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Abstract—Mild cognitive impairment (MCI) is an intermediate 

stage of brain cognitive decline, associated with increasing risk of 

developing Alzheimer’s disease (AD). It is believed that early 

treatment of MCI could slow down the progression of AD, and 

functional brain network (FBN) could provide potential imaging 

biomarkers for MCI diagnosis and response to treatment. 

However, there are still some challenges to estimate a “good” FBN, 

particularly due to the poor quality and limited quantity of 

functional magnetic resonance imaging (fMRI) data from the 

target domain (i.e., MCI study). Inspired by the idea of transfer 

learning, we attempt to transfer information in high-quality data 

from source domain (e.g., human connectome project in this paper) 

into the target domain towards a better FBN estimation, and 

propose a novel method, namely NERTL (Network Estimation via 

Regularized Transfer Learning). Specifically, we first construct a 

high-quality network “template” based on the source data, and 

then use the template to guide or constrain the target of FBN 

estimation by a weighted l1-norm regularizer. Finally, we conduct 

experiments to identify subjects with MCI from normal controls 

(NCs) based on the estimated FBNs. Despite its simplicity, our 

proposed method is more effective than the baseline methods in 

modeling discriminative FBNs, as demonstrated by the superior 

MCI classification accuracy of 82.4% and the area under curve 

(AUC) of 0.910. 

Index Terms—Mild Cognitive Impairment (MCI); Functional 

Brain Network (FBN); Functional Magnetic Resonance Imaging 

(fMRI); Sparse Representation; Transfer Learning. 

 

I. INTRODUCTION 

Mild cognitive impairment (MCI) is often regarded as a 

prodromal stage of Alzheimer’s disease (AD) [1]. In some 

recent statistical researches, in each year,  nearly 10-15% MCI 
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patients tend to progress to probable AD [2, 3]. An early 

treatment is believed to be important to slow down the 

progression of AD, either at the MCI stage or during the 

preclinical state [4]. Therefore, identifying which individuals 

have MCI and what biomarkers relate to MCI are major goals 

of current researches. 

Rapid advances in neuroimaging techniques provide great 

potentials for the study of MCI. As a widely used non-invasive 

technique for measuring brain activities [5-7], functional 

magnetic resonance imaging (fMRI) has been successfully 

applied to explore early diagnosis of MCI before the occurrence 

of clinical symptoms. The popular diagnosis models include 

Bayesian network [8], support vector machine (SVM) [9], deep 

neural networks [10], multi-task and sparse learning [11], graph 

learning [12], multi-view learning [13], etc. However, due to 

the randomness and the asynchronization of the spontaneous 

brain activities, it is hard to train these models directly using the 

fMRI data. In contrast, functional brain network (FBN) [14-17], 

which is estimated based on fMRI data, can instead provide 

more reliable measurements. In fact, several recent researches 

have shown that MCI is closely related to the alterations in the 

“connections” of FBNs [1, 18, 19]. Putting another way, 

estimating a “good” FBN plays a crucial role in MCI 

identification. 

The most widely-used FBN estimation models are based on 

the second-order statistics (or correlations), and, according to a 

recent review [17], these correlation-based methods are 

generally more sensitive than complex high-order methods. 

Therefore, in this paper, we mainly focus on correlation-based 

methods, and will briefly review several representatives 

including Pearson’s correlation (PC) [20], sparse representation 

(SR) [21, 22], and their variants in Section II. 

Despite its seeming appeal to MCI identification, estimating 

an ideal FBN is still a challenging problem, due to poor quality 

and limited quantity of observed fMRI data from the 

community of MCI study. In particular, some existing fMRI 

data are acquired using older scanners. The resultant blood 

oxygen level dependent (BOLD) signals therefore tend to be 

heavily noisy, and only contain limited (e.g., ~100) time points 

or volumes. On the other hand, high-quality data are recently 

available, i.e., from the human connectome project (HCP). 

However, the current HCP only gathers data of healthy 

participants, and generally follows different distributions from 

other existing datasets. Thus, it cannot be directly incorporated 

into the MCI dataset. 
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Motivated by the transfer learning (TL) approach that can 

employ information from a source domain to help the problem 

in a target domain, in this paper, we propose to encode the 

information from HCP (source domain), and transfer it for 

guiding the FBN estimation in the MCI identification (target 

domain). More specifically, we first construct an FBN based on 

the high-quality HCP data. Then, we regard the HCP-based 

FBN as a network template, and transfer its connection 

information to the target domain (i.e., FBN estimation based on 

the low-quality data) by a weighted l1-norm regularized 

learning framework. Finally, we conduct experiments and 

illustrate that our proposed method works well on MCI 

identification task. For facilitating efforts to replicate our 

results, we also share the pre-processed data and source codes 

in https://github.com/Cavin-Lee/TransferLearning_FBN. 

In summary, we highlight the contributions of this paper as 

follows: 

1) To our best knowledge, this is the first work that employs 

the idea of transfer learning (TL) in FBN estimation, which 

in fact provides an effective way to reduce the 

requirements of data acquisition by fusing the information 

from existing data sources. 

2) Technically, we propose a simple method to conduct TL 

approach by a weighted l1-norm regularized framework. In 

this way, we can obtain FBNs with the link strength 

information shared by high-quality HCP data, which tends 

to result in higher reliability of built FBNs. 

3) Compared with the traditional regularized FBN estimation 

model in which the regularizer is pre-specific based on 

some prior information, the proposed method in this paper 

designs a data-driven regularizer that reduce the manual 

intervention and provide more accurate information due to 

the high-quality data from source domain. 

The rest of this paper is organized as follows. In Section II, 

we first introduce our data preparation pipeline and review 

several representative FBN estimation models/frameworks. 

Then, we propose the TL-based FBN estimation approach with 

its motivation, model and algorithm. In Section III, we describe 

experimental setting and evaluate our proposed method by 

experiments on MCI identification. In the end of this section, 

we also discuss our findings and prospects of our work. In 

Section IV, we conclude the paper. 

II. MATERIALS AND METHODS 

A. Data Preparation 

Two datasets are adopted in our experiments, since we aim to 

transfer information from one dataset into another dataset. In 

particular, we select the HCP1 as the data source, because it 

provides data with high quality and enough time courses. In 

contrast, a dataset shared in a recent study from Neuroimaging 

Informatics Tools and Resources Clearinghouse (NITRC2) [23] 

is adopted as the target data. Compared with the HCP data, the 

NITRC data have a lower spatial resolution and only contains 

80 time courses. In what follows, we give more details of these 

two datasets involved in this study. 

For calculating the template FBN, we use 76 participants 

 
1 https://www.humanconnectome.org/study/hcp-young-adult  
2 http://www.nitrc.org/projects/modularbrain/  

from HCP cohort as the source data for constructing the 

template network. These are all the data we can get from HCP 

website when we conducted our experiments. In fact, 20 

participants are enough for estimating a stable template, 

because we empirically found that the variances of functional 

connections tend to be zero with the increase of participant size, 

as shown in the Fig. S1. The IDs of these 76 participants are 

given in the supplement file, TABLE SIV3. Specifically, the 

resting-state fMRI in HCP, as the data source, was scanned by 

3T Siemens scanner at Washington University, with phase 

encoding in a right-to-left (RL) direction. The scanning 

parameters are TR = 720 ms, TE = 33.1 ms, flip angle = 52, 

imaging matrix = 91×109, 91 slices, resulting in 1200 volumes 

and voxel thickness = 2×2×2 mm. The preprocessing of the 

HCP data includes distortion correction, motion correction, 

registration, normalization and so forth. In addition, the HCP 

data is fixed by ICA method. For detailed discussion on the 

preprocessing pipelines on HCP data, please refer to [24-26]. 

Moreover, the NITRC data were obtained by 3T Siemens 

scanners (TRIO) with the following parameters: TR/TE = 

3000/30 mm, acquisition matrix size = 74×74, 45 slices, and 

voxel thickness = 2.97×2.97×3 mm with 180 repetitions. The  

preprocessing pipeline of the NITRC data is based on Statistical 

Parametric Mapping (SPM8) toolbox4 and DPARSFA (version 

2.2) [27]. In particular, the first 10 volumes of each subject are 

removed for signal stabilization. The slice acquisition timing 

and head motion correction operations are adopted for the 

remaining images [28]. In order to remove the low- and high- 

frequency artifacts, the fMRI series are band-pass filtered 

(0.01-0.08Hz). Then, regression of ventricular and WM signals 

as well as six head-motion profiles are conducted to further 

reduce the effects of nuisance signals. For spatial normalization 

of the fMRI data, the T1-image is first co-registered to the 

averaged motion corrected fMRI data, and then segmented 

using DARTEL [29], which produces a deformation field 

projecting each subject from the original individual space to 

standard Montreal Neurological Institute (MNI)  space. In the 

end, the time course with FD > 0.5 mm is scrubbed for 

alleviating the impact of the head movement on the signal. Note 

that, for estimating reliable FBN, an enough number of time 

courses is needed, i.e., 805. According, 45 subjects with MCI 

and 46 NCs are selected in this study. 

Finally, for both HCP and NITRC data, the pre-processed 

BOLD time series are partitioned into 90 ROIs (excluding the 

cerebellum region) based on the automated anatomical labeling 

(AAL) atlas [30]. As a result, we get two data matrices 𝐗𝐻 ∈
𝑅1200×90 and 𝐗 ∈ 𝑅80×90 for HCP and NITRC, respectively. 

B. Related Work 

After preprocessing the observed data, the subsequent task is 

FBN estimation. In this section, we first review two specific 

correlation-based FBN estimation methods, and then introduce 

a general FBN estimation framework. 

 
3 The relationships cross the participants are not considered in this paper. 

Instead, we randomly selected 76 participants for avoiding the artifacts, since 
we find that the estimated network template is already stabilized. 

4 http://www.fil.ion.ucl.ac.uk.spm 
5 We only use the first 80 time points of each subject to be consistent with 

each other, which actually provides an experimental condition for validating 

the FBN construction in small sample size cases. 
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1) Pearson’s Correlation 

As we know, PC is the most popular and the simplest scheme 

for estimating FBN. To start with, we first define the data 

matrix (i.e., BOLD signal matrix) 𝐗 ∈ 𝑅𝑇×𝑁, where T is the 

number of volumes and N is the number of ROIs. The fMRI 

time series associated with the ith ROI is represented by 𝐱𝑖 ∈
𝑅𝑇 , 𝑖 = 1, ⋯ , 𝑁 . Then, the edge weights of the FBN 𝐖 =

(𝑊𝑖𝑗) ∈ 𝑅𝑁×𝑁 can be calculated by PC as follows: 

𝑊𝑖𝑗 =
(𝐱𝑖−𝐱̅𝑖)𝑇(𝐱𝑗−𝐱̅𝑗)

√(𝐱𝑖−𝐱̅𝑖)𝑇(𝐱𝑖−𝐱̅𝑖)√(𝐱𝑗−𝐱̅𝑗)
𝑇

(𝐱𝑗−𝐱̅𝑗)

 .             (1) 

The PC-based FBN tends to have a dense topology, since the 

BOLD signals commonly contain noises. In practice, a 

threshold is generally used to sparsify the estimated FBN by 

filtering out some potential noisy or weak connections. For 

more details of the thresholding scheme, please refer to Section 

3.2.1 in [31]. 

Without loss of generality, we suppose that the BOLD signal 

𝐱𝑖  has been centralized and then normalized by 𝐱𝑖 ≜

(𝐱𝑖 − 𝐱̅𝑖) √(𝐱𝑖 − 𝐱̅𝑖)
𝑇(𝐱𝑖 − 𝐱̅𝑖)⁄ . As a result, PC can be 

simplified to the form 𝑊𝑖𝑗 = 𝐱𝑖
𝑇𝐱𝑗 , and this form exactly 

corresponds to the solution of the following optimization 

problem: 

𝑚𝑖𝑛𝐖‖𝐖 − 𝐗𝑇𝐗‖𝐹
2 ,                         (2) 

where ‖∙‖𝐹  denotes the F-norm of a matrix. According to a 

previous study [20], we can further introduce an l1-norm 

regularizer ‖𝐖‖1  into Eq. (2) for obtaining sparse PC-based 

FBN. 

2) Partial Correlation via Sparse Representation 

Despite its simplicity and popularity, PC can only model the 

full correlation, and neglect the interaction among multiple 

ROIs. To address this issue, partial correlation is proposed by 

regressing out the confounding effects from other ROIs [32]. 

Nevertheless, the partial correlation approach may be ill-posed 

due to the involvement of inverting the covariance matrix 𝚺 =
𝐗𝑇𝐗. A popular solution is to incorporate an l1-norm regularizer 

into the partial correlation model, resulting in the SR-based 

FBN estimation scheme as follows. 

𝑚𝑖𝑛𝐖 ∑ ‖𝐱𝑖 − 𝑊𝑖𝑗𝐱𝑗‖
2

+ 𝜆 ∑ |𝑊𝑖𝑗|𝑖≠𝑗
𝑛
𝑖,𝑗=1 ,              (3) 

Equivalently, it can be further rewritten as the following form: 

𝑚𝑖𝑛𝐖‖𝐗 − 𝐗𝐖‖𝐹
2 + 𝜆‖𝐖‖1, 

  s.t.     𝑊𝑖𝑖 = 0, ∀𝑖 = 1,2, … , 𝑛                   (4) 

where the constraint 𝑊𝑖𝑖 = 0 aims to avoid the trivial solutions. 

It should be noted that the optimal solution 𝐖∗ of Eq. (4) may 

be asymmetric. To be consistent with PC, the SR-based FBN is 

simply defined as  𝐖∗ = (𝐖∗ + 𝐖∗𝑻)/2. Of course, different 

strategies [33, 34]can be used to symmetrize the estimated FBN, 

but this goes beyond the main focus of this paper. 

3) Regularized FBN Estimation Framework 

According to the above description, both PC- and SR-based 

FBN estimation models can be summarized into the following 

regularized FBN learning framework: 

min𝐖𝑓(𝐗, 𝐖) + 𝜆𝑅(𝐖), s. t. 𝐖 ∈ ∆,                  (5) 

where 𝑓(𝐗, 𝐖)  is the data-fitting term for capturing some 

statistical “structures” of the data, and 𝑅(𝐖)  is the 

regularization term for stabilizing the solutions and encoding 

biological priors of FBN. In addition, for obtaining a better 

FBN, some specific constraints such as symmetry or positive 

semi-definiteness may be included in ∆ for shrinking the search 

space of  𝐖. The 𝜆 is a regularization parameter to control the 

balance between the first (data-fitting) term and the second 

(regularization) term. 

In fact, many recently-proposed FBN estimation models 

[35-38] can be unified under this regularized framework with 

different design of the two terms in Eq. (5). The popular 

data-fitting terms include ‖𝐖 − 𝐗𝑇𝐗‖𝐹
2  used in Eq. (2) and 

‖𝐗 − 𝐗𝐖‖𝐹
2  used in Eq. (4), while the popular regularization 

terms include l1-norm [32], trace norm and their combination 

[23], etc. Beyond unifying the existing methods, the regularized 

framework also provides a platform for developing new FBN 

estimation methods. In the following section, we will propose 

our TL model based on this framework. 

C. NERTL: Network Estimation via Regularized Transfer 

Learning  

1) Motivation 

As discussed earlier, a well-estimated FBN can provide 

potentially effective measurements for identifying MCI and 

exploring MCI-related biomarkers. However, the lack of 

ground truth and our limited understanding of the brain make it 

hard to estimate a “good” FBN. In practice, several strategies 

are believed to be helpful for improving the estimation of FBNs, 

mainly including 1) acquisition of high-quality fMRI data, 2) 

application of sophisticated data preprocessing pipeline, and 3) 

introduction of reasonable priors into the network modeling, 

etc. 

There is no doubt that high-quality data lie at the most 

fundamental extreme for FBN estimation. However, in the 

community of MCI study, most of the accumulated data were 

acquired by low-end scanners (at least from the current 

perspective), thus generally containing short time series with 

limited volumes and complex noises. Although more advanced 

imaging technologies are now available to acquire high-quality 

data for MCI study [39, 40], this is obviously a time-consuming 

and laborious work with high costs (e.g.  maintenance of the 

system or equipment cost). What’s worse is that, compared 

with rich data accumulation, it is exceedingly difficult to recruit 

a great amount of participants with MCI. 

On the other hand, nowadays many “big” data with high 

quality have been collected from the healthy participants and 

shared by, for example, HCP. A natural problem is whether the 

high-quality HCP data can be used to estimate better FBNs for 

improving MCI identification. Unfortunately, the high-quality 

HCP data cannot be directly added into the low-quality MCI 

data, since they do not meet the independent and identically 

distributed (i.i.d) condition (i.e. collected from different 

subjects and scanners). However, it is fortunate that TL 

provides a way of mapping the information/knowledge from 

the source domain to the target domain without the request of 

i.i.d assumption [41]. Therefore, in this paper, we consider the 

high-quality HCP data as the source domain and the 

low-quality data involved in the MCI study as the target 

domain, and expect to design a method that can effectively 

employ the information or knowledge in the source domain to 

help the problem in the target domain. Finally, we summarize 

our basic motivation or idea in Fig. 1. Compared with the 
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traditional FBN estimation method, the proposed framework 

provides a “guider” that, in the view of TL, employs the 

information from the source domain (high-quality HCP data) to 

help the FBN estimation based on low-quality data in the target 

domain. 

 

2) The Proposed Model and Algorithm 

To realize the above idea, in this paper, we propose a scheme 

named NERTL for conducting Network Estimation based on 

Regularized TL. More specifically, NERTL estimates FBN in 

two sequential steps. First, it constructs an FBN 𝐇 based on the 

high-quality HCP data, and considers it as a “good” network 

template that provides more reliable structures than the FBN 

based on low-quality data. The template FBN H is estimated by 

Pearson correlation, since it can naturally model the pairwise 

functional connectivity strength [19]. Then, the second step is 

to transfer the structural information from the high-quality data. 

Specifically, NERTL uses the link strength information in the 

template network H as the guidance by introducing a weighted 

sparse prior, and results in the following FBN learning 

framework: 

𝑚𝑖𝑛𝐖𝑓(𝐗, 𝐖) + 𝜆 ∑ 𝛾𝑖𝑗|𝑊𝑖𝑗|𝑖≠𝑗 ,                  (6) 

where 𝑓(𝐗, 𝐖) and ∑ 𝛾𝑖𝑗|𝑊𝑖𝑗|𝑖≠𝑗  are the data-fitting term and 

regularization term, respectively. The data-fitting term 𝑓(𝐗, 𝐖) 

models the statistical information, while the regularization term 

∑ 𝛾𝑖𝑗|𝑊𝑖𝑗|𝑖≠𝑗  encodes the sparsity prior, and meanwhile 

transfers the information from the high-quality data to the 

current problem. The parameter 𝜆 controls the balance between 

the two terms in the objective function. Particularly, the 

parameter 𝛾𝑖𝑗  plays a key role in the link information 

transferring, which imposes a “penalty” on each edge weight 

𝑊𝑖𝑗 of the FBN. If two ROIs have a strong link in the template 

network 𝐇, then the link between these two ROIs should be 

penalized less in the FBN estimation model. On the contrary, 

the weak link in H should correspond to more penalty on 

weights of the target FBN. Thus, we define 𝛾𝑖𝑗 as follows: 

𝛾𝑖𝑗 = 𝑒−ℎ𝑖𝑗
2

,                                    (7) 

where ℎ𝑖𝑗 is the connection weight between ROI i and ROI j in 

the template network 𝐇. In this way, NERTL can transfer the 

link strength information from the template network to the 

target FBN under estimation. 

By instantiating 𝑓(𝐗, 𝐖) in Eq. (6), we can get at least two 

specific NERTL models. If adopting ‖𝐖 − 𝐗𝑇𝐗‖𝐹
2  in the 

PC-based method as the data-fitting term, we have the PC+TL 

model as follows: 

𝑚𝑖𝑛𝐖‖𝐖 − 𝐗𝑇𝐗‖𝐹
2 + 𝜆 ∑ 𝛾𝑖𝑗|𝑊𝑖𝑗|𝑖≠𝑗 .                  (8) 

Similarly, if adopting the SR-based model in NERTL scheme, 

we have SR+TL model as follows: 

𝑚𝑖𝑛𝐖‖𝐗 − 𝐗𝐖‖𝐹
2 + 𝜆 ∑ 𝛾𝑖𝑗|𝑊𝑖𝑗|𝑖≠𝑗 .                  (9) 

In the view of the consistent human evolution and the 

different individual development, the brain network can be 

decomposed into common and personalized parts. In the 

proposed framework, the regularization term transfers the link 

strength information from the high-quality data for modeling 

the common part of FBN, while the data-fitting term models the 

individual part of FBN that may contain potentially 

discriminative information. Therefore, the proposed method 

can not only reduce the requirement of the data, but also 

estimate FBNs with better performance for discriminating 

MCI. 

Based on the regularized FBN estimation framework, in the 

following, we give the optimization algorithm for estimating 

FBN by PC+TL and SR+TL methods. First, for the data-fitting 

termf(X, W) = ‖X − XW‖F
2 (or ‖W − XTX‖F

2), its gradient w.r.t 

W is ∇Wf(X, W) = 2XTXW − XTX  (or W − XTX). Therefore, 

we have the following update formula for 𝐖, according to the 

gradient descent criterion: 

𝐖𝑘 = 𝐖𝑘−1 − 𝛼𝑘∇𝐖𝑓(𝐗, 𝐖𝑘−1),              (10) 

where 𝛼𝑘  denotes the step size of the gradient descent. The 

initial value of the step size 𝛼𝑘 is set to 0.001, and it will be 

adaptively updated in the following steps according to the used 

SLEP toolbox6. 

Then, for the regularization term 𝜆𝛾𝑖𝑗‖𝐖‖1 in both PC+TL 

and SR+TL, it is non-differentiable, which makes the problem 

nontrivial. In this study, we adhere to the proximal method [42], 

due to its simplicity and efficiency in solving these convex but 

non-differentiable problems. The proximal operator for 

weighted l1-norm is defined as follows [20]: 

pr(𝐖) = [𝑠𝑔𝑛(𝑊𝑖𝑗) × max (𝑎𝑏𝑠(𝑊𝑖𝑗) − 𝜆𝛾𝑖𝑗 , 0)]𝑁×𝑁, (11) 

where 𝑠𝑔𝑛(𝑊𝑖𝑗)  and 𝑎𝑏𝑠(𝑊𝑖𝑗)  return the sign and absolute 

value of 𝑊𝑖𝑗 , respectively. As a result, two main steps are 

involved for solving the proposed FBN estimation methods, as 

given in the following Algorithm I. 

 
 

6 http://www.yelab.net/software/SLEP 

   

 
Fig.1. Given observed data, in the previous works, the improvement of the FBN 
estimation is mainly based on 1) high-quality data, 2) sophisticated 

preprocessing pipeline, and 3) reasonable priors. However, it is hard to obtain 

an “ideal” result, since the data acquisition is hard to control and the 
understanding of brain is limited. To alleviate this issue, in this paper, a basic 

idea is setting the FBN of the high-quality data as a “guider” to help the FBN 

estimation task, which can efficiently provide more useful information and thus 
can reduce the dependency for data. Specifically, in this paper, we employ the 

link-strength information of high-quality data for guiding the FBN estimation. 

ALGORITHM I 
ESTIMATING FBN BASED ON NERTL 

Input: 𝐗, 𝜆, 𝐇 

Output: 𝐖  

Initialize 𝐖0; 

while not converged 

          𝐖𝑘+1 = 𝐖𝑘 − 𝛼𝑘∇𝐖𝑓(𝐗, 𝐖𝑘); 

          𝐖𝑘+1 = 𝑝𝑟(𝐖𝑘+1); // based on Eq. (11). 

 end 

 return  𝐖; 
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III. EXPERIMENTS AND RESULTS 

A. Experimental Setting 

In this study, we estimate FBNs based on NITRC data using 

different methods including PC, SR, and the proposed PC+TL 

and SR+TL. For PC+TL and SR+TL, they need a pre-specific 

network “template”. In addition, we also introduce two 

traditional regularizer as baseline methods (i.e. Low rank: 

trace-norm, LR and Ridge Regression: 𝑙2 -norm, RR) as 

baseline for comparison. Therefore, we first construct a set of 

FBNs by conducting PC, mainly due to its simplicity, on HCP 

source data. Then, we obtain the FBN template by averaging 

the FBNs across all selected subjects. Note that, there is a 

regularization parameter 𝜆 in all of these models, which may 

significantly affect the network structures and then the ultimate 

classification results. Thus, we set the parameter 𝜆 by a linear 

search in the range of [0.01, 0.05, 0.1, 0.15, … , 0.9, 0.95, 0.99]. 

After obtaining the FBNs for all participants, we use them 

for identifying subjects with MCI from NCs. In this study, we 

select the upper triangular elements of the estimated FBN as 

input features to reduce the dimension, since the adjacency 

matrix of FBN is symmetric. Meanwhile, to alleviate the 

interference of the classification and feature selection 

procedure, we only adopt the simplest feature selection method 

(t-test with fixed p-value = 0.017) and the most popular support 

vector machine (SVM) [43] classifier (linear kernel with 

default parameter C = 1) in our experiment. 

Further, the involved FBN estimation methods are tested by 

the leave-one-out (LOO) cross validation, for the reason of 

limited samples in the NITRC data. Specifically, in each 

iteration, only one subject is left out for testing, while the 

remaining subjects are used for selecting features and training 

the classifier. Specifically, an inner LOO cross validation is 

conducted on the training data for determining the optimal 

value of the regularization parameter λ, which is based on the 

classification accuracy in each inner loop. 

In the end, the classification performance of different 

methods is evaluated by a set of commonly used quantitative 

measures, including accuracy, sensitivity and specificity, which 

are defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
，                   (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                               (13) 

S𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
.                               (14) 

where TP, TN, FP and FN indicate true positive, true negative, 

false positive and false negative, respectively. Additionally, the 

receiver operating characteristic (ROC) curve and the area 

under curve (AUC) are also adopted for measuring the MCI 

classification performance [44]. 

B. Results 

1) FBN Estimation 

In this section, we first present the source FBN mapped onto 

the International Consortium for Brain Mapping (ICBM) 152 

surface by BrainNetViewer toolbox [45], as shown in Fig. 2. 

 
7  We simply adopted an empirical setting for the p-value, i.e., 0.01, 

according to several related papers [21-23]. Besides, we also made experiments 
under different p-values of 0.05 and 0.005. The experimental results are 

proposed in Tables SI and SII, respectively, in the supplement files. 

For a better visualization, we only keep the top 10% strongest 

connections. 

 0

 
Then, for NITRC data, we show the averaged FBN of NCs 

estimated by 6 different methods in Fig. 3. It can be easily 

observed that the topological structure between the PC-based 

and SR-based FBNs is quite different, since they employ 

different data-fitting terms corresponding to full correlation and 

partial correlation, respectively. In contrast, the TL has a 

limited influence on the topological structure of the estimated 

FBN. However, based on a quantitative evaluation, we found 

that TL can improve some graph measurements of the 

estimated FBN, i.e., under the situation of 20% sparsity, the TL 

scheme can achieve 20.18% and 7.01% increase in modularity 

score [46] for PC and SR method, respectively. 

 

 
Fig. 2. The FBN template estimated on the HCP data. We only keep 10% 

strongest connections for a better visualization. The thickness of the line 

represents the weight of the connection. This figure is drawn by BrainNetViewer 

toolbox (https://www.nitrc.org/projects/bnv/). 
 

        
(a)                                            (b) 

       
(c)                                            (d) 

        
(e)                                          (f) 

Fig. 3. The adjacency matrices of the estimated FBNs by (a) PC, (b) PC+TL, 

(c) LR, (d)RR, (e)SR and (f) SR+TL with 𝜆 = 0.5. Note that, all weights are 

normalized to the interval [-1 1] for convenience of comparison between 
different methods. 
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2) MCI Classification 

The MCI classification results on NITRC dataset is reported 

in TABLE I and Fig. 4. For PC- and SR-based FBN estimations, 

the proposed methods significantly outperform the baseline 

under the 95% confidence interval with p-value = 0.0015 and 

0.0021, respectively, based on the DeLong’s non-parametric 

statistical significance test [47]. 

 

 

 
In Fig. 5, we show the classification accuracy corresponding 

to different values of the regularized parameter, and found that 

most of the methods are sensitive to this parameter. However, 

compared with the traditional PC and SR methods, the 

proposed methods can achieve more stable results. In addition, 

the experimental results in Fig. 5 reveal that the proposed 

method can improve the final performance at most of the 

parametric levels. Especially the SR+TL achieves the best 

performance among all the comparison methods. Therefore, we 

believe that the proposed NERTL scheme could transfer some 

useful information (e.g., the more reliable topological structure) 

from the high-quality source data for guiding the current FBN 

estimation, or improving the discrimination of the estimated 

FBNs. In each inner LOOCV loop, we selected the optimal 

parameter λ with the highest classification accuracy. Here, we 

report the count of selected optimal parameter λ in each loop as 

shown in Fig, 6. We can find that the result of the optimal 

parameter selection seems following a Gaussian distribution 

and the optimal parameter is mainly concentrated around λ =
0.5. 

 
For further illustrating the strength of the proposed TL 

scheme on the poor quality data, a verification experiment is 

designed. In particular, we generate the toy fMRI data by 

randomly remove the time points to simulate the low duration 

data for testing. The result is given as follows: 

 

 

3) Discussion 

Although acquiring high-quality data is beneficial to 

estimate better FBNs, it may be expensive and even impossible 

for some specific studies. Therefore, with the help of a 

powerful “guidance” from newly available high-quality data, 

we aim to discover more reliable brain patterns under poor data, 

and propose a simple TL scheme NERTL towards better FBN 

estimation. It should also be noted that the SR-based method 

outperforms the LR methods after incorporating TL module, 

which also illustrate the effectiveness of the proposed TL 

scheme. Based on the generation data, we can find that the 

proposed TL can provide robust biomarkers even under the 

poor quality data. Specifically, the proposed scheme is adopted 

on the correlation-based FBN models and verified by MCI 

identification task on the NITRC dataset. Note that, the 

proposed scheme is also suitable for the high-quality data, we 

further conduct experiment on ADNI dataset, and the result is 

provided in the supplement file, TABLE SIII, which also 

illustrates the effectiveness of the proposed method. 

Now, a natural problem is which features (i.e., connections 

or corresponding ROIs in FBN) contribute to improve the 

discrimination of the estimated FBNs. Here, we only take 

TABLE I 
CLASSIFICATION PERFORMANCE CORRESPONDING TO DIFFERENT FBN 

ESTIMATION METHODS ON NITRC DATASET.  

Method AUC Accuracy Sensitivity Specificity 

PC 0.5986 59.34 60.00 58.70 

PC+TL 0.7376 68.13 62.22 73.91 

LR 0.8381 79.12 80.00 78.24 

RR 0.7773 68.13 68.89 67.39 

SR 0.8130 72.53 68.89 76.09 

SR+TL 0.9106 82.42 82.22 82.61 

 

   
Fig. 4. The ROC curve of the classification performance for PC, PC+TL, LR, 

RR, SR and SR+TL methods. 

 

  
Fig. 5. Classification accuracy based on 4 different methods and 21 different 

values of the regularized parameter, changing in the following range of 

[0.01, 0.05, 0.1, … , 0.95, 0.99]. The results are obtained by LOO test. 

 

0.4
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1

1 2 3 4 5 6 7 8 9 101112131415161718192021
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Fig. 6.  The frequency of the selected optimal values of parameter λ in the 

inner loops, where the horizontal axis represents the parameter values in the 
searching space. 

 

  
Fig. 7.  The Classification result on the generated data, the Y Label represents 
the left volumes of the toy fMRI data. For each time length, we run 10 loop for 

validation. 
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SR+TL as an example due to its high discrimination, and select 

the most discriminative connections for identifying MCI based 

on t-test. The top 58 most discriminative “connections” are 

visualized in Fig. 7 with the thickness of arc indicating the 

discriminative power that is inversely proportional to its 

p-values. Furthermore, we compare these discriminative 

connections with those from SR, and found that the NERTL 

provides 29 new discriminative connections as shown in Fig.8. 

From such a set of connections, we note that several of them, 

such as the connections in the default mode network across the 

regions of superiormedial frontal gyrus, medial orbitofrontal 

gyrus, parahippocampus,  etc., may be biologically associated 

with MCI identification, according to previous study [48]. 

 
In addition, compared with the estimated FBNs with or 

without NERTL scheme, we can easily find that the 

connections between Temporal, Frontal, Lingual, Cuneus and 

so forth regions are enhanced (in the view of absolute values), 

which may reveal some potential FBN patterns. However, it is 

beyond the scope of this paper. In the future, we plan to 

investigate this interesting problem by more well-designed 

experiments. In addition, according to previous studies [48, 49], 

these regions are generally involved in the default mode 

network  [50], and believed to be biologically associated with 

MCI identification, which can further explain the improvement 

of the proposed method. 

 

Note that, we only test our model on the AAL template as an 

easy example. Actually, we would like to emphasize that the 

proposed FBN estimation framework can be applied on any 

ROI template, such as AAL [30], Jiang246 [51] or the data 

driven ROI (e.g. GIG-ICA [52]). Note that, a distribution 

alignment operation is needed for the data driven based ROI, 

since the target domain and source domain do not follow the 

i.i.d assumption. However, this is beyond the scope of this 

paper. In the future work, we plan to investigate this interesting 

problem by distribution alignment design such as domain 

adaption or disentangling trick, as the data-driven approaches 

are more attractive for the FBN estimation. 

IV. CONCLUSION 

In this paper, we develop a novel and general approach 

named NERTL to transfer the information from the 

high-quality data into FBN estimation based on a weighted 

l1-norm regularized learning framework. The proposed method 

is quite meaningful, as it can sufficiently employ the data that 

do not meet the i.i.d assumption, and potentially relax the 

requirement of data acquisition. The experimental results on 

MCI classification demonstrate the effectiveness of the 

proposed method. To our best knowledge, the proposed method 

is the first attempt to use the idea of transfer learning for FBN 

estimation. In addition, the proposed TL scheme is a general 

module, meaning that, besides the PC- and SR- based models, it 

can be easily adopted on other FBN estimation models such as 

Bayesian network, and we can incorporate some other useful 

priors such as modularity, scale-free into the FBN estimation 

models. However, despite its efficiency, we acknowledge that 

the proposed scheme still contain limitations, for example, we 

select the anatomical template as ROI to estimate FBNs, which 

bigger ROIs tends to connect more than the weaker ROIs. 

Therefore, the results may lead to disproportionately skewed. 

In the future work, we will consider other functional template to 

reduce the effects of ROI size for better result. Also, we plan to 

test more estimation approaches and priors, and conduct a more 

systematical study on FBN estimation in the TL view. 
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