources combined. The bottom right plot shows a receiver operator 
characteristic curve for the star allele classifier for each of the star allele groups, with the star 
alleles from Muroi et al in green, Qian et al in orange, and both sets of samples grouped 
together in gray.  To make this into a classification problem for we define samples with greater 
than 50% of CYP2D6*1 activity as “normal” and those with less than 50% as “reduced”.  The 
AUC was calculated on the star alleles from both sources combined. 
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Figure 7. Method evaluation.  Here we show an evaluation of the methods used to compensate 
for data scarcity.  In part A, we show learning curves for models trained dropping out one 
component at a time.  For example, the “No pretraining” line represents the learning curve for a 
model trained with weakly supervised learning and a functional variant representation, but no 
pretraining.  We also show learning curves for models trained with all components and no 
components.  In part B, we show an interpretation of annotation importance in the functional 
representation.  Each bar represents an annotation included in the representation and the 
y-axis indicates the percent decrease in R2 from the full model for a model trained without that 
particular annotation.  Here, the height is positively correlated with annotation importance to 
the model. 
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Table 1. Genotype-based activity predictor results. In this table we show the results for both               
substrates of the Genotype-based activity predictor trained through 5-fold cross-validation on           
the liver microsomes from the SJCRH liverbank, and evaluated on the UW liverbank samples              
which were held out during training. We compare against the variance explained by a linear               
regression on the AS with the same 5-fold cross validation scheme. The R2 values presented               
for the SJCRH data were the average value on the held-out test group from each fold. The R2                  
values for the UW samples are the mean from the five models trained through cross-validation.               
The bolded values indicate the maximum R2 achieved for each drug in each dataset. 

  SJCRH Test Data R2 UW Validation Data R2 

Substrate Method Mean SD Mean SD 

Dextrometho
rphan 

AS 0.63 0.09 0.69 0.01 

Hubble2D6 0.61 0.07 0.71 0.01 

Metoprolol AS 0.49 0.12 0.57 0.01 

Hubble2D6 0.48 0.13 0.54 0.01 
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