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Abstract 

 G-protein coupled receptors (GPCRs) are the largest protein family of drug targets. 

Detailed mechanisms of binding are unknown for many important GPCR-ligand pairs due to the 

difficulties of GPCR recombinant expression, biochemistry, and crystallography. We describe 

our new method, ConDock, for predicting ligand binding sites in GPCRs using combined 

information from surface conservation and docking starting from crystal structures or homology 

models. We demonstrate the effectiveness of ConDock on well-characterized GPCRs such as the 

2 adrenergic and A2A adenosine receptors. We also demonstrate that ConDock successfully 

predicts ligand binding sites from high-quality homology models. Finally, we apply ConDock to 

predict ligand binding sites on a structurally uncharacterized GPCR, GPER. GPER is the G-

protein coupled estrogen receptor, with four known ligands: estradiol, G1, G15, and tamoxifen. 

ConDock predicts that all four ligands bind to the same location on GPER, centered on L119, 

H307, and N310; this site is deeper in the receptor cleft than predicted by previous studies. We 

compare the sites predicted by ConDock and traditional methods that utilize information from 

surface geometry, surface conservation, and ligand chemical interactions. Incorporating sequence 

conservation information in ConDock overcomes errors introduced from physics-based scoring 

functions and homology modeling. 
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Introduction 

 GPCRs (G-protein coupled receptors) are the largest family of drug targets and the 

targets of >30% of all drugs. Because they are membrane proteins with flexible and dynamic 

structures, biochemical and crystallography experiments are difficult. Only ~50 GPCRs out of > 

800 in the human genome have been crystallized despite their great pharmacological importance. 

Recent advances in homology modeling have allowed more accurate ligand docking (1), but 

GPCR modeling remains challenging due to conformational flexibility and abundance of flexible 

loops.  

Various computational approaches have been used to predict ligand binding sites in G-

protein coupled receptors. Traditional docking methods compute the lowest energy pose of a 

ligand fit to a receptor surface. Such methods are highly dependent on the form of the energy 

scoring function and accuracy of the receptor model structure (2–4). These methods have been 

used to identify ligand binding sites and build pharmacophores for G-protein coupled receptors 

(GPCRs) (5–7), but the lack of diverse GPCR crystal structures presents serious challenges to 

using docking methods for identification of ligand binding sites. Moreover, homology models 

usually cannot be used to identify ligand binding sites or for docking without extensive 

optimization (4, 8). An underappreciated feature that can be used to predict ligand binding sites 

is surface or sequence conservation. Binding sites for particular ligands are often conserved, 

although systematic sequence variation can encode ligand specificity (9–11). The massive 

abundance of genomic data for GPCRs can provide strong constraints for possible ligand binding 

sites even without chemical or structural information (12–14). 

There has been less research on methods that combine information from chemical 

interactions, geometric surface analysis, and bioinformatics. Hybrid strategies, such as Concavity 
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(15), have demonstrated superior performance in predicting ligand binding sites compared to 

single-mode approaches. Concavity scores binding sites by evolutionary sequence conservation, 

as quantified by the Jensen-Shannon divergence (11), and employs geometric criteria of size and 

shape. Here, we describe and apply a new hybrid strategy, ConDock, that combines information 

from surface conservation with intermolecular interactions from docking calculations. We 

compare our results from those previously published using purely docking-based and other 

hybrid methods (16, 17). We demonstrate the effectiveness of ConDock for identifying ligand 

binding sites for two GPCRs with known crystal structures, the 2 adrenergic and A2A 

adenosine receptors. 

 We also apply ConDock to predict the binding sites of four ligands to the less 

characterized G-protein coupled estrogen receptor (GPER, formerly known as GPR30), a 

membrane-bound estrogen receptor. GPER is proposed to mediate rapid estrogen-associated 

effects, cAMP regeneration, and nerve growth factor expression (18–22). GPER is known to 

bind estradiol and the estrogen receptor inhibitors, tamoxifen and fulvestrant, that are used to 

treat breast cancer (Fig. S1). Recently, GPER-specific ligands G1 and G15 were discovered (23, 

24). G1 and G15 are structurally similar, differing by only an acetyl group. G1 is an agonist, 

whereas G15 is an antagonist. No crystal structure of GPER is available, and details of ligand 

binding are unknown. We discuss how the ConDock-predicted binding sites provide a basis for 

G1 and G15 binding specificity. 

 

Results 

 The A2A adenosine and 2 adrenergic receptors are the most heavily studied GPCRs by 

crystallography. We used them as standards to validate the effectiveness of ConDock for 
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predicting ligand binding sites. For both receptors, we performed cross-docking of an agonist 

and inverse agonist against a crystal structure of the receptor bound to a different agonist or 

inverse agonist: ligands were cross-docked rather than self-docked into its own crystal structure. 

Docking was performed with SwissDock which has demonstrated high accuracy in docking 

ligands into receptors without prior knowledge of the binding site and also includes a user-

friendly web interface (25). SwissDock docking results were then ranked by the ConDock 

scoring function (Table 1). Residues within 3.5 Å of the highest scoring predicted ligand sites 

were compared with the poses in the crystal structures. In addition, we determined the distances 

between the centers of mass for the poses in the crystal structure and those scored highest by 

ConDock. As negative controls, we docked morphine to the active conformations of the A2A 

adenosine and 2 adrenergic receptors. 

  

Table 1. ConDock predicted ligand binding sites for A2A adenosine and 2 adrenergic 

receptors using crystal structures. 

 

GPCR Ligand Distance to 

crystal structure 

pose (Å) 

ConSurf 

conservation 

score 

SwissDock 

energy Score 

ConDock score 

A2A 

adenosine  

adenosine 

(agonist) 

1.8 0.86 -1702.1 -1458.9 

A2A 

adenosine  

ZM241385 

(inverse 

agonist) 

1.0 0.86 -1534.7 -1319.8 

2 

adrenergic  

epinephrine 

(agonist) 

0.4 0.87 -1112.0 -970.7 

2 

adrenergic  

carazolol 

(inverse 

agonist) 

1.8 0.78 -1534.7 -1319.8 
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Figure 1. Predicted and experimental ligand binding sites in A2A adenosine and 2 

adrenergic receptors. Superposition of crystal structure with ligand bound (red) with 

ConDock predicted pose (blue). A) Adenosine with A2A receptor. B) ZM241385 with A2A 

receptor. C) Epinephrine with 2 adrenergic receptor. D) Carazolol with 2 adrenergic 

receptor. 

B) 

C) D) 

The highest ranked pose for adenosine within the A2A adenosine receptor was within 1.8 

Å of the ligand position in the crystal structure. (Fig. 1A). The ConDock-predicted binding site 

had a ConSurf conservation score of 0.86 and is essentially the same as the experimental 

binding. The highest ranked site for ZM241385 within the A2A adenosine receptor was within 

1.0 Å of the ligand’s position in the crystal structure. In this top pose, ZM241385 is found within 

the same binding site as that observed in the crystal structure (Fig. 1B), with a ConSurf 

conservation score of 0.86.                                 

                                

                                                                                            

                                   

 

 

 

A) 
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The highest ranked pose for epinephrine within the 2 adrenergic receptor was within 0.4 

Å of the ligand position within the crystal structure (4LDO). This binding site for epinephrine 

was again essentially the same as the observed binding pocket (Fig. 1C). The highest ranked 

pose for carazolol within the 2 adrenergic receptor was within 1.8 Å of the ligand’s position 

within the crystal structure (2RH1). This binding site for carazolol was essentially the same as 

that in the crystal structure (Fig. 1D). This pose possessed a ConSurf conservation score of 0.78. 

The extremely accurate placement of both agonists and antagonists demonstrates ConDock’s 

effectiveness when a GPCR crystal structure is available. For our negative control case, 

SwissDock failed to dock morphine within the ligand binding cavity of the receptors at all (Fig. 

S1). This demonstrates the utility of including docking in a hybrid strategy to eliminate false 

positives for ligand binding sites. 

Unfortunately, crystal structures are not available for many GPCRs. The most valuable 

use of ConDock is predicting drug binding sites in homology models. By using surface 

conservation information, ConDock is potentially less sensitive to homology model inaccuracies 

than other ligand binding site prediction methods that are based purely on geometric methods. To 

demonstrate the ability of ConDock to work with homology models, we created models of four 

GPCRs, the 2 adrenergic, A2A adenosine, 5HT2B serotonin, and mu opioid receptors, that did 

not use the known crystal structures as templates. We used I-TASSER (26) for modeling. I-

TASSER created fairly accurate models of all four receptors, with rmsds between the models and 

crystal structures ranging from a best of 0.85 Å for the 2 adrenergic receptor (pdb 2rh1) to a 

respectable 2.1 Å for the A2A adenosine receptor (pdb 5k2a). We used ConDock to predict the 

binding sites of the 2 adrenergic receptor with carazalol, A2A adenosine receptor with 

ZM241385, 5HT2B serotonin receptor with methysergide, and mu opioid receptor with BU72. 
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Not surprisingly, ConDock performed best with the highly accurate 2 adrenergic homology 

model, with only 1.8 Å between the predicted and crystal structure ligand poses centers of mass 

(Table 2, Fig. 2). Performance decreases for the other three receptors with less reliable homology 

models. The A2A adenosine and mu opioid receptors (pdb 5c1m) have distances of 3-4 Å 

between predicted and crystal structure ligand poses. In this distance range, most of the residues 

are the same between the predicted and crystal structure binding sites, supporting a successful 

prediction. ConDock performs less well with the 5HT2B serotonin receptor (pdb 6drz) for which 

the distance between the predicted and actual ligand binding sites was 7.3 Å. In the 5HT2B 

receptor structure, the ligand, methysergide, binds very deep in the receptor. Inaccurate modeling 

of the receptor makes it difficult or impossible to dock the ligand into the deep, restricted binding 

site. 

 

Table 2. ConDock predicted ligand binding sites for four GPCRs using homology models. 

 

GPCR Ligand Rmsd between 

homology model 

and crystal 

structure (Å) 

Distance between 

ConDock and 

crystal structure 

poses (Å) 

A2A 

adenosine  

ZM241385 

 

2.1 4.2 

2 adrenergic  carazolol 

 

0.8 1.8 

Mu opioid BU72 1.8 3.2 

5HT2B 

serotonin 

methysergide 1.8 7.3 
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Figure 2. Predicted and experimental ligand binding sites for homology models of 

four GPCRs. Superposition of crystal structure with ligand bound (red) with ConDock 

predicted pose (blue). A) ZM241385 with A2A adenosine receptor. B) Carazolol with 2 

adrenergic receptor. C) BU72 with mu opioid receptor. D) Methysergide with 5HT2B 

serotonin receptor. 

C) D) 

B) A) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After demonstrating the accuracy of ConDock for high quality homology models, we 

applied ConDock to predict the binding sites in a GPCR, GPER (G-protein coupled estrogen 

receptor), which has not yet been crystallized. To predict the potential ligand binding sites in 

GPER, we first created a homology model using GPCR-I-TASSER (27). GPCR-I-TASSER has 

been shown to be the most accurate GPCR homology modeling software package. GPCR-I-

TASSER identified the closest matching crystal structure to GPER to be the CCR5 chemokine 

receptor (PDB 4mbs) with 23% sequence identity. GPCR-I-TASSER used this crystal structure 
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along with 9 other GPCR crystal structures as templates for homology modeling. The GPER 

homology model differs from chain A of the crystal structure of CCR5 chemokine receptor with 

RMSD of 0.96 Å across C atoms (Fig. S3) and has an excellent Ramachandran plot (Fig. S4). 

The primary differences are in the extracellular loop between helices 4 and 5 and the intracellular 

loops between helices 5 and 6, and after helix 7. These two intracellular loops are predicted by 

ERRAT (28) to be the least reliable based on the likelihood of atom pair type interactions from 

high-resolution crystal structures (Fig. S5). As the sites with the greatest predicted errors are on 

the intracellular face of GPER, far from the ligand binding site, they are less likely to affect our 

ligand prediction study, giving us greater confidence in our homology model. 

 Using the SwissDock server (25), we docked structures of the four ligands E2, G1, G15, 

and tamoxifen (Fig. S1) to the homology model of GPER. Most of the docked sites from 

SwissDock were not located on the extracellular face of GPER and thus were considered 

nonviable (Fig. S6). The shortcomings of a purely physics-based scoring function such as that 

used by SwissDock in predicting ligand binding is not surprising given the lack of an 

experimental crystal structure and well-known limitations of current computational methodology 

(29–32).  

We then ranked all ligand binding sites generated by SwissDock using the combined 

ConDock score. The ConDock score is simply the product of the ConSurf (33, 34) binding 

surface sequence conservation score and the SwissDock FullFitness energy score (35). A highly 

negative ConDock score is associated with a more probable ligand binding site. For all four 

ligands, the ConDock score identified one or two ligand binding sites and poses that clearly 

outscored other candidates (Table 3). ConDock identified the same approximate binding site for 

all four ligands, although this was not an explicit criterion in the calculations (Fig. 3). The 
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average ConSurf conservation score across the four ligand binding sites is 0.82 (1.0 represents 

complete conservation), indicating that the site is highly but not completely conserved. The 

binding site is located deep in the receptor cleft, although depth was not a criterion in the 

prediction calculation. Given the lack of additional experimental evidence for the location of the 

ligand binding site, the proposed ConDock sites are physically reasonable. 

 

Table 3. Scores for predicted binding sites and poses for GPER ligands.  

Ligand ConSurf conservation 

score  

SwissDock energy score  Combined ConDock 

score 

E2, pose 1 0.84 -964.9 -813.2 

E2, pose 2 0.80 -967.9 -774.3 

G1 0.85 -970.7 -825.1 

G15 0.8 -974.6 -779.7 

Tamoxifen, 

pose 1 

0.81 -947.9 -763.6 

Tamoxifen, 

pose 2 

0.81 -947.5 -763.6 
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 We found two promising binding sites for E2 in GPER. The two sites are 4.4 Å apart, 

located deep in the receptor cleft (Fig. 3). E2 is oriented perpendicular to the lipid membrane and 

rotated about 180° between the two poses. The conservation scores for these two poses are 0.84 

and 0.80. The energy scores of the two poses are similar. The amino acids contacting E2 in pose 

1 are conserved in GPERs from six species, and only one residue contacting pose 2, H282, varies  

across species. In the top ranked pose, there is a hydrogen bond between the inward pointing D-

ring hydroxyl group of E2 and the carboxyl terminal on E115. Hydrophobic interactions are 

present between E2 and non-polar residues L119, Y123, P303, and F314. In the second ranked 

pose, the inward pointing A-ring hydroxyl group of E2 makes a hydrogen bond with N310. This 

pose is in a less hydrophobic environment, contacting primarily H282 and P303.  

  

A) B) 

Figure 3. Predicted ligand binding pockets in GPER. A) Extracellular perspective of 

GPER showing amino acids predicted to contact ligands E2 (maroon), G1 (cyan), G15 

(green), and tamoxifen (violet). Residues colored orange are predicted to contact one or 

more ligands with darker hue indicating interaction with multiple ligands. B) Predicted 

binding pocket viewed from a 90° rotation.  
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ConDock predicts that G1 and G15 bind in adjacent but distinct binding sites separated 

by 2.3 Å despite the chemical similarity of the two ligands. The top predicted binding site for G1 

is found within the pocket bound by Y55, L119, F206, Q215, I279, P303, H307, and N310 (Fig. 

4). This orientation had the highest conservation score of all predicted binding sites at 0.85. In 

this pose, N310 makes a long hydrogen bond with the acetyl oxygen of G1. The predicted 

binding site for G15 is found within the pocket bound by L119, Y123, M133, S134, L137, Q138, 

P192, V196, F206, C207, F208, A209, V214, E218, H307, and N310. This pose had a 

conservation score of 0.8. Hydrogen bonding is not observed between GPER and G15. 

Hydrophobic interactions are observed with L119, Y123, F206, and V214. 

ConDock predicted two equally high-scoring, overlapping poses for tamoxifen, near 

E115, L119, Y123, L137, Q138, M141, Y142, Q215, E218, W272, E275, I279, P303, G306, 

H307, and N310 (Fig. 5). The conservation score of this orientation is 0.81. Hydrophobic 

interactions are observed between tamoxifen and non-polar residues L119, Y123, Y142, P303, 

and F314. Notably, the amine group of tamoxifen is neutralized by E218 and E275. 

  

C) B) A) 

N310 

H307 L119 

E115 

Y123 
I279 

 

P303 

H282 

G306 

N310 

Figure 4. Predicted E2 binding sites in GPER. A) The two highest scoring docking 

poses for E2. B) Receptor-ligand interactions for E2 pose 1. C) Receptor-ligand 

interactions for E2 pose 2. 
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Figure 6. Predicted tamoxifen binding sites in GPER. A) The highest scoring 

docking poses for tamoxifen, pose 1 (maroon) and pose 2 (cyan). 
 

Y123 

Q215 

E218 

F208 

C) B) A) 
P303 

Y55 

F206 

Figure 5. Predicted G1 and G15 binding sites in GPER. A) The highest scoring 

docking poses for G1 (maroon) and G15 (cyan). B) Receptor-ligand interactions for G1. 

C) Receptor-ligand interactions for G15. 
 

E218 

W272 

E275 

L119 

L137 
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 In comparison with the ligand binding sites predicted by traditional methods based on 

surface geometry and conservation (Fig. S7), the sites predicted by ConDock are more detailed 

and of higher resolution due to the information from chemical interactions from ligand docking. 

Moreover, prediction methods based on surface geometry and conservation cannot differentiate 

between binding sites for different ligands. We compared the GPER ligand binding sites 

predicted by ConDock to those predicted by three other software packages representing different 

approaches: CASTp (36), which analyzes surface geometry, SiteHound (37), which maps 

surfaces with a chemical probe, and Concavity (15), which analyzes surface geometry and 

conservation (Fig. 6). All three methods could identify a ligand binding site roughly matching 

that from ConDock. The pocket predicted by ConDock is deeper than the other pockets, which 

while intuitively attractive, is not necessarily correct. SiteHound performed particularly poorly, 

with the top scoring site located on the GPER intracellular face. The site identified by SiteHound 

closest to the ConDock site was scored third and is a shallow binding pocket near H52-G58, 

E275-H282, and R299-H307 (Fig. 6C). In contrast, the Concavity site was smaller and shallower 

than the ConDock site (Fig. 6D). Surprisingly, the site predicted by the simpler CASTp method 

best matched the ConDock site but is also smaller and shallower (Fig. 6B). For proteins such as 

GPCRs with large, concave binding pockets, geometry-based prediction methods such as 

Concavity and CASTp can easily identify the general location of the binding site. However, such 

methods may have more difficulty recovering the specific, ligand-specific binding site. It is also 

surprising that ConDock more closely matched the results of the geometry-based methods given 

that ConDock does not take surface geometry into account. Without experimental structural data, 

it is not possible to conclude which of the predicted binding sites is correct at this time. 
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Discussion 

  The ConDock scoring method, incorporating information from both surface conservation 

and docking binding energy, demonstrated high accuracy in predicting ligand binding sites from 

the crystal structures of the A2A adenosine and 2 adrenergic receptors. ConDock also 

successfully predicted the ligand binding sites from high-quality homology models. ConDock 

was also used to predict viable ligand binding sites for four different GPER ligands. In contrast 

to more typical geometry-based ligand binding site prediction methods, ConDock scoring takes 

advantage of chemistry-specific information about the ligand-receptor interface. The poor 

performance of SiteHound in predicting ligand binding sites on GPER suggests that a method 

based only on chemical interactions or docking is highly susceptible to error, most likely due to 

the inadequate accuracy of homology models. Surface conservation data not only provides 

orthogonal knowledge but also dampens the influence from the shortcomings of current 

computational methods in homology modeling, docking, and predicting binding affinity. How 

best to mathematically combine these multiple data sources has been debated (11, 15), but we 

demonstrate here that a simple product scoring function is effective. The four GPER ligands 

Figure 7. Predicted ligand binding sites by ConDock, CASTp, SiteHound, 

Concavity. Ligand binding sites are colored, predicted by A) ConDock, B) CASTp, C) 

SiteHound, D) Concavity. 
 

C) D) B) A) 
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analyzed differ greatly in chemical structure, but the ConDock scoring method predicted that all 

four bind to the same approximate region, deep in the extracellular cleft of the receptor. 

Undoubtedly, further refinement of a hybrid scoring function will lead to improved predictions. 

 Recent GPER modeling studies using molecular dynamics simulations and docking 

identified different potential binding sites for E2, G1, and G15 near F206 and F208; the 

interaction with this region was described as driven primarily by - stacking interactions (16, 

17). Figure 6 compares the ConDock binding site against that predicted in the molecular 

dynamics simulation and docking study. The ConDock binding site is located deeper in the 

extracellular cleft; the other proposed site mostly involved surface-exposed loops. Mendez-Luna 

et al. proposed that Q53, Q54, G58, C205, and H282 all interact with G1 and G15; however, 

none of these residues are conserved across the six species we analyzed. Experimental data is not 

currently available to support one model over the other. 

 In summary, the simple ConDock hybrid scoring model predicts physically plausible 

ligand binding sites by combining information from ligand docking and surface conservation. 

Using multiple orthogonal sources of information avoids errors introduced by modeling, 

especially in a case where a crystal structure of the receptor is unavailable. Given a high quality 

homology model, ConDock can accurately predict ligand binding sites. Using this hybrid 

method, we identified a site in the extracellular cleft of GPER that has the potential to bind four 

known GPER ligands. Further optimization of hybrid scoring functions should yield significantly 

improved predictions. 

 

Methods 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/461681doi: bioRxiv preprint 

https://doi.org/10.1101/461681
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Protein surface conservation 

 GPCR protein sequences were acquired from the SwissProt database (38). For the A2A 

adenosine receptor, the protein sequences aligned were from Homo sapiens, Canis familiaris, 

Xenopus tropicalis, Myotis davidii, Loxodonta africana, Gallus gallus, Anolis caronlinesis, 

Oncorhynchus mykiss, Ailuropoda melanoleuca, and Alligator mississippiensis. For the 2 

adrenergic receptor, the protein sequences aligned were from Homo sapiens, Oncorhynchus 

mykiss, Myotis brandtii, Callorhinchus milii, Ophiophagus hannah, Canis familiaris, Loxodonta 

africana, Ailuropoda melanoleuca, Ficedula albicollis, and Xenopus laevis. GPER protein 

sequences aligned were from diverse species: Homo sapiens, Rattus norvegicus, Mus musculus, 

Macaca mulatta, Danio rerio, and Micropogonias undulatus. Sequences were chosen to 

represent a diverse range of animal species. Multiple sequence alignment files were submitted to 

ConSurf (33, 34). ConSurf assesses conservation using Bayesian reconstruction of a 

phylogenetic tree. Each sequence position is scored from 0-9, where 9 indicates that the amino 

acid was retained in all the organisms (Fig. S7). Values from ConSurf were mapped onto the 

receptor surface with Chimera (39). 

Homology modeling and docking 

The crystal structures for the A2A adenosine receptor and the 2 adrenergic receptor 

were acquired from the RCSB protein data bank: 2 adrenergic receptor bound to epinephrine 

(PDB 4ldo), 2 adrenergic receptor bound to carazolol (PDB 2rh1), A2A adenosine receptor 

bound to adenosine (PDB 2ydo), and A2A adenosine receptor bound to ZM241385 (PDB 5k2a). 

The crystal structures of the mu opioid receptor and 5HT2B receptor were taken from PDB 5c1m 

and 6drz. Structures were prepped for docking with Chimera by removing extraneous chains and 
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bound ligands with the DockPrep protocol. Ligands were docked into receptors with SwissDock 

(25).  

 The crystal structure of GPER has not yet been determined. We created a homology 

model using GPCR I-TASSER (Iterative Threading Assembly Refinement), the most accurate 

homology modeling software customized for GPCRs (27). GPCR I-TASSER modeled the GPER 

structure using templates from the ten closest related GPCR crystal structures (PDB 4mbs, 2ks9, 

1kpn, 1u19, 2ziy, 1kp1, 3odu, 4ea3, 4iaq, 2y00). The homology model was validated with 

ERRAT (28). Coordinates for E2, G1, G15, and tamoxifen were downloaded from the ZINC 

ligand database (40) and submitted to SwissDock (25) for docking. SwissDock is a web interface 

to the EADock DSS (35) engine, which performs blind, global (does not require targeting of a 

particular surface) docking using the physics-based CHARMM22 force field (41). The 

“FullFitness Score” calculated by SwissDock using clustering and the FACTS implicit solvent 

model (42) was used as the “Energy Score” for our calculations. 

 

Combined analysis 

 SwissDock poses were manually screened for those binding sites located on or near the 

extracellular side of the protein. Ligand binding surfaces included residues with atoms within 3.5 

Å from the docked ligand. The average conservation score of the amino acids that were 

highlighted served as the “Conservation Score” of that specific orientation (Fig. 8). The 

combined ConDock score is defined as the product of the Conservation and Energy Scores. As 

the Energy Score is a modified free energy function, a highly negative ConDock score is 

associated with a more probable ligand binding site. Binding sites predicted by ConDock results 

were compared with those predicted by CASTp (36), SiteHound (37), and Concavity (15). For 
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𝐂𝐨𝐦𝐛𝐢𝐧𝐞𝐝 𝐂𝐨𝐧𝐃𝐨𝐜𝐤 𝐒𝐜𝐨𝐫𝐞 = (Conservation Score) ∗ (Energy Score) 

CASTp, SiteHound, and Concavity, ligand binding pockets were defined as residues within 4 Å 

of the selected probe/cluster. 

 

                                                 

𝐂𝐨𝐧𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐒𝐜𝐨𝐫𝐞 =  
1

10

∑ (Amino Acid ConSurf Score)k
n
k=1

n
 

𝐄𝐧𝐞𝐫𝐠𝐲 𝐒𝐜𝐨𝐫𝐞 = SwissDock FullFitness Score 

 

Figure 8. Calculation of combined ConDock scores for ligand binding sites. The 

Conservation Score is calculated over the n residues in a binding site, indexed by k. 

 

Crystal structure benchmarks 

Crystal structures of receptors were screened for residues within 3.5 Å of their respective 

ligands. These residues served as a benchmark of comparison for the predicted sites contrived by 

the ConDock scoring function.  
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