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Abstract

Access to quantitative, robust, yet affordable diagnostic tools is necessary to reduce global in-

fectious disease burden. Manual microscopy has served as a bedrock for diagnostics with wide

adaptability, although at a cost of tedious labor and human errors. Automated robotic micro-

scopes are poised to enable a new era of smart field microscopy but current platforms remain

cost prohibitive and largely inflexible, especially for resource poor and field settings. Here we

present Octopi, a low-cost ($250-$500) and reconfigurable autonomous microscopy platform ca-

pable of automated slide scanning and correlated bright-field and fluorescence imaging. Being

highly modular, it also provides a framework for new disease-specific modules to be developed.

We demonstrate the power of the platform by applying it to automated detection of malaria

parasites in blood smears. Specifically, we discovered a spectral shift on the order of 10 nm for

DAPI-stained Plasmodium falciparum malaria parasites. This shift allowed us to detect the

parasites with a low magnification (equivalent to 10x) large field of view (2.56 mm2) module.

Combined with automated slide scanning, real time computer vision and machine learning-

based classification, Octopi is able to screen more than 1.5 million red blood cells per minute

for parasitemia quantification, with estimated diagnostic sensitivity and specificity exceeding

90% at parasitemia of 50/ul and 100% for parasitemia higher than 150/l. With different mod-

ules, we further showed imaging of tissue slice and sputum sample on the platform. With

roughly two orders of magnitude in cost reduction, Octopi opens up the possibility of a large

robotic microscope network for improved disease diagnosis while providing an avenue for col-

lective efforts for development of modular instruments.

One sentence summary: We developed a low-cost ($250-$500) automated imaging platform

that can quantify malaria parasitemia by scanning 1.5 million red blood cells per minute.

Keywords: automated modular microscope, malaria diagnosis, low-cost instruments, machine

learning
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Introduction1

Lack of cost-effective diagnostics is a major hurdle in global fight against infectious disease,2

specially in resource poor settings [1]. This leaves our world in a highly vulnerable position3

with therapeutic drugs being either overused, leading to drug resistant strains or not acces-4

sible to people who actually need these treatments [2]. Since health care is delivered around5

the world in a tiered structure, local context such as high cost, lack of trained personal or6

low throughput of many available diagnostics tests plays a large detrimental role on quality7

of delivered health-care [3].8

Because of the versatility and wide adoption of manual microscopy [4] and its role in9

direct visual identification of parasites [5], it remains a WHO gold standard for numerous10

diseases [1]. Despite technological advancements in related fields, the practice of conventional11

manual microscopy has remained largely unchanged over the last half century and suffers12

from several drawbacks. With an average lab technician spending 6 to 8 hours imaging and13

examining slides per day, human fatigue has been identified as a crucial factor in reduced14

efficiency in microscopy based diagnostics [6]. With heavy disease burden, number of patient15

samples that need to be processed, even at small primary health centers, can often supersede16

the capacity of laboratory workers [7]. The above listed limitations for microscopy are not17

fundamental, and can be circumvented with field implementation of low-cost, motorized18

microscopes combined with computer-based automated detection.19

Low-cost field microscopy has made tremendous strides in the last decade [8], both to-20

wards access and implementing application-specific capabilities [9, 10, 11, 12, 13, 14]. New21

microscopy techniques such as Fourier ptychographic microscopy [15] and lens-free on-chip22

microscopy [16, 17, 18] have also been developed to tackle some of the hurdles of conven-23

tional microscopy in diagnostics settings. These platforms and techniques have demonstrated24

a wide range of applications [19, 20] but high throughput diagnosis of malaria has remained25

out of reach.26

Despite all the resources invested, malaria remains to be a highly deadly disease. In27
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the year of 2017, there were 219 million cases and nearly 435,000 deaths, majority of them28

occurring due to Plasmodium falciparum, a strain of malaria widely spread across the world29

[21]. Two most widely used diagnostic tests are antigen-based Rapid Diagnostic Test (RDT)30

and microscopic examinations of blood smears. In the same year, 276 million RDTs were sold31

and more than 208 million patients were tested by microscopy, whereas estimated needs for32

testing was well over 1 billion [22]. While RDT is easy to use, it cannot quantify parasitemia,33

stays positive post treatment for up to a month [23] and can create false negative due to34

HRP2/3 gene deletions [24, 25]. Manual microscopy, on the other hand, is labor intensive and35

in practice the performance is often compromised. Commercial slide scanning and detection36

systems show promise [26, 27] but are currently expensive. With persisting high burden of37

malaria [28] and the rise of drug resistance strains [29, 30, 31], affordable, high-throughput38

and quantitative diagnostic tests are urgently needed.39

Here we present Octopi, a low-cost ($250-$500), portable (below 3 kg), reconfigurable and40

automated imaging platform for disease diagnosis in resource constrained settings. To enable41

versatility of the platform and its adoption for different diseases, we take a highly modular42

approach where the platform can be configured with different disease-specific modules. On43

this platform, we demonstrate automated slide scanning with multimodal imaging with two44

imaging heads that support a range of magnifications.45

In particular, we report a spectral shift on the order of 10 nm for DAPI-labeled P.46

falciparum malaria parasites when compared to often confounding DAPI-labeled platelets in47

patient samples. This discovery enables us to integrate three channels of information (bright-48

field, fluorescence and spectral) for automated detection of P. falciparum parasites with a low49

magnification imaging module. Large field of view afforded by this module, combined with50

automated slide scanning and image processing, allows screening of more than 1.5 million51

red blood cells per minute for infections, which is 120 times faster compared to traditional52

manual microscopy [32]. We further implement a machine learning classifier and obtain53

anticipated performance of higher than 90% specificity and sensitivity for parasitemia of 5054
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parasites per µl and 100% sensitivity and specificity for parasitemia of 150 parasites per µl.55

Our results suggest that low-cost automated multimodal microscopy combined with machine56

learning tools have the potential to address the unmet needs for diagnosis of malaria and57

many other diseases.58

Results59

Automated imaging platform with modular design60

The imaging platform consists of completely separable modules that fall into 5 categories:61

imaging, slide scanning, transillumination, oblique angle laser illumination and control &62

computation (Fig. 1A). When setting up the imaging platform (Fig. 1B), preassembled63

modules snap to each other due to embedded magnets (see mounting of the imaging head64

in Movie S1 for example). Since screws are not necessary for the connections, the imaging65

platform can be rapidly reconfigured.66

We designed the platform with a combination of standard and custom parts, with choices67

being made to optimize performance, size, cost, and ease in prototyping and iterative devel-68

opment. For example, we made the imaging and transillumination module compatible with69

the standard cage and lens tube system, which allowed us to quickly implement different70

configurations. For the custom parts that form the backbone of the microscope, we chose71

CNC machining with 6061 aluminum over other manufacturing options for the rigidity of72

metal, the tight tolerance of the machining process and the low surface roughness of the73

finished parts. CNC machining also has favorable cost-volume scaling: at the manufacturing74

quantity of 10, the price is already comparable with 3D printing.75

To facilitate wide adoption of the imaging platform, including in resource limited settings,76

cost is imposed as an important design constraint during development. Through careful77

choices of parts and their arrangements, we were able to keep the starting unit cost of the78

imaging platform to about $700 for volume of 10 units. Without significantly altering the79
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design, the cost reduces to $350 for volume of 100 units and $250 for volume of 1000 units80

(table S1).81

The imaging modules82

We implemented two different imaging modules, one with low magnification (low mag imag-83

ing module and one with high magnification (high mag imaging module). The low mag84

imaging module is based on the reversed lens configuration, where two multi-element cell-85

phone lenses are used as objective and tube lens in the infinity-corrected configuration [33].86

To enable fluorescence imaging, an interference long pass filter diced into the size of 3 mm x 387

mm can be placed in between the two lenses (Fig. 1A inset). The CMOS sensor (Pi Camera88

based on Sony IMX219), lenses and optional filter are assembled around a CNC machined89

part as a permanent assembly. Because the cost of the parts is low, for different filters or90

lens combinations, different permanent assembly can be made. This eliminates the needs91

for users to handle small and intricate parts and helps keep the optical train free from dusts92

and contamination. The f-number of the lenses used in our implementation is 2.0, which93

translates to numerical aperture of 0.25, typical of 10X objectives. With condenser-based94

transillumination for bright field and oblique angle laser illumination for fluorescence, we95

got Nyquist-limited resolution of 2.5 µm (2.3 times the object side pixel size) over field of96

view of more than 1.6mm x 1.6mm (Fig. 2A). By using different pairs of lenses, diffraction97

limited resolution (0.92 µm) of a 10X/0.3NA objective lens may be achieved.98

The high mag imaging module makes use of standard infinity-corrected microscope ob-99

jectives. Depending on required sensitivity and frame rate, Pi Camera or standard industrial100

camera may be used, with M12 lens or C-mount imaging lens acting as tube lens. Notably,101

with starting price below $100, industrial cameras with low light CMOS sensors can offer102

peak quantum efficiency of more than 70% and readout noise as low as 1.1 e- (see Fig. S1),103

rivaling the performance of high-end scientific cameras. Using Pi Camera, a f = 25mm M12104

lens and a 40x/0.65 Plan Achromatic objective, with the same illumination used for the low105
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mag module, Nyquist-limited resolution of 0.46 µm can be achieved with field of view of106

0.4mm x 0.4mm (Fig. 2B).107

High-throughput automated imaging requires robust auto-focus. In the low mag imaging108

module we implemented motorized focusing with a captive linear actuator. The step size of109

the linear actuator is 1.5 µm , which is sufficiently small compared to the depth of focus of110

more than 8 µm. Motorized focus adjustment for the high mag imaging module has more111

stringent requirements, given the depth of focus is as small as 1 µm for a 40x/0.65 objective.112

As a solution, we combined a low-cost piezo stack actuator and a standard linear translation113

stage with extended contact ball bearings/crossed roller bearings. The piezo stack actuator114

used has travel of 11.2 µm and step size of 2.73 nm when used with a 12-bit digital to analog115

converter (see movie S2 for demo of focus actuation with this implementation). To test the116

performance of the motorized focus actuation for the low and high mag module, we acquired117

series of z-stacks of blood smears and plotted the computed focus measures vs the commanded118

z-position (Fig. 2 C,D). That the curves lie on top of each other indicates excellent reliability119

and repeatability. Utilizing the dependence of focus measure on z position, we implemented120

contrast-based auto-focus. Alternatively, with small modifications in illumination, different121

single-shot focus-finding approaches [34, 35] can be used for faster focus.122

Illumination modules123

The bright field transillumination module consists of a LED panel, a diffuser and an NA124

= 0.79 condenser. The diffuser is placed at the focal plane of the condenser to make the125

illumination Khler-like. Dark-field illumination for low magnification can be provided simply126

by a ring of LED, while an LED matrix can be used for quantitative phase imaging, fourier127

ptychography [15, 36] and single-shot auto-focus [34, 35]. For fluorescence excitation, we128

make use of oblique angle laser illumination [9]. Used in a wide range of consumer electronics129

such as Blu-Ray/DVD/CD players, projectors and laser pointers, direct diode laser and130

diode-pumped solid state lasers that can provide tens to hundreds of mWs optical power are131
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available at a wide range of wavelengths at very low cost. Currently, available wavelengths132

include 405 nm, 450 nm, 465 nm, 505 nm, 520 nm, 532 nm, 635nm, 650 nm, 780 nm, 808 nm,133

1064 nm. Because of the monochromatic nature of the laser, no excitation filter is needed.134

The use of oblique angle illumination also eliminates the need for dichroic beam splitter,135

reducing both the overall size and the cost of the setup. In addition, multiple lasers can be136

used and electronically switched for multiplexing.137

The scanning module138

Motorized slide scanning is crucial for high throughput imaging. Commercial motorized139

stage for microscopes offers incremental motion as low as a few nanometers but typically140

cost thousands of US dollars. Realizing that for wide field imaging such level of positioning141

performance is not needed, we developed a low cost scanning module using lead screw linear142

actuator that costs as little as $5 per unit. A important performance criterion is the scan143

flatness, which is the relative z-displacement of the slide at the center of the microscope field144

of view as the slide is being scanned. Good flatness reduces the need for frequent auto-focus.145

To ensure good scanning flatness, in our present configuration, the slide rests directly on146

a CNC machined block and is moved by a slide scanner driven by the lead screw linear147

actuators. To characterize our stage flatness, we used an ultra-flat quartz coated glass slide148

(and in another measurement, a normal microscope glass slide) as target and measured with149

a non-contact sensor the displacement of its top surface as it is being scanned (Fig. S2). The150

result (Fig. 2E, Fig. S3), which is limited by measurement setup, suggests overall flatness151

below 400 nm over tens of millimeters.152

The control & computation module153

Raspberry Pi, a single board computer priced at $35, provides a cost-effective way to control154

the microscope. The linux operating system also makes it easy to take advantage of open155

source software packages and simplifies development. In the Raspberry Pi-based implemen-156
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tation, the camera is interfaced using the industry standard MIPI camera serial interface,157

whereas other components are controlled through driver boards and MOSFET switches.158

With increasing demands for artificial intelligence at the edge, various low-cost and159

energy-efficient ASIC chips and embedded systems with optimized hardware for computer160

vision and machine learning applications have recently emerged. For applications requiring161

more compute power and/or higher imaging throughput, these platforms can be adopted. In162

particular, we have implemented and tested image processing and spot detection pipelines on163

Jetson Nano, a $99 drop-in replacement for Raspberry Pi with 128 CUDA cores. This imple-164

mentation reduces processing time by more than 50 times and allows processing to be done in165

real time as slides are being scanned (Fig. S4). Further more, when Windows-only software166

needs to be used, or more compute power is required, laptops or desktop workstations can167

also be used.168

Power consumption169

When Raspberry Pi or Jetson Nano are used as the control & computation module, the170

entire system can be powered from 5V DC power supplies. Either a wall plug AC adapter171

or a battery pack may be used. For a battery pack with capacity of 20,000 mAh, a single172

charge can power the microscope for more than 8 hours of continuous use (assuming full173

power consumption).174

Automated blood smear examination175

Blood smear examination is commonly used for diagnosing blood-borne diseases and often176

requires imaging many microscopic field of views. Octopi as a high-throughput imaging177

platform is particularly suited for these applications. To use the platform, stained blood178

smear is prepared following the same protocol used for manual microscopy (Fig. 3A). The179

slide is then loaded to the imaging platform and scanned automatically. For samples stained180

with fluorescent dyes, in addition to bright field image, a fluorescent image is also taken for181
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each field of view, during which the LED is switched off and the laser is switched on by the182

controller (movie S1).183

Because of the absence of nucleus in red blood cells, fluorescent dyes that bind to the184

nucleic acid may be used for staining platelets, white blood cells and many parasites in185

blood smears with improved contrast compared to bright field stains. The dark field nature186

of fluorescence imaging also makes it possible to localize stained objects that are below the187

diffraction limit of the objective being used. This allows us to use low magnification optics188

that have lower resolutions but larger field view, resulting in higher imaging throughput. Fur-189

thermore, in fluorescent imaging, since angular distribution of emitted light is independent190

of illumination, full numerical aperture of the objective is automatically utilized.191

Among many fluorescent nucleic acid dyes, 4’,6-diamidino-2-phenylindole (DAPI) has192

several attractive properties, including 20-fold fluorescence enhancement upon binding to193

the AT-region of dsDNA, low-cost (staining a blood smear costs less than $0.02 without194

reusing the staining solution), and good temperature stability. According to published data195

sheet [37], DAPI solutions are stable at room temperature for 1 to 2 weeks [38] and at196

+4◦C for up to 6 month. In practice, we got similar staining results with DAPI solution (at197

staining concentration of 5 µg/ml) left in the dark at room temperature for several months.198

To demonstrate the use of DAPI with the low mag imaging module on our platform, we199

scanned a smear of whole blood that is stained in DAPI solution for one minute. In the200

resulting images, not only white blood cells, but also reticulocytes and platelets can be201

easily resolved (Fig. 3B).202

To be able to robustly extract fluorescent spots for quantification, we developed a two-203

step processing pipeline (Fig. S5). The first step uses top-hat transformation to remove204

background. The second step uses a blob detector based on the Laplacian of Gaussian205

(LoG) [39, 40] to detect fluorescent spots of different sizes and intensities. Since filtering206

operations involved in both steps are computationally expensive for CPUs, we implemented207

a version of the pipeline that takes advantage of CUDA cores in GPU. When deployed on208
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Jetson Nano for detecting platelets (and later, also malaria parasites), we’re able to get per209

image processing time of around 300 ms, which is more than 50 times faster compared to210

using a Raspberry Pi 3B+ and 5 times faster compared to using desktop computers (Fig.211

S4). With scanning speed of 1 field of view per second, this allows equivalent blood smear212

examination throughput of 3,000,000 red blood cells (or 0.6 µl blood) per minute (assuming213

red blood cells cover 75% area of the field of view).214

Directly counting red blood cells can be beneficial for quantitative analysis of the blood215

and for determining parasitemia in the case of infection, especially when the precise volume216

of blood being smeared is not known. However, at low magnification, when cells are only217

stained with fluorescent dyes, segmentation becomes challenging. In particular, because each218

red blood cell has only 5-7 pixels in diameter and the contrast is not uniform across the cell,219

simple thresholding or edge detection-based methods do not work well. Hough transforms220

used for detecting circular objects requires the image to be scaled up, which leads to sig-221

nificant processing overhead, and has trouble detecting red blood cells that have distorted222

shapes. To address this challenge, we trained a 91-layer fully convolutional DenseNet [41],223

which gives good performance (Fig. 3C, Fig. S6). By compressing the model through224

pruning, quantization and other optimizations [42] and deploying it on Jetson Nano, real-225

time performance can be expected. To further improve throughput, more lightweight model226

[43, 44] may be trained and ASIC chips may be used [45].227

To demonstrate use case for detecting larger parasites using only bright-field imaging,228

we digitized a Giemsa-stained blood smear with Loa-Loa parasites (Fig. 3(D)). Because229

the parasite can be identified unambiguously, blood volume limited-detection limit of 0.2-0.5230

parasites/µl can be achieved. This detection threshold is well below the Sever Adverse Effect231

(SAE) threshold of 30 parasites/µl, above which mass drugs should not be administrated to232

the individual patient [12]. For screening this particular parasite, video microscopy [12] has233

also been used and can be configured on Octopi to further improve throughput.234

The advantage of automated scanning becomes evident by examining the probability235

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684423doi: bioRxiv preprint 

https://doi.org/10.1101/684423
http://creativecommons.org/licenses/by-nc-nd/4.0/


of occurrence of a given number of parasites in scanned fields of view. For a hypothetical236

parasitemia of 100 parasites/µl, we plot the probability of more than 10 parasites being237

present as a function of number of fields of views scanned for two different magnifications238

(Fig. 3E). We can observe that if enough fields of views are examined, the probability goes to239

one. Furthermore, in applications where the use of fluorescent dyes and/or pathogen-specific240

probes renders the morphological features of the detection targets unimportant, or reduces241

the requirement of optical resolution (such as in detecting DAPI-stained platelets), low242

magnification can be used in place of high magnification to significantly boost throughput.243

In the example above, to have at least 10 parasites with more than 95% probability, on244

average only 16 low mag fields of view are needed, as compared to 1058 fields of views in245

the case of 100 x oil objective. This calculation assumes that all the targets are in the same246

plane. For targets that are distributed in 3D, such as in sputum sample or in tissue slices,247

the increase in throughput is even more significant, given the depth of focus of 55 um, 8.8um,248

1.3 um and 0.53 um for 4x/0.1, 10x/0.25, 40x/0.65 and 100x/1.25 oil objectives.249

Automated detection of malaria parasites in thin blood smears250

Fluorescence microscopy has been used for sensitive detection of malaria parasites [46, 47, 48].251

However the prospect of detection in fixed blood smears at low magnification is hindered252

by the presence of brightly stained platelets, which are highly abundant (there are typically253

250,000 platelets per µl blood) and appear similarly in size and brightness as malaria para-254

sites. Yet, P. falciparum malaria parasites, which have a 48-hour asexual life cycle, contain255

not only DNA but also large amount of RNA. This provides an opportunity for differential256

detection. Previously, it has been shown that the emitted fluorescence red-shifts in DAPI-257

RNA complexes compared to DAPI-DNA complexes [49], which means that depending on258

the DNA-RNA ratio cells, overall shift up to about 40 nm can be expected. In fact, this259

property has been used in enumerating reticulocytes in rodent malaria models [50].260

To support the feasibility of differentiating malaria parasites from platelets based on261
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DNA/RNA ratio and its associated spectral shift, we imaged smears of blood from healthy262

individuals and patients diagnosed with malaria with laser scanning confocal microscopy263

where spectrum at each pixel is recorded. The results revealed a spectral red shift on the264

order of 10 nm for ring-stage P. falciparum parasites. For better visualization of the results,265

we mapped the obtained 32-channel spectral stacks to pseudo color images (Fig. 4A, Fig. S7-266

S8), where the color is determined by centroids of the spectrum, with purple being 485 nm or267

below and yellow being 510 nm or above. Using the same color code, we plotted the spectrum268

of selected spots (Fig. S8) in Fig. 4(B), where three clusters emerge. Examining the spots269

(Fig. 4(C)) we can conclude that the first purple/dark blue cluster (centroid below 495 nm)270

corresponds to platelets, and that the second green colored cluster (centroid at 495-500 nm)271

belongs to ring-stage malaria parasites. Because of the absence of distinctive morphological272

features, the identity of the third cluster where the “yellow” spectrum originate (centroid273

above 505nm) remain to be determined. Likely candidates for the brighter “yellow” spots274

include merozoites and trophozoites stages of the P. falciparum parasites, as these stages can275

be stained intensively with RNA-selective dyes[51]. As they’re not observed in uninfected276

blood, dimmer “yellow” spots can be accounted for by parasites-derived extracellular vesicles,277

which have been reported to contain RNA and DNA[52, 53, 54, 55].278

Traditionally, fluorescence microscopy is done with monochrome cameras and band pass279

filter with relatively narrow pass band for better sensitivity and background suppression.280

However, in doing so, spectral multiplexing will involve use of multiple filters or point spread281

function engineering, which adds to the complexity of the system. Here by utilizing a long282

pass filter and a color CMOS sensors where color filter arrays in the Bayer arrangements283

are directly integrated on top of the pixels, we are able to obtain spectral information in a284

single shot. To quantify the performance of this setup, we simulated the spots with spectrum285

from the average of DAPI-stained platelets and DAPI-stained ring-stage parasites (Fig. 5A,286

Fig. 5B). In the simulation, spots were assumed to have a Gaussian profile, and both287

finite pixel size and photon shot noise were taken into account. To get a lower-dimensional288
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representation, the spots are then projected to normalized color space G/B vs R/B, where289

R/B is the ratio of total red pixel intensity and total blue pixel intensity, and similarly G/B290

is the ratio of total green pixel intensity and total blue pixel intensity (Fig. 5C). Intriguingly,291

for spot sizes and signal levels easily achievable, spectral shift as low as 8 nm can result in292

good separation in the G/B vs R/B space.293

To show that our imaging platform configured with the low mag imaging module has294

enough sensitivity for detecting DAPI-stained ring-stage parasites, we imaged the same smear295

of P. falciparum culture on Octopi and on a high end research microscope (Nikon Ti2296

with Prime 95B sCMOS sensor), and one-to-one correspondence of fluorescent spots can be297

observed (Fig. 6A). Fig. 6B compares a typical overlaid bright-field and fluorescent field of298

view of P. falciparum culture with that of uninfected whole blood, and the color difference299

between parasites and platelets can be appreciated. To quantify how well parasites and300

platelets may be told apart, we stained and imaged 8 smears of P. falciparum culture and301

10 smears of uninfected whole blood, where a total number of 109,355 fluorescent spots from302

the P. falciparum culture and 437,944 fluorescent spots from the uninfected whole blood303

were detected and extracted using the aforementioned processing pipeline. Projection of304

randomly selected 10,000 spots into the G/B vs R/B space is plotted in Fig. 6C. Good305

separation in this scatter plot suggests and that color, as a manifestation of spectral shift,306

is a robust feature for distinguishing parasites from platelets. The results also suggest the307

absence of confounding objects in uninfected whole blood.308

To automatically detect parasites from extracted spots and obtain diagnostic performance309

that can be expected with the proposed solution, we built a boosted-tree classifier that takes310

features from each extracted spots and outputs a class label. The performance of the classifier311

can be characterized by its False Positive Rate (FPR) and False Negative Rate (FNR), where312

FPR is the number of platelets misclassified as parasites over the total number of platelets313

and FNR is the number of parasites misclassified as platelets over the total number of314

parasites . We found that using combined features from bright-field images and fluorescent315
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images result in the best classification performance (Fig. 6D). Specifically, at FNR of 10%,316

FPR of 0.05% (average of 20-fold cross validation, range is 0.027%-0.11%, standard deviation317

is 0.019% ) can be achieved. Because both declaration of a smear as negative and quantifying318

parasitemia in the case of low parasitemia involves scanning a large area and counting a large319

number of cells, and that brightly-stained platelets are highly abundant, it’s important to320

choose a decision threshold that gives relatively small per spot FPR. This lowers the chances321

of misdiagnosing an uninfected case as infected and only has a weak negative influence on322

sensitivity. With per spot FPR = 5 × 10−4 and FNR = 11%, we obtain through Monte323

Carlo simulations anticipated (per case) sensitivity and specificity of (91%,91%), (99%,99%)324

and (100%,100%) for parasitemia of 50/ul, 100/ul and 150/ul (Fig. 6E). This simulation325

assumes platelet count of 250,000/ul, all platelets being brightly labeled and that 0.5 µl326

blood is screened. In the Jetson Nano-based implementation, the time it took from slide327

being loaded to an answer (including parasitemia, in the case of infection) can be less than328

2 minutes.329

In certain cases it may be desirable to resolve the morphology of individual parasites.330

This would further improve sensitivity and specificity, especially for cases with very low331

parasitemia. This is made possible on our modular platform by using the high mag imaging332

module with a 40x/0.65 objective. We imaged smears of uninfected whole blood (Fig. 7A),333

lab culture of P. falciparum (Fig. 7B) and blood samples from patients diagnosed with334

malaria (Fig. 7C). The result show that with morphology and/or color, parasites can be335

easily told apart from platelets. Images of lab P. falciparum culture also confirm that many336

parasites are indeed in their ring-stage, with presence of multiple infections, which is due to337

the high concentration of parasites in the lab culture.338

Broader diagnostics applications339

Besides malaria, Octopi can be used to image a wide range of pathogens and conditions.340

As examples, we imaged Schistosomiasis of human intesines tissue specimen (Fig. 8A),341
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Leishmania donovani that causes leishmaniasis (Fig. 8B), Trypanosoma brucei rhodesiense342

(Fig. 8C) that causes African sleeping sickness, Mycobacterium tuberculosis that causes343

tuberculosis (TB) (Fig. 8D), Streptococcus pneumonia that can cause community-acquired344

pneumonia (CAP) (Fig. 8E) as well as Staphylococcus aureus that can cause bacteremia,345

skin infection, respiratory infections and food poisoning (Fig. 8F). The last three bacterial346

pathogens were in sputum samples and imaged using the high mag imaging module with a347

100x/1.25 oil immersion objective. In the last sample, since the bacteria are distributed in348

different z-plane, a z-stack was taken to capture all within the field of view.349

Discussion350

Here we report the concept and implementation of a modular and automated imaging plat-351

form. Compared to directly modifying existing microscopes [56] and many other monolithic352

designs, the open nature of our platform and its high degree of modularity offers flexibility353

and greatly simplifies both iterative and derivative developments, making it easy to adapt354

the tool to specific applications. CNC machining also allows the precision and robustness355

unmatched by 3D-printing. While we demonstrated bright field, dark field and fluores-356

cent imaging with reversed lens configuration and using standard objectives, other imaging357

modalities such as Fourier Ptychography [15, 57], holography/lensless imaging [16, 58] as358

well as standard or LED-matrix and computation-based phase contrast [59, 60] can also be359

implemented on our platform. Furthermore, metalens made of a single layer of nanostruc-360

tures [61] may be adopted in place of standard objectives as they become available. The361

compactness and light weight makes it possible to mount the lens on a voice coil actuator362

(widely used in cellphone cameras and blu-ray players), eliminating the need for linear stage,363

which results in reduction in cost and form factor. Metasurfaces or phase masks may also364

be incorporated into the optical train for aberration correction [62] and for enhanced 3D365

imaging capability through point spread function engineering [63, 64, 65]. While all images366
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in this report are taken with Pi cameras, CMOS cameras that are low-cost and compact but367

rival the performance of sCMOS and EMCCD can be used for more demanding applications368

[66, 67, 68, 69]. With modular design, other XY stage designs may also be used to allow369

larger travel and/or more precise motion [70, 13, 71].370

Applying the imaging platform to the diagnosis of malaria, we developed a new solution371

that can determine parasitemia with high degree of automation and very high throughput.372

While there are five strains of parasites that can cause malaria in human, in this study we373

focused on Plasmodium falciparum (P. falciparum) for two reasons. First, P. falciparum is374

the deadliest strain, which can cause fatality if treatment is delayed beyond 24 hours after375

the onset of clinical symptoms. P. falciparum has also developed resistance to nearly all376

anti-malarials in current use, where chloroquine-resistance has spread to nearly all areas377

of the world where P. falciparum malaria is transmitted [72]. Second, in 2017, the WHO378

African Region was home to 92% of global malaria cases, out of which 99.7% of is due379

to P. falciparum [73]. The dominance of P. falciparum in this region makes our low-mag380

module-based solution readily applicable without considering the need for speciation. While381

at low magnification morphology of ring stage parasites cannot be resolved, in the future,382

other features may be used for speciation. For example, in contrast to P. falciparum where383

most parasites present in the peripheral blood are in ring-stage due to sequestration, both384

trophozoites and schizonts can be present for P. vivax (Pv). Compared to ring stage, these385

stages have markedly different morphology features that are likely resolvable even with low386

magnification [74] and should present more intense and more red-shifted fluorescence.387

We have also demonstrated that morphological features of ring-stage parasites can be388

unambiguously resolved with the high mag imaging module on the platform. The high mag389

imaging module may be combined with the low mag imaging module for further improved390

detection limit and speciation capability without sacrificing throughput. To do so, the slide391

is first screened by the low mag imaging module, where locations of suspected pathogens are392

recorded. The spots are then relocated with the motorized scanner and imaged with the high393
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mag imaging module for confirmation. The platform may also be modified to accommodate394

two imaging modules simultaneously. Encouraged by presented results, we are in planning395

phase of a clinical trial for testing the efficacy of the instrument in field conditions in both396

India and Africa.397

We have shown that using a color CMOS sensor and long pass emission filter for fluo-398

rescence imaging, spectral shift of DAPI-stained P. falciparum parasites on the order of 10399

nm can be reliably detected in a single shot. This proved to be critical in the application400

of diagnosis of malaria using blood smears. The loss in spatial resolution compared to us-401

ing a monochrome sensor under the same condition may be complemented by using higher402

magnification (without changing the NA of the objective). When the fluorescent spots arise403

from diffraction limited sources or beads of known size and some emission spectrum infor-404

mation is known a priori, maximum likelihood estimation may be used to optimally extract405

information. This spectral imaging capability allows single-shot multiplexed detection with406

a single laser excitation.407

While we used nucleic acid stains for sensitive detection of P. falciparum parasites in thin408

blood smear, different probes that are specific to a set of pathogens can also be utilized. The409

past decades has seen much development of pathogen specific probes [75, 76, 77, 78]. Being410

low-cost and highly configurable, Octopi has the potential to help realize the wide spread use411

of these new probes in field diagnostics. Besides diagnosis of disease in field conditions, the412

automated imaging platform can be also be adapted for research applications. In particular,413

because of its low cost and small footprint, many units can be set up in a single lab to414

parallelize experiments like super-resolution microscopy [79, 80], expansion microscopy [81],415

spatially resolved profiling of RNA in single cells [82] and spatial sequencing of single-cell416

transcriptional states in tissues[83].417

With the emergence of deep learning in microscopy, the capabilities of Octopi can be418

boosted by newly developed neural networks that breaks the limits of what is possible in419

traditional microscopy [84, 85, 86, 87, 88, 84, 89, 90]. As a highly scalable platform, Octopi420
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can also help bring training and deployment of these networks to a large number of users.421

Finally, with a large network of Octopi deployed around the world, we envision to bring422

together researchers, developers and clinical practitioners to collectively advance microscopy-423

based disease diagnostics.424

Materials and Methods425

Study Design426

The goal of this study is to develop and evaluate a low-cost, modular and automated mi-427

croscope platform for a range of applications including, in particular, diagnosis of infectious428

disease with high throughput in resource-limited settings. We started by implementing429

modules of the microscope and characterizing their performances, showing that performance430

comparable to high end research grade microscope can be achieved. In applying the platform431

to detection of ring-stage P. falciparum parasites, we discovered that with 405 nm laser exci-432

tation, a 435 nm long pass emission filter and a color CMOS camera, DAPI-stained parasites433

and platelets may be told apart by color. We used laser scanning confocal microscopy to434

obtain spectrum of emitted fluorescence from DAPI stained platelets and parasites in pa-435

tient sample, which revealed a spectral red-shift on the order of 10 nm. That this shift and436

the resulting color difference can be used to differentiate parasites and platelets under low437

magnification was supported by simulation. To automatically detect parasites and quantify438

diagnostic performance that may be achieved, we collected data from 8 smears of P. falci-439

parum culture and 10 smears of uninfected blood and trained a classifier using these data.440

This amounts to baseline data on 109,3555 spots of parasites (P. falciparum) and 437,944441

spots for uninfected whole blood. Based on this classifier we simulated sensitivity and speci-442

ficity that can be expected at different parasitemia. A processing pipeline was implemented443

on Jetson Nano so that computation can be performed locally in real time. Furthermore,444

we imaged lab and patient samples on our platform with high magnification to show that445
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morphology of ring-stage parasites can also be resolved, implying further improved sensitiv-446

ity and specificity can be achieved. Finally, to show broad applicability of our platform, we447

imaged different prepared pathological samples with different magnifications.448

Construction of the prototype microscope449

Custom parts of the microscope were designed with Autodesk Inventor Professional and450

fabricated by Protolabs and 3D Hubs (CNC machining with 6061 Aluminum), and Fictiv451

(selective laser sintering with Nylon) (Fig. S9). In the high mag imaging module, a piezo452

stack actuator with end cap (Thorlabs PK2FMP2) was epoxied to the extended contact453

ball bearing linear stage (SELN LBV40-C2). A 12-bit DAC (Adafruit MCP4725 breakout454

board) was interfaced with the Raspberry Pi computer through I2C interface. The output455

of the DAC was amplified by a miniature piezo driver (PiezoDrive PDu100B) to drive the456

piezo stack actuator. Three stepper motor driver boards (Allegro A3967-based Easydriver)457

were used to drive the lead screw linear motors and captive linear actuator (Haydon Kerk458

Pittman 21H4AC-2.5-907).459

Scanning stage flatness characterization460

A LabView program was developed to raster scan a target slide (Ossila S151 Ultra-flat461

Quartz Coated Glass) while recording the relative z-position of top surface of the slide at462

the center of the microscope field of view, which is measured by a non-contact displacement463

sensor (MKS Instrument Optimet ConoPoint-3R, Fig. S2). The measurement results were464

saved as CSV files and processed with MATLAB.465

Deep learning-based red blood cell segmentation466

The 91-layer Fully Convolutional DenseNet contains 11 dense blocks (with 4, 5, 7, 10, 12,467

15, 12, 10, 7, 5 and 4 layers for each block), and was trained from scratch. Weights of468
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the convolutional layers were initialized using He initialization [91]. For training, Adam469

optimizer [92] was used with a learning rate of 0.001 and batch size of 16.470

To deal with the more frequent false negatives (RBC pixels labeled as non-RBC pixels)471

compared to false positives (non-RBC pixels as RBC pixels) in the labels of the training data,472

class weights were introduced in the binary cross-entropy loss function. Specifically, false473

negatives was associated with a class weight of 10, whereas false positives were associated474

with a class weight of 0.1. This ensured that mispredictions made on pixels labeled positive,475

where labels are reliable, are penalized more heavily than mispredictions made on pixels476

labeled negative, where labels can be noisy.477

To obtain a large labeled training data set without tedious human annotation, the fol-478

lowing two-step approach is taken. First, Hough transform was used to generate accurate479

segmentation masks for images where red blood cells are round and isolated. Second, mul-480

tiple such images were superimposed and distorted through shear transformations to mimic481

images with red blood cells that are not round and/or overlapping. The resulting images,482

which also have accurate masks, were used to augment the training data. In total, 22,680483

images of size 128× 128 were used for training the neural network.484

The benefits of using data augmentation and introduction of class weights are visualized485

in Fig. S10.486

Spot detection from fluorescent images obtained with the low mag487

imaging module488

Two spot detection pipeline were implemented. The CPU-only pipeline (pipeline A) was489

implemented in python with the scikit-image package. The pipeline that takes advantage490

of CUDA (pipeline B) was implemented in C++ with the OpenCV library and python491

with the scikit-image package. Both pipelines take an image of size 1428x1428x3 as in-492

put and convert it to grayscale for further processing. In pipeline A, functions skim-493

age.morphology.white tophat and skimage.feature.blob log are used. In pipeline B, image494
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is uploaded to GPU and background removed using tophat filtering with disk diameter of 9.495

The processed image remains in GPU and is converted from CV U8 to CV F32. Four nor-496

malized Laplacian of Gaussian images (LoG1,LoG2,LoG3,LoG4) with gaussian sigam equal497

to 1, 1.5, 2 and 2.5 are computed by applications of a Gaussian filter followed by a Lapla-498

cian filter and scale normalization. The four images are compared with a manually selected499

threshold, and pixel whose value is smaller than the threshold is set to zero. A maximum500

projection along the scale dimension of the four LoG images is computed and and a 3x3501

maximum filter is applied. The resulting image (P) is compared with the four LoG images,502

and locations where pixel values equal are recorded in a mask M initialized with zeros (for503

example, if LoG3(r,c)==P(r,c), then M(r,c) is set to 3). The mask, which stores locations504

of 3x3x4 local maximums, is downloaded from GPU, and 3D coordinates (2D location +505

scale) of non-zero elements of the mask are exported as a three column array. The array506

is loaded in python for removal of spots with overlap exceeding the a set threshold of 0.5.507

The last step takes advantage of the already implemented skimage.feature.blob. prune blobs508

function, which uses a KDtree implemented in c to perform nearest neighbour search for509

significantly reducing the number of pairwise comparison needed.510

Before passing to the spot detection processing pipeline, fluorescent images were first511

converted from sRGB space to linear RGB space, so that pixel intensity has a linear rela-512

tionship to the number of photons collected. Detected spots were saved for visualization and513

downstream classification.514

Fluorescent spot classifier515

The gradient boosted decision trees classifier was implemented using XGBClassifier from the516

xgboost python package. Features for each fluorescent spot passed as input to the classifier517

and their relevance are shown in Fig. S11. Among the features, overlap is the sum of pixel518

values of pixels that are segmented as part of red blood cells over the sum of pixel values of519

all pixel. For uninfected whole blood, this feature is directly computed from data. For P.520
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falciparum culture, because the red blood cells are ill-shaped for bright field segmentation,521

this feature was sampled from a empirical distribution, as is plotted in Fig. S12. Performance522

of the classifier was measured using 20-fold cross validation. Each each fold is made of 3523

smears of uninfected whole blood slides and 3 smears of P. falciparum lab culture, picked524

at random. For training the classifier, binary logistic loss function was used with a L2525

regularization term.526

Image processing527

For all the images presented, image processing were done in MATLAB. For brightfield images,528

illumination correction is done through normalization against a blank image (image of a blank529

slide). For fluorescent images, background removal is done through tophat transform. Bright530

field images from both the low mag imaging module and the high mag imaging module and531

fluorescent images from the high mag imaging module are demosaiced in MATLAB from the532

raw bayer data. For images that are denoised (as noted in figure captions), denoising is done533

using a convolutional neural network FFDNet [93]. Comparisons of images before and after534

denoising can be found in Fig. S13.535

P. falciparum in vitro cultures536

Plasmodium Falciparum culture were provided by the Yeh lab at Stanford University where537

Plasmodium falciparum W2 (MRA-157) were obtained from MR4. Parasites were grown in538

human erythrocytes (2% hematocrit, obtained from the Stanford Blood Center) in RPMI539

1640 media supplemented with 0.25% Albumax II (GIBCO Life Technologies), 2 g/L sodium540

bicarbonate, 0.1 mM hypoxanthine, 25 mM HEPES (pH 7.4), and 50 g/L gentamycin, at541

37C, 5% O2, and 5% CO2.542
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Blood Sample from healthy donors and from patients diagnosed543

with malaria544

De-identified blood sample (whole blood) from healthy anonymous donors were obtained545

from the Stanford Blood Center in BD Vacutainer blood collection tubes. De-identified546

methanol-fixed finger prick blood smears from patients diagnosed with malaria were provided547

by UCSF Malaria Elimination Initiative (MEI)/Infectious Disease Research Collaboration,548

Kampala, Uganda.549

Preparation and staining of blood smears550

Smears of blood from healthy donors and P. falciparum culture were fixed by dipping in551

absolute methanol for 30 seconds. Fixed smears were incubated with 5 µg/ml DAPI solution552

for 1 minute, washed in water, and let air dry in the dark. DAPI solution was purchased553

from Biotium (catalog # 40043) and diluted. Samples were kept in dark before imaging.554

Other pathology samples555

Prepared slides of Loa-Loa, Leishmania donovani, Mycobacterium tuberculosis were acquired556

from VWR (catalog Number 470182-158, 470181-894, 470177-208 respectively). Prepared557

slide of Schistosomiasis of Intestines was acquired from AmScope (SKU: PS50HP). Pre-558

pared slide of Trypanosoma brucei rhodesiense was acquired from Carolina (item # 295822).559

Prepared slides of Streptococcus pneumoniae and Staphylococcus aureus in sputum were de-560

identified and provided by the Clinical Microbiology Laboratory at Stanford Health Care.561

Statistical Analysis562

Simulation of per case sensitivity and specificity (Fig. 6E) was done in MATLAB. For each563

parasitemia and per spot false positive rate (FPR) (and its associated per spot false negative564

rate FNR), 10,000 tests were simulated. In each test, the total number of platelets (N) and565
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parasites (P ) was sampled from Poisson distributions; the number of detected parasites was566

the sum of true positives and false positives, both sampled from Bernoulli distribution, with567

parameters (P, 1-FNR) and (N,FPR).568
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terization of an industry-grade cmos camera well suited for single molecule localization749

microscopy–high performance super-resolution at low cost,” Scientific reports, vol. 7,750

no. 1, p. 14425, 2017.751

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2019. ; https://doi.org/10.1101/684423doi: bioRxiv preprint 

https://doi.org/10.1101/684423
http://creativecommons.org/licenses/by-nc-nd/4.0/


[68] H. P. Babcock, “Multiplane and spectrally-resolved single molecule localization mi-752

croscopy with industrial grade cmos cameras,” Scientific reports, vol. 8, no. 1, p. 1726,753

2018.754
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Fig. 1. Reconfigurable high-throughput imaging platform. (A) Construction of854

the modular imaging platform. The left column shows three different imaging modules (top855

row), a motorized scanning module, and three different illumination modules (bottom row).856

In the low mag imaging module (top left), a captive linear actuator is used for focus actuation.857

In the high mag imaging module (top middle and top right), piezoelectric stacks combined858

with micrometers are used for focus actuation, where the micrometer can be replaced with859

a captive linear actuator to motorize coarse adjustment. Inset shows the construction of the860

low-mag imaging module sub-assembly, which consists of a pi-camera, a long pass interference861

filter and another cellphone lens. For different applications, sub-assemblies with different862

configurations should be switched as a whole, in contrast to the high mag imaging module,863

where objectives, filters, tube lens and cameras can be individually switched. The right864

column shows some examples of currently available portable computing devices that can be865

used as the computation module. (B) A photograph showing three Octopi prototypes with866

different imaging modules optimized for different applications.867
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Fig. 2. Characterization of the imaging platform. (A-B) Images of a 1951 USAF868

resolution obtained on Octopi with the low mag imaging module and the high mag imaging869

module and their comparisons with images obtained on a Nikon Ti2 microscope. The image870

obtained with the high mag imaging module (configured with 40x/0.65 objective) is better871

resolved that its counterpart obtained on the Nikon Ti2 with an aprochromatic 20x/0.75872

objective and an additional 1.5x magnification because of its smaller object side pixel size873

(0.202 um compared to 0.367 um). Images were denoised by a pretrained FFDNet denosiser874

[93], see Fig. S13 for images before denoising. (C) Motorized focus actuation performance875

of the low mag imaging module (using captive linear actuators) and the high mag imaging876

module (using piezoelectric stacks). Plotted are focus curves (focus measure vs commanded877

z position) for 10 repeated z-stacks. Step size of 3 um and 137 nm is used for the captive878

linear actuator and the piezoelectric stack respectively. The high degree of overlap between879

the curves suggest reliable and repeatable focus actuation. Example images are 12 µm and880

1.1 µm apart in z. (D) Characterization of XY scanning flatness for scanning module using881

an ultra-flat glass slide. Mean and standard deviation of measured top surface z-positions882

for 50 XY scans are plotted. The overall standard deviation is below 400 nm and is limited883

by the measurement setup, suggesting excellent stage flatness. Similar result was obtained884

with a normal microscope glass slide and plotted in Fig. S3.885
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Fig. 3. Blood smear examination. (A) Procedure for preparing and scanning886

a blood smear. (B) Scan of a DAPI-stained blood smear. From left to right: stitched887

bright field images, a single FOV with overlaid bright field and fluorescent images, zoomed-888

in overlay image with arrows pointing to (from top to bottom) a platelet, a reticulocyte and889

a white blood cell. The smear is made from 4 µl of blood and the region being imaged is890

of size 20.8 mm x 27.2 mm (221 individual field of views), covering more than 90% of the891

smear. With Raspberry Pi being used as the control & computation module, The scan took892

19 minutes. This includes auto-focus using 20-plane z-stacks at the beginning and in the893

middle of each row that accounts for about 1/3 of the total scan time. When implemented894

with a control & computation module that has higher bandwidth (such as Jetson Nano),895

shortening of the total acquisition time to below 4 minutes can be achieved. Besides, in896

practice, digitizing a much smaller area of the blood smear is often sufficient. (C) Illustration897

of steps for segmentation of red blood cells. Left to right: unprocessed portion, portion898

with preprocessing applied (illumination correction and contrast adjustment), portion with899

segmentation masked generated from a neural network overlaid. (D) Scan of a Giemsa-900

stained blood smear with Loa Loa (African eye worm). The 9 zoomed-in images are of size901

188 µm × 188 µm (E) Assuming parasitemia of 100 parasites/ul of blood, probability of902

more than 10 parasites present vs total number of microscopic fields of view examined. The903

two curves are for the low mag imaging module (field of view: 1.6 mm x 1.6 mm) and for a904

100x objective commonly used for malaria diagnosis (field of view: 0.22 mm in diameter). In905

the calculation, red blood cells is assumed to fill 75% of the field of views. For the probablity906

to be greater than 95%, on average more than 1058 of the 100x field of views need to be907

examined, whereas only 16 low mag fields of view is sufficient.908
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Fig. 4. Spectral shift in DAPI-stained P. falciparum parasites. (A) Pseuduo909

color images of DAPI stained blood smear from a healthy donor and from a patient diagnosed910

with malaria. The images are acquired on a Zeiss LSM780 laser scanning confocal microscope911

with a 20x/0.8 objective and 32 spectral channels. For each pixel, the color is determined912

according to the centroid of the extracted 32-point spectrum for that pixel (B) Extracted913

spectrum of selected fluorescent spots from image of the patient sample where each spectrum914

is color-coded according to its spectral centroid in the same way as in (A). (C) Zoomed-in915

views of platelets, ring-stage P. falciparum malaria parasites and potential P. falciparum916

malaria trophozoites, merozoites and parasites-derived extracellular vesicles. Images are of917

size 17 µm × 17 µm.918
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Fig. 5. Simulation of three channel spectral imaging with an RGB CMOS919

sensor. (A) The process of converting spectrums to RGB values (top) and the resulting920

colors for different amount of shift. The original spectrum without shift is the emission921

spectrum from DAPI. (B) Example demosaiced images of simulated fluorescent spots of922

different diameter and signal to noise level (left) and their projections in the R/B - G/B space923

(right; the two clusters have spectral separation of 8 nm). For each parameter combination,924

10,000 spots are randomly generated for each class. The spots are assumed to have Gaussian925

profiles and the diameters are their RMS width. The signal level is the expected value of926

the maximum pixel intensity of the spot. The number is normalized to have max value of 1,927

which corresponds to the full well capacity of the CMOS sensor. In determining shot noise928

for the pixel values, peak quantum efficiency conversion gain of the pi camera module is929

used (peak QE: 70%, conversion gain: 0.2 e-/ADU). The shot noise is modeled by a Poisson930

process. The position of spots are also randomized. For each spot, R/B is the ratio of total931

red pixel intensity and total blue pixel intensity, and similarly G/B is the ratio of total green932

pixel intensity and total blue pixel intensity. The R, G, B pixel values are directly taken933

from the simulated raw Bayer data.934
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Figure 6

Fig. 6. High throughput P. falciparum parasites detection at low magnifica-935

tion. (A) Image of the same field of view of DAPI-stained smear of P. falciparum. culture936

obtained with the low mag imaging module on Octopi (left) and on Nikon Ti2, a high-end re-937

search grade microscope, with 20x/0.75 apochromatic objective (right). (B) Overlaid bright938

field and fluorescent images of DAPI-stained smears of P. falciparum. culture (left) and939

uninfected whole blood (right) obtained with the low mag imaging module. The color differ-940

ence of fluorescent spots in the two can be observed. We can also observe that the platelets941

are all outside right blood cells where as most parasites are inside the red blood cells. (C)942

Scatter plot of spots corresponding to parasites and platelets in the G/B vs R/B space. The943

spots are labeled according to whether they come from the P. falciparum culture smears or944

the uninfected whole blood smears. In the scatter plot, 10,000 randomly chosen spots from945

each class is shown. (D) Per spot classification performance for three different classes of946

classifier with 20-fold cross validation. The first classifier only uses features extracted from947

the fluorescent image for classification. The second classifier only uses the amount of overlap948
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between the fluorescent spot and the segmented red blood cells. The third classifier uses949

both fluorescent features and overlap, which gives 0.05% false positive rate at false negative950

rate of 10%. (E) Simulated per case classification performance assuming per spot FNR of951

5 × 10−4 and FNR of 10%. 10,000 tests at each parasitemia level were simulated, assum-952

ing examination of 0.5 µl blood (2.5 million red blood cells) per test. Each test outputs953

an estimated parasitemia based on the number of red blood cells scanned and number of954

parasites detected, and this number is compared with a decision threshold for determining955

the outcome of the test. For each simulated parasitemia, this decision threshold is varied to956

obtain the sensitivity vs specificity curve. We note that per case sensitivity and specificity is957

a measure of performance at low parasitemia. For higher parasitemia (e.g., above 200/µl),958

estimated parasitemia may be directly used. Compared to RDT, the ability to quantify959

parasitemia is a strength of microscopy and is useful for evaluating disease severeness and960

monitoring treatment response.961
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Fig. 7. Imaging Blood Smear with the high mag imaging module. (A) A 11962

× 11 FOV (4.4mm × 4.4mm) scan of DAPI-stained blood smear of a healthy individual.963

Platelets are visible in the zoomed-in overlaid bright field and fluorescent images (B) Selected964

field of views showing red blood cells infected with ring-stage parasites. Some red blood cells965

are infected with multiple red blood cells. Ring like morphology of the parasites is clearly966

visible (C) Patient sample showing a white blood cell (top left), platelets and infected red967

blood cells. Each close-up image in (B) and (C) is of size of 12.9 µm × 12.9 µm. Images were968

denoised by a pretrained FFDNet denosiser [93], see Fig. S13 for images before denoising.969
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Fig. 8. Other diagnostic applications for Octopi. (A) H&E stained Schistosomia-970

sis of intestines specimen obtained with the low mag imaging module. Close-up images show971

eggs of Schistosoma haematobium. (B) Hematoxylin stained promastigotes of Leishmania972

donovani obtained with the high mag imaging module using a 40x/0.65 Plan Achromatic973

Objective. (C) Giemsa stained Trypanosoma brucei rhodesiense in a thin blood smear ob-974

tained with the high mag imaging module using a 40x/0.65 Plan Achromatic Objective.975

(D) ZiehlNeelsen stained Mycobacterium tuberculosis in a sputum sample obtained with the976

high mag imaging module using a 100x/1.25 Plan Achromatic Objective. (E) Gram stained977

Streptococcus pneumoniae in a sputum sample obtained with the high mag imaging module978

using a 100x/1.25 Plan Achromatic Objective. (F) Gram stained Staphylococcus aureus in a979

sputum sample obtained with the high mag imaging module using a 100x/1.25 Plan Achro-980

matic Objective. Left shows minimum intensity projection of a z-stack containing 20 planes981

with z-step size of 137 nm. Right shows close-up images of different z-planes and the min-982

imum intensity projection corresponding to the same field of view. Images in (A)-(D) were983

denoised by a pretrained FFDNet denosiser [93], see Fig. S13 for images before denoising.984
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