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Abstract 1 
Recent experimental and computational developments have been pushing the limits of live-cell 2 
single-molecule imaging, enabling the monitoring of inter-molecular interactions in their native 3 
environment with high spatiotemporal resolution. However, interactions are captured only for the 4 
labeled subset of molecules, which tends to be a small fraction. As a result, it has remained a 5 
challenge to calculate molecular interaction kinetics, in particular association rates, from live-cell 6 
single-molecule tracking data. To overcome this challenge, we developed a mathematical 7 
modeling-based Framework for the Inference of in Situ Interaction Kinetics from single-molecule 8 
imaging data with sub-stoichiometric labeling (termed “FISIK”). FISIK consists of (I) devising a 9 
mathematical model of molecular movement and interactions, mimicking the biological system 10 
and data-acquisition setup, and (II) estimating the unknown model parameters, including 11 
molecular association and dissociation rates, by fitting the model to experimental single-molecule 12 
data. Due to the stochastic nature of the model and data, we adapted the method of indirect 13 
inference for model calibration. We validated FISIK using a series of tests, where we simulated 14 
trajectories of diffusing molecules that interact with each other, considering a wide range of model 15 
parameters, and including resolution limitations, tracking errors and mismatches between the 16 
model and the biological system it mimics. We found that FISIK has the sensitivity to determine 17 
association and dissociation rates, with accuracy and precision depending on the labeled fraction 18 
of molecules and the extent of molecule tracking errors. For cases where the labeled fraction is too 19 
low (e.g. to afford accurate tracking), combining dynamic but sparse single-molecule imaging data 20 
with almost whole-population oligomer distribution data improves FISIK’s performance. All in 21 
all, FISIK is a promising approach for the derivation of molecular interaction kinetics in their 22 
native environment from single-molecule imaging data with sub-stoichiometric labeling. 23 
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Significance 1 
Live-cell single-molecule imaging has the unique power to capture inter-molecular interactions in 2 
their native environment. However, single-molecule approaches in cells suffer from the inherent 3 
limitation that only a small fraction of molecules can be visualized at a time. Therefore, it has 4 
remained a challenge to calculate interaction rates, especially association rates, from these data. 5 
We have developed a mathematical modeling and model calibration-based framework (FISIK) to 6 
address this challenge, and derive molecular interaction rates from the subset of interactions 7 
captured by single-molecule imaging with sub-stoichiometric labeling. FISIK is a general 8 
framework, not limited to any particular interaction model, and is thus expected to be widely 9 
applicable, allowing the full use of the rich information provided by single-molecule imaging 10 
experiments. 11 
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Introduction 1 
Light microscopy is providing information on molecular activities in cells with ever-increasing 2 
sensitivity and spatial and temporal resolution. Modalities such as live-cell single-molecule 3 
imaging provide the highest sensitivity and resolution, reporting on the dynamic activities of 4 
individual molecules. Recent experimental and computational developments have been pushing 5 
the limits of single-molecule imaging to capture not only molecular movement – the traditional 6 
strength of single-molecule imaging (1-3) – but also inter-molecular interactions (4-9). Capturing 7 
molecular interactions in their native cellular environment provides critical spatial and temporal 8 
context for the observed interactions. For example, receptor interactions in their native plasma 9 
membrane environment can have different kinetics from the interactions observed via traditional 10 
3D in vitro methods (5, 10, 11). These kinetics might also depend on the cellular environment and 11 
subcellular context (12). Additionally, microscopy approaches allow the study of interactions 12 
between proteins, such as transmembrane proteins, that are difficult to purify for traditional 13 
biophysical studies.  14 
 However, most live-cell single-molecule approaches, from direct one-color and multi-color 15 
imaging (4, 6-8, 13, 14) to single-molecule Förster resonance energy transfer (smFRET) (5, 15), 16 
suffer from the inherent limitation that only a small fraction of molecules can be visualized at a 17 
time. Such sub-stoichiometric labeling is necessary because of diffraction, which limits resolution 18 
to ~200 nm laterally and ~500 nm axially, and because of the need to track the imaged molecules 19 
over time (16). As a consequence of sub-stoichiometric labeling, it is challenging to calculate 20 
molecular interaction rates from single-molecule experiments, in spite of the rich information they 21 
might provide. This is because only a small subset of interaction events can be captured in single-22 
molecule imaging experiments. Importantly, this subset is biased toward 23 
oligomers/complexes/clusters with a smaller number of molecules. For example, if 10% of 24 
molecules are labeled, then only 1% of dimers would be fully labeled and thus visualized as dimers, 25 
0.1% of trimers, etc.  26 

To the best of our knowledge, there are less than a handful of previous studies that have 27 
estimated molecular interaction rates from single-molecule data with sub-stoichiometric labeling. 28 
These studies were primarily focused on the special cases of dimerization (8, 17) and bimolecular 29 
interactions (14). Additionally, to derive association rates, they employed single-molecule 30 
experiments with a high-labeled fraction, greater than 75% (14, 17). Such a high degree of labeling 31 
is generally not compatible with single-molecule imaging for most molecules at their endogenous 32 
expression levels.  33 

To fill this technological void, here we present a generic, mathematical modeling-based 34 
approach to calculate interaction kinetics from single-molecule data with sub-stoichiometric 35 
labeling, termed FISIK (Framework for the Inference of in Situ Interaction Kinetics). FISIK 36 
consists of two components: (I) devising a mathematical model that mimics the dynamics, 37 
interactions and sub-stoichiometric labeling of the molecular system, and (II) calibrating the model 38 
with single-molecule data to estimate the unknown model parameters, including the molecular 39 
association and dissociation rates. To test the feasibility, strengths and limitations of FISIK, here 40 
we applied it to the case of movements and interactions in 2D, applicable to e.g. cell-surface 41 
receptors, a system often studied with single-molecule imaging (4-9). To the best of our 42 
knowledge, this is the first attempt to develop a generic framework to derive molecular interaction 43 
rates from single-molecule data with sub-stoichiometric labeling, not limited to 44 
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dimerization/bimolecular interactions. Our proof-of-principle tests also shed light on experimental 1 
design strategies that can be employed to maximize the performance of FISIK and derive the 2 
molecular interaction rates of interest. 3 

 4 
Methods 5 
1. Overall workflow of FISIK 6 
FISIK consists of two components (Fig 1):  7 

Component I. A stochastic mathematical model of molecular movement and interactions, 8 
mimicking the biological system and data acquisition setup, including sparse labeling. Many 9 
parameters in this model are derived explicitly from the experimental data and directly input into 10 
the model, such as molecular movement properties and most data acquisition parameters (e.g. 11 
sampling rate). This constrains the 12 
modeling and leaves only a few unknown 13 
model parameters, including the rates of 14 
molecular association and dissociation, to 15 
be estimated by fitting the model to 16 
experimental single-molecule data. The 17 
specific model employed to test the 18 
easibility of FISIK is described in 19 
subsection 2 below. 20 

Component II. Model Calibration 21 
with experimental single-molecule data to 22 
estimate molecular association and 23 
dissociation rates. The stochasticity of 24 
molecular movement and interactions, 25 
compounded by the labeling of a random 26 
subset of molecules, makes it meaningless 27 
to compare model-generated and 28 
experimental molecular trajectories and 29 
interaction instances point-by-point for 30 
model calibration, as would be done for a 31 
deterministic system. Therefore, we have 32 
devised a stochastic model calibration 33 
algorithm by adapting the method of 34 
Indirect Inference (18-20). In this 35 
approach, the model-generated (termed 36 
“probe”) and experimental (termed 37 
“target”) data are first analyzed to extract 38 
from them descriptors, called intermediate 39 
statistics, which characterize them. The 40 
specific intermediate statistics used for 41 
calibrating our test model, which are 42 
closely related to the unknown model 43 
parameters, are discussed in subsection 4 44 

 

 
Figure 1. FISIK workflow. FISIK consists of two 
components: (I) Building a mathematical model 
and generating simulated data (probe) that mimic 
the biological system and acquired experimental 
data (target). (II) Fitting the model to target data in 
order to determine the unknown model parameters, 
including molecular association and dissociation 
rates. This requires a stochastic model calibration 
framework, as both model and data are stochastic.  
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below. The choice of intermediate statistics is critical for the success of statistical inference 1 
methods such as Indirect Inference. The intermediate statistics should be sufficient, i.e. they should 2 
capture the important information about the system, yet they should minimize redundancy (21, 3 
22). The difference between probe and target is then taken as the difference between their 4 
respective intermediate statistics, calculated as the Mahalanobis distance between them (23). 5 
Specifically, if θprb and θtar are, respectively, the intermediate statistics of the probe and target data, 6 
with associated variance-covariance matrices Vprb and Vtar, then the Mahalanobis distance S is 7 
calculated as: 8 

𝑆𝑆 = �𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡�′�𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡�
−1
�𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡�.   (1) 9 

Casting the comparison in terms of the Mahalanobis distance has two advantages: (i) The 10 
difference between intermediate statistics gets weighted by their variance-covariance matrices, 11 
thus accounting for the statistics’ uncertainties when calculating the difference between target and 12 
probe. (ii) Under the null hypothesis that θprb = θtar, and given that the intermediate statistics are 13 
normally distributed (as verified using a Lilliefors test, which gave p-values in the range 0.12-0.5), 14 
S follows a χ2-distribution with number of degrees of freedom equal to number of intermediate 15 
statistics. This allows us to calculate a comparison p-value for any given S, facilitating the 16 
interpretation of the value of S (24, 25). Specifically, probes with comparison p-value < α (e.g. 17 
0.05) are considered statistically different from the target, and are thus outside the solution range. 18 
Probes with p-value ≥ α are statistically indistinguishable from the target, and are thus possible 19 
solutions. 20 

Note that, at the conceptual level, FISIK is not limited to using Indirect Inference for 21 
stochastic model calibration. Other methods, such as Bayesian Inference (26, 27), including 22 
Approximate Bayesian Computation (28-30), are expected to be equally applicable.  23 
 24 
2. Stochastic model of molecular movement, interactions and sub-stoichiometric labeling 25 
To test the feasibility of FISIK, we employed a simple stochastic model of molecular diffusion 26 
and interactions in 2D, as well as sub-stoichiometric labeling to mimic single-molecule sampling. 27 
A 2D model is less computationally intensive to simulate than a 3D model, while at the same time 28 
providing equal power to test the feasibility of FISIK. Additionally, a 2D model is a reasonable 29 
approximation of e.g. receptor movement on the cell surface, a system that is particularly 30 
accessible and heavily studied by single-molecule imaging approaches (4-9). Membrane proteins 31 
are also challenging to purify for traditional in vitro biophysical methods, making cell-based 32 
imaging approaches particularly useful to study them. The model contains only one molecular 33 
species (e.g. a particular receptor type), which can oligomerize into dimers, trimers, etc. Note that 34 
in the following and subsequent descriptions, oligomer(n) indicates an oligomer of size n, where 35 
n = 1 means monomer, n = 2 means dimer, n = 3 means trimer, etc. The terms monomer and 36 
oligomer(1) will be used interchangeably, as needed for compactness of description.  37 

In this simple model, molecules have a 2D density ρ and undergo 2D free diffusion with 38 
diffusion coefficient D. When a monomer and an oligomer(n ≥ 1) encounter each other, i.e. their 39 
pairwise distance ≤ dsize (taken as 10 nm, assuming a molecular radius of ~ 5 nm), they associate 40 
with probability pa(n+1) to form an oligomer(n+1). The case of n = 1 is the special case of two 41 
monomers associating to form a dimer. Molecules in an oligomer diffuse together, with the same 42 
diffusion coefficient D. For an oligomer(n ≥ 2), a molecule can dissociate from it with rate koff(n), 43 
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to produce a monomer and an oligomer(n-1) (note that association and dissociation are limited to 1 
one molecule at a time).  2 

To mimic single-molecule imaging with sub-stoichiometric labeling, a fraction f of the 3 
molecules is labeled, with individual fluorophore intensity Iind ~ N(μind,σind) (for σind > 0, the 4 
intensity of an individual fluorophore fluctuates over time, mimicking realistic fluorophore 5 
intensity fluctuations). The remaining fraction of molecules (1-f) is invisible. Therefore, while all 6 
molecules diffuse and interact, only the trajectories of labeled molecules and the interactions 7 
between labeled molecules are visible. Note that if a labeled molecule interacts with an unlabeled 8 
molecule, that interaction is not visible and is not recorded in the output trajectory of the labeled 9 
molecule. 10 

The unknown parameters in this model are the motion parameter D, the interaction 11 
parameters pa(n) and koff(n) (n = 2, 3, 4, …), the population parameters ρ and f, and the fluorophore 12 
intensity parameters μind and σind. Among these parameters, D can be estimated directly from the 13 
single-molecule data, as it is not affected by under-sampling. The fluorophore intensity parameters 14 
are simplified to μind = 1 and σind = 0 for probe simulations, but can otherwise be estimated 15 
experimentally as well, using e.g. monodispersion experiments (6). The remaining parameters, 16 
however, must be estimated by fitting the model to experimental data, as described in the general 17 
framework above (subsection 1), and using the intermediate statistics described in subsection 4 18 
below. 19 

 20 
3. Kinetic Monte Carlo simulations 21 
To generate molecular trajectories and interactions from the above model, we used kinetic Monte 22 
Carlo simulations explicit in both space and time (effectively particle-based reaction-diffusion 23 
simulations, similar to (31, 32), although in 2D instead of 3D). In these simulations, space is treated 24 
as a continuum, while time is discretized into a series of time steps Δt, where Δt is small enough 25 
to minimize discretization artifacts (more on this below). To simulate molecules at density ρ within 26 
a simulation area A, Nmol = ρ × A molecules are initially placed randomly within the simulation 27 
area, all starting as monomers. Reflecting boundary conditions are used to keep the molecules 28 
within the simulation area. Each simulation starts with an initialization time Tinit (usually 10 s) so 29 
that the system reaches steady state (Fig S1A; Table S1, Row 1), followed by the desired 30 
simulation time Tsim. Only the post-initialization time (i.e. steady-state) trajectories and 31 
interactions are output for further processing and analysis.  32 

At every time point t after the initial time point, molecules can dissociate, move and 33 
associate, in this order, as described in the following: 34 

(1) Molecule dissociation: For each oligomer(n ≥ 2) at the previous time point (t – Δt), one 35 
molecule can dissociate from it at time point t with probability poff(n) = koff(n) × Δt, producing a 36 
monomer and an oligomer(n-1). If a dissociation happens, the involved monomer and oligomer 37 
are not allowed to associate with each other or with any other monomer or oligomer in the current 38 
time point (step 3 below), to avoid what will appear as instantaneous swapping of molecules 39 
between oligomers in one time point. This constraint is acceptable as long as the time step is small 40 
enough, as demonstrated by our validation tests (Fig 2). 41 

(2) Initial update of molecule positions: Under the model of free diffusion, each oligomer(n 42 
≥ 1) takes a step from time point t – Δt to time point t with x- and y-components, sx and sy, ~ 43 
𝑁𝑁(0,√2𝐷𝐷∆𝑡𝑡 ) , where D is the diffusion coefficient. As mentioned above, all molecules within an 44 
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oligomer move together. Note that if a molecule has dissociated from an oligomer (step 1 above), 1 
it moves independently of the oligomer to which it used to belong. The resulting positions are 2 
considered “initial positions” because, as described next, these positions might be altered by 3 
association.  4 
(3) Molecule association and final update of positions: From the model definition, if the distance 5 
between two molecules ≤ dsize (= 10 nm) at time point t, they are considered to encounter each 6 
other and thus might associate. However, due to time discretization in the simulations, molecules 7 
might pass by each other as they move from time point t – Δt to time point t, but the distance 8 
between them might be greater than dsize at both time points. Therefore, we devised a simulation 9 
strategy to compensate for the effect of finite Δt on molecular encounters. The compensation 10 
strategy is based on assigning molecules an “effective radius” (Reff) based on their extent of 11 
movement within Δt rather than their physical size, defined as 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = √4𝐷𝐷∆𝑡𝑡. This allows us to 12 
define a movement-based encounter distance, dmove = 2Reff. For example, for D = 0.1 μm2/s, dmove 13 
= 12.6 nm (≈ dsize = 10 nm) for Δt = 10-4 s, but dmove = 126 nm for Δt = 10-2 s. In the simulation, 14 
the encounter distance dencounter is then taken as max(dsize, dmove). Testing this compensation strategy 15 
demonstrated that it renders the simulation output insensitive to Δt up to 10-2s (Fig S1B), a 16 
practically feasible Δt, which is more than 2 orders of magnitude larger than the Δt needed to avoid 17 
time discretization artifacts.  18 
 With this, all monomer-oligomer(n ≥ 1) pairs with pairwise distance ≤ dencounter are 19 
considered as encounter candidates. If any objects (monomers or oligomers) appear in more than 20 
one pair because their distance ≤ dencounter to more than one object, graph matching is used to resolve 21 
these conflicts globally (33) and impose that each object may interact with only one other object 22 
per time point. With this, monomer-oligomer(n ≥ 1) pairs that encounter each other can associate 23 
with probability pa(n+1) to form an oligomer(n+1). When an association happens, the position of 24 
the resulting oligomer is the average position of the two associating objects. This yields the final 25 
positions of molecules at time t of the simulation. 26 
 27 
Particle tracks output of kinetic Monte Carlo simulations.  28 
The trajectories output by the simulation code to use for further analysis within FISIK are in the 29 
same form as tracks obtained via multiple particle tracking of one-color single-molecule data 30 
(using e.g. u-track (7)). Every object (monomer or oligomer) becomes a particle, and the only 31 
information stored are its position and intensity over time (as with experimental single-molecule 32 
data). When an association happens, two particles merge into one. When a dissociation happens, 33 
one particle splits into two. The time step for the output particle tracks is a user-specified 34 
parameter, generally chosen to match the experimental data time step. 35 

Note that the oligomeric state of particles is not stored explicitly, as this information is not 36 
a direct output of single-molecule imaging experiments. However, for probe simulations, where 37 
the individual fluorophore intensity Iind ~ N(1,0), particle intensity is effectively equal to 38 
oligomeric state. For target simulations, on the other hand, the individual fluorophore σind > 0, as 39 
would be the case for experimental single-molecule data. In this case, the oligomeric state of the 40 
particles is unknown and is subsequently estimated from the particle intensities and their merging 41 
and splitting history, as described in the next section. 42 
 43 
4. Single-molecule data analysis to calculate intermediate statistics 44 
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Estimation of oligomeric state from particle intensities and merging and splitting history 1 
The first step for calculating the intermediate statistics is to estimate the oligomeric state of each 2 
particle over time, i.e. it dynamic oligomerization history, using the available information, namely 3 
the particle intensities and their merging and splitting history. For this, particle tracks are divided 4 
into segments, where each segment starts via an appearance or a split, and ends via a disappearance 5 
or a merge. The dynamic oligomerization history is then determined as follows: 6 

For probe data: Because the individual fluorophore intensity Iind ~ N(1,0) in probe 7 
simulations, the oligomeric state of a probe particle over time is given by its intensity over time.  8 

For target data (whether experimental or simulated): The oligomeric state of each track 9 
segment is determined using constrained least squares minimization. Specifically, suppose a group 10 
of Nseg segments undergo merging and splitting events with each other (in the example shown in 11 
Fig S2A, Nseg = 5). Given a mean intensity Ij for each segment j (j = 1, 2, …, Nseg), the oligomeric 12 
states sj (j = 1, 2, …, Nseg) of all segments in the group are determined by minimizing the least 13 
squares function F: 14 

( )
seg 2

ind
1

N

j j
j

F s Iµ
=

= −∑ ,     (2) 15 

where μind is the (known) mean intensity of an individual fluorophore. The minimization is subject 16 
to constraints from the merging and splitting history of the segments, imposing conservation of 17 
number of molecules. We will use the example shown in Fig S2A to illustrate the constraints: In 18 
that example, segments 1 and 2 merge to form segment 3, and then segment 3 splits into segments 19 
4 and 5. This imposes the constraints that: 20 

s1 + s2 = s3 and s3 = s4 + s5.     (3) 21 
Thus, for the example shown in Fig S2A, F in Eq. 2 will be minimized subject to the constraints 22 
in Eq. 3. Given the integer nature of the unknown oligomeric states, the constrained least squares 23 
minimization is solved as a Mixed Integer Quadratic Programming problem (using the Package 24 
YALMIP (34) (https://yalmip.github.io/)). Of note, Eq. 2 is a simplification of the real objective 25 
function to be minimized, which should weight each term j by its oligomeric state, as the variance 26 
generally increases with number of fluorophores being summed up. In addition, fluorophore 27 
fluorescence can follow a log-normal distribution, rather than a normal distribution as assumed in 28 
Eq. 2 (35). Nevertheless, Eq. 2 is an acceptable simplification because the constraints play the 29 
major role in determining the oligomeric state. 30 

This analysis yields the dynamic oligomerization history of the labeled molecules 31 
throughout the simulation/observation time.  32 
 33 
Calculation of intermediate statistics 34 
Within the framework of Indirect Inference, FISIK uses the labeled oligomer densities and the 35 
labeled molecule dissociation rates as intermediate statistics. These intermediate statistics were 36 
chosen because they are closely related to the unknown model parameters, namely the interaction 37 
parameters pa(n) and koff(n) (n = 2, 3, 4, …) and the population parameters ρ and f. Their choice 38 
was also validated a posteriori as they indeed enabled FISIK to estimate the unknown model 39 
parameters (as discussed in the Results section).  40 
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Using the labeled molecules’ dynamic oligomerization history (generated as described 1 
above), the intermediate statistics are calculated as follows for each simulation (or experimental 2 
time lapse in the case of experimental data):  3 

(i) Labeled oligomer densities: Having the oligomeric state of every particle at every time 4 
point, the average density of monomers (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 (1)), dimers (𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 (2)), etc. is calculated. The 5 
superscript “lab” is to emphasize that these are the oligomeric states and their densities as revealed 6 
by the labeled subset of molecules. 7 

(ii) Labeled molecule dissociation rates: These are derived by treating transitions between 8 
labeled oligomeric states as a Markov process. If there are labeled molecule oligomers up to 9 

oligomeric state lab
maxO , then the Markov process consists of lab

maxO  states (Fig S2B). For each 10 
oligomeric state n ≥ 2, we calculate from the dynamic oligomerization history its average lifetime 11 
𝜏𝜏(𝑛𝑛) and its probability pn→n-1 to transition to state n-1 (i.e. a labeled molecule dissociates; Fig 12 
S2B). Inverting the Gillespie algorithm for the simulation of stochastic processes (36), the labeled 13 
molecule dissociation rate is then calculated as  14 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛) = 𝑝𝑝𝑛𝑛→𝑛𝑛−1
𝜏𝜏(𝑛𝑛)

,       𝑛𝑛 = 2, 3, … ,𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 .   (4) 15 

 Note that, in order to minimize redundancy between intermediate statistics (21), the labeled 16 
molecule association rates are not used as intermediate statistics. This is because, under the 17 
assumption of steady state, they are simply calculated from the labeled molecule oligomer 18 
densities and labeled molecule dissociation rates:  19 

 𝑘𝑘𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛) =
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛)𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛)

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛−1)𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑙𝑙𝑙𝑙𝑙𝑙 (1)
,       n = 2, 3, … ,𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 .  (5) 20 

In other words, the labeled molecule densities and off rates are sufficient to capture all the available 21 
information about the molecular interactions of interest.  22 

With this, the vector of intermediate statistics describing each simulation/experimental 23 
time lapse is constructed as  24 

( ) ( ) ( ) ( ) ( )max max1 , 2 , , , 2 , ,lab lab lab lab lab lab lab
oligo oligo oligo off offO k k Oθ ρ ρ ρ

′ =       (6) 25 

 For a probe/target represented by multiple simulations (or multiple experimental time 26 
lapses), its vector of intermediate statistics θprb/θtar and associated variance-covariance matrix 27 
Vprb/Vtar are calculated as the mean and covariance, respectively, of the intermediate statistics 28 
vectors from its multiple simulations. The calculated θprb and θtar and associated Vprb and Vtar are 29 
then used in Eq. 1 to calculate the Mahalanobis distance to compare probes and targets. 30 
 31 
Results and Discussion 32 
The intermediate statistics accurately characterize the modeled molecular interactions  33 
To validate our choice of intermediate statistics, we employed simulations where all molecules 34 
were labeled, in which case there are straightforward relationships between the input model 35 
parameters and the calculated intermediate statistics. We systematically varied the model 36 
parameters, i.e. ρ, pa, koff and D and investigated how the intermediate statistics responded. Note 37 
that, for the sake of simplicity, in these and most of the following tests pa refers to pa(2 ≤ n ≤ 5) 38 
(all equal) and koff refers to koff(2 ≤ n ≤ 5) (also all equal). Unless explicitly stated otherwise, pa(n 39 
> 5) = 0, i.e. the maximum oligomer that could be formed was a pentamer. The simulation 40 
parameters employed for these tests are shown in Table S1, Row 1.  41 
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Figure 2. The intermediate statistics accurately reflect the modeled interactions. (A-E) 
Influence of varying molecule density ρ (A), dissociation rate koff (B), association probability 
pa (C), diffusion coefficient D (D) and labeled fraction f  (E) on the intermediate statistics 
𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 , koff

lab and konlab. Shown are the mean and standard deviation from 10 simulations per 
parameter combination. Each panel explicitly states the varied parameter values, while the 
parameters not stated take on the following values: ρ = 4 mol/µm2, pa = 0.05, koff = 1/s, D = 0.1 
µm2/s and f = 1. In the first column, the right-most measurement (with gray background) is the 
total molecule density (𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙) as calculated from the oligomer densities: 𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑛𝑛 ×𝑛𝑛≥1
𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛). Note that the left and right y-axes have different ranges. (E) shows the oligomer 
fraction instead of oligomer density to illustrate better the shift toward smaller labeled oligomer 
sizes as the labeled fraction decreases. 
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The calculated total molecule density (ρlab) and dissociation rate (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 ) were equal to their 1 
corresponding input values, and they only varied when their input values were changed (Fig 2A-2 
D, 1st and 2nd columns; 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙  was slightly underestimated for input koff = 2/s because of the 3 
employed output trajectory time step of 0.1 s). The distribution of oligomeric states 4 
(𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛);  𝑛𝑛 = 1, 2, 3, … ,𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 ) shifted toward higher values as the input pa or D increased, or 5 
the input koff decreased (Fig 2A-D, 1st column). While not used as an intermediate statistic, we also 6 
investigated how the calculated association rate (𝑘𝑘𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙) varied with model parameters, as this 7 
information is implicitly contained in 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 (𝑛𝑛) and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 . We found that 𝑘𝑘𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 varied 8 
approximately linearly with the input pa and D, and was largely independent of the input ρ and koff 9 
(Fig 2A-D, 3rd column), as it should be. These results validate our simulation and intermediate 10 
statistics calculation strategy, and support our choice of intermediate statistics to capture the 11 
relevant information about the system for model calibration.  12 

Before proceeding to test FISIK, we also investigated how the intermediate statistics varied 13 
with the labeled fraction f (Fig 2E). This would aid us in interpreting our test results. As expected, 14 
reducing f shifted the distribution of labeled molecule oligomeric states toward lower values, 15 
completely eliminating in some cases the observation of higher oligomeric states, and reduced 16 
𝑘𝑘𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙. More interestingly, because less interaction events were visible for simulations with lower f, 17 
all oligomeric states, except for the highest one, appeared longer-lived than they truly were, leading 18 

to a reduced lab
offk  as well.  19 

  20 
FISIK can estimate interaction parameters from single-molecule trajectories with sub-21 
stoichiometric labeling, provided a sufficient fraction/number of molecules is labeled 22 
In order to achieve reasonably accurate particle tracking, most 2D single-molecule imaging 23 
experiments operate at a labeled molecule density roughly in the range 0.1-1 mol/μm2 (7, 9, 16). 24 
Therefore, as a first test of FISIK, we focused on simulations with relatively low molecule densities 25 
(ρ = 1-16 mol/μm2), in order to afford low-medium labeled fractions (f = 0.1-0.6). Taking the 26 
example of cell-surface receptors, such densities are realistic for various receptor types, such as 27 
CD36 (6), EpoR (37), LDLR (38) and various GPCRs (14, 17). Because the parameter inference 28 
problem is expected to get more difficult as the labeled fraction gets smaller – an expectation that 29 
is met in our tests as will be discussed shortly – these initial studies test FISIK under relatively 30 
favorable conditions.  31 

For these studies we used the model parameters in Table S2, Row 1 (see also Fig 3) and 32 
simulation parameters in Table S1, Row 2. The values of D and koff were motivated by single-33 
molecule observations of a variety of cell surface receptors (6, 8, 14). The relatively small values 34 
of pa were chosen to reflect that molecules must have the correct relative orientation in order to 35 
associate (39). Of note, the combination of D and pa values indeed resulted in 𝑘𝑘𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 that was within 36 
the range of experimentally observed values (14, 17). The probe parameter landscape consisted of 37 
3360 parameter combinations, each represented by 10 simulations. This probe landscape was 38 
tested against several targets, each also represented by 10 simulations. However, to mimic 39 
molecule density variability between cells, the target simulations differed from the probe 40 
simulations in that the density varied between the 10 simulations of each target, following a normal 41 
distribution with mean = the specified density and standard deviation = 0.1 × mean. Additionally, 42 
to mimic individual fluorophore intensity fluctuations and the fact that the oligomeric state is 43 
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unknown in experimental single-molecule data, in the target simulations the individual fluorophore 1 
intensity fluctuated over time, following the distribution Iind ~ N(1,0.3) (in the probe simulations 2 
Iind ~ N(1,0)). The target parameters were chosen to span a wide range of values for the interaction 3 
parameters pa and koff and the population parameters ρ and f.  4 

In the following we discuss our major findings from these tests, using representative targets 5 
for demonstration. Taking the target ρ = 4 ± 0.4 mol/µm2, f = 0.2, pa = 0.05 and koff = 1/s as our 6 
reference point, we will first explain how the parameter inference results are displayed (Fig 3A). 7 
As explained in Methods, Section 1, the difference between a probe and a target is calculated as 8 
the Mahalanobis distance between their intermediate statistics (Eq. 1), which is converted to a p-9 
value. Thus the results are shown as p-value landscapes. However, because we are searching in a 10 
4-dimensional parameter space, the p-value landscapes are shown in two steps. In the first step, 11 
the ρ vs. f landscape is shown on the left, where each rectangle is a “summary view” of the koff vs. 12 
pa landscape corresponding to each ρ-f pair (specifically, it shows the maximum p-value obtained 13 
for the underlying koff vs. pa landscape). White rectangles indicate ρ-f pairs containing no matches 14 
with the target (for any tested koff-pa combination). Non-white rectangles indicate ρ-f pairs 15 
containing some matches with the target (for some koff-pa pairs, as explained next). Darker 16 
rectangles indicate matches with higher p-value. In the second step, the non-white rectangles in 17 
the ρ vs. f landscape are “expanded” on the right, to show the full koff vs. pa landscapes 18 
corresponding to those ρ-f pairs. Again, white rectangles indicate koff-pa pairs (for each ρ-f pair) 19 
that do not match the target (p-value < 0.05), non-white rectangles indicate koff-pa pairs (for each 20 
ρ-f pair) that are considered to match the target (p-value ≥ 0.05), and darker rectangles indicate 21 
higher p-values.  22 

For the reference target (Fig 3A), FISIK was able to identify the correct parameters 23 
(indicated by white circles; p-value = 0.9967), within a small range of solutions. This range of 24 
solutions was in part due to the expected coupling between the population parameters ρ and f, such 25 
that the estimated ρ × f ≈ the average density of labeled molecules in the target (= 0.8 labeled 26 
mol/μm2 for this target). Note, however, that this coupling did not extend indefinitely. For 27 
example, comparing the probe landscape to a target with ρ = 100 ± 10 mol/µm2, f = 0.03, pa = 0.05 28 
and koff = 1/s (described in detail in the next section) did not yield any matches between them, even 29 
though 100 × 0.03 = 3 labeled mol/µm2, a labeled molecule density that was achievable by multiple 30 
ρ-f combinations in the probe landscape. We suspect that the finite range of ρ-f combinations in 31 
the solution is due to constraints imposed by estimating these two population parameters in the 32 
context of the interaction parameters koff and pa. Therefore, even though FISIK yields a range of 33 
estimated ρ and f values, the range is finite and contained within one order of magnitude at most.  34 

In spite of the observed ρ-f coupling, which reduced the determinability of ρ and f, the 35 
estimated koff and pa, i.e. the interaction parameters of interest, were relatively consistent for the 36 
different ρ-f combinations. Both exhibited a narrow range, with high p-value solutions at koff = 1/s 37 
and pa = 0.04-0.06 (target koff = 1/s and pa = 0.05). The low p-value solutions at ρ = 8 and f = 0.1 38 
were slightly shifted up for both koff (1.25-1.5/s) and pa (0.06-0.08), most likely to compensate for 39 

the lower estimated lab
offk  and lab

onk   for lower f (Fig 2E). Testing FISIK against targets of different 40 

population parameters f and ρ in the neighborhood of the reference parameters indicated that 41 
targets with higher f or ρ led to narrower solution ranges, while targets with lower f or ρ led to 42 
wider solution ranges, reducing the determinability of some parameters, especially pa (Fig 3B, C 43 
and Fig S3). 44 
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Figure 3. FISIK can estimate interaction parameters from single-molecule trajectories 
with sub-stoichiometric labeling, and can detect shifts in parameter values. (A) Four 
dimensional p-value landscape for comparing probe trajectories to the indicated target, as a 
function of the population parameters ρ and f and the interaction parameters pa and koff (total of 
3360 probes). The p-value is shown as a heat map, going from white (p-value < 0.05) to black 
(p-value = 1). The ρ vs. f landscape is shown on the left, where each rectangle is a “summary 
view” of the koff vs. pa landscape corresponding to each ρ-f pair. Specifically, it shows the 
maximum p-value obtained for the underlying koff vs. pa landscape. The non-white rectangles 
in the ρ vs. f landscape are then “expanded” on the right, showing the corresponding full koff 
vs. pa landscapes. The specific ρ-f pairs being expanded are indicated above each koff vs. pa 
landscape, with the target ρ-f pair in bold. The target parameter values are also indicated by a 
white open circle in the ρ vs. f landscape on the left and a white open circle in the koff vs. pa 
landscape on the right. (B-G) Same as (A), but with target f increased (B) or decreased (C), 
target koff decreased (D) or increased (E), or target pa decreased (F) or increased (G) to the 
indicated values. The correct probe parameters (= target parameters) had the following p-
values: 0.9967 (rank 1/7 possible solutions) in (A), 0.9915 (rank 1/6 possible solutions) in (B), 
0.8120 (rank 4/30 possible solutions) in (C), 0.9998 (rank 1/6 possible solutions) in (D), 0.9963 
(rank 1/17 possible solutions) in (E), 0.9995 (rank 1/14 possible solutions) in (F), and 0.9871 
(rank 1/5 possible solutions) in (G). 
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Next we tested the sensitivity of FISIK to detect shifts in interaction rates. Varying target 1 
koff from 1/s to 0.5/s or to 1.5/s led to clear shifts in the solution range, from 1-1.5/s for target koff 2 
= 1/s to 0.5/s for target koff = 0.5/s and to 1.25-2/s for target koff = 1.5/s (Fig 3A, D, E). Varying pa 3 
from 0.05 to 0.03 or to 0.07 shifted the high p-value solution range from 0.04-0.06 for target pa = 4 
0.05, to 0.03-0.05 for target pa = 0.03, and to 0.06-0.08 for target pa = 0.07 (Fig 3A, F, G).   5 

All in all, these tests demonstrate that FISIK is able to estimate molecular interaction 6 
parameters from single-molecule data, as long as there is a sufficient fraction/number of labeled 7 
molecules. Because of the slight dependence of the estimated interaction parameters on the 8 
estimated population parameters, combining FISIK with prior knowledge about the molecule 9 
density, which is experimentally achievable via methods such as flow cytometry (40, 41), is 10 
expected to aid FISIK with this task. 11 
 
The fraction of labeled molecules in single-molecule trajectory data is a critical factor for 12 
FISIK’s ability to estimate interaction parameters  13 
While many transmembrane proteins exist at a surface density in the 1-10 mol/μm2 range, others 14 
are much more highly expressed. Examples of receptors with high surface densities are CD8 (42) 15 
and receptors of the ErbB family (38, 43). In such cases, the labeled fraction f will be below 0.1 to 16 
maintain single-molecule trackability. Therefore, as a next test of FISIK, we simulated targets and 17 
probes with ρ ≈ 100 mol/μm2 and f close to 0.1 and below. These tests not only investigated the 18 
performance of FISIK when f is very low, but also allowed us to determine more conclusively 19 
which property is more important: the labeled fraction f or the labeled molecule density = ρ × f 20 
(the tests above showed some interdependence between the minimum necessary f and ρ; see Fig 21 
3A, C and Fig S3C).   22 

For these studies we used the model parameters in Table S2, Row 2 and the simulation 23 
parameters in Table S1, Row 3. The probe parameter landscape consisted of 2352 parameter 24 
combinations, where each parameter combination was represented by 30 simulations (here the 25 
simulation area was smaller for the sake of simulation efficiency, and thus we compensated for the 26 
smaller area, i.e. smaller number of events, by combining 30 simulations instead of 10). The target 27 
parameters were ρ = 100 ± 10 mol/µm2, pa = 0.05, koff = 1/s and multiple values for f to investigate 28 
its effect on interaction parameter determinability (also 30 simulations per target).  29 

First we investigated the solution range when the target f = 0.03 (Fig 4A), because a target 30 
with ρ = 100 ± 10 mol/µm2 and f = 0.03 has the same labeled molecule density as a target with ρ 31 
= 10 ± 1 mol/µm2 and f = 0.3, a target for which FISIK yielded an almost perfect solution (Fig 32 
S3D). However, in contrast to the ρ = 10 ± 1 mol/μm2 and f = 0.3 case, the ρ = 100 ± 10 mol/μm2 33 
and f = 0.03 case had a wide range of solutions, with pa practically undeterminable. This test clearly 34 
demonstrates that the labeled fraction f, and not the labeled density per se, is the most critical 35 
parameter influencing the performance of FISIK.  36 

To determine the minimum labeled fraction needed to accurately estimate the interaction 37 
parameters, next we increased the target f from 0.03 to 0.06 (Fig. 4B), 0.09 and 0.12 (data not 38 
shown). As f increased, the solution range decreased. By f = 0.06, koff was estimated accurately 39 
within a narrow range (all solutions were at 1/s; Fig 4B). The range of pa also gradually decreased 40 
as f increased, although it was still quite wide even at f = 0.12 (data not shown).  41 

Putting together the results of the tests here and in the previous section, we conclude that 42 
the labeled fraction of molecules is a critical parameter for FISIK’s performance. The  43 
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 1 
number/density of labeled molecules is important (e.g. Fig 3A vs. Fig S3C), but the labeled fraction 2 
of molecules is much more critical. When the labeled fraction is too small, a too large fraction of 3 
multi-molecular events in the system, such as association, becomes invisible. Fundamental 4 
information is lost about these multi-molecular processes, and the information seems to be 5 
irrecoverable. As a result, determining pa, which characterizes a mutli-molecular process 6 
(association), requires labeled fractions of at least ~0.2 (Fig 3A). In contrast, determining koff is 7 
possible with relatively low labeled fractions, down to ~0.06 (Fig 4B), as dissociation is a uni-8 
molecular process.  9 
 10 
Static oligomer distribution data can complement low-labeled-fraction single-molecule 11 
trajectory data and increase FISIK’s power 12 
Our results thus far pose a dilemma. The inference of interaction parameter values, especially pa, 13 
improves as the labeled fraction of molecules increases. Yet increasing the labeled fraction often 14 
increases particle tracking errors (7, 16), thus reducing the data quality for model calibration and 15 
parameter inference (the effect of tracking errors will be investigated in more detail later). One 16 
approach to address this challenge is to employ multi-color single-molecule imaging (e.g. 2- or 3-17 

 

Figure 4. The dissociation rate koff can be estimated accurately with a smaller fraction of 
labeled molecules than the association probability pa. (A) Four dimensional p-value 
landscape for comparing probe trajectories to the indicated target, as a function of the 
population parameters ρ and f and the interaction parameters pa and koff (total of 2352 probes). 
Detailed description as in Fig 3A. (B) Same as (A), but with target f increased to 0.6 . The 
correct probe parameters (= target parameters) had the following p-values: 0. 9880 (rank 2/87 
possible solutions) in (A), and 0.91 (rank 6/45 possible solutions) in (B).  
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color, or even more with hyperspectral imaging (4)), where the labeled fraction in each channel 1 
affords good trackability, while the sum of all channels gives a high enough total labeled fraction. 2 
This approach is conceptually similar to the above tests, and thus will not be explored further here. 3 
Another approach to address this challenge is to combine the dynamic but sparse information from 4 
single-molecule tracking with dense but static information from approaches such as Number and 5 
Brightness (N&B) analysis (44, 45), Spatial Intensity Distribution Analysis (SpIDA) (46), and 6 
Single-Molecule Localization Microscopy (SMLM) (47, 48). These approaches yield a dense 7 
snapshot of the oligomeric state distribution of the majority of molecules of interest, thus 8 
potentially complementing low-labeled-fraction single-molecule tracking data and improving the 9 
ability of FISIK to infer interaction parameters.  10 

As a first step, we investigated the performance of FISIK when using only static oligomer 11 
distribution data. For these tests we used the model parameters in Table S2, Row 3 and the 12 
simulation parameters in Table S1, Row 4. In terms of model parameters (Table S2), we replaced 13 
the labeled fraction f with the observed fraction 𝜙𝜙. The observed fraction accounts for the fact that, 14 
even when all molecules are labeled, not all molecules are observed, due to incomplete fluorophore 15 
maturation (17), or incomplete photoconversion and localization in the case of SMLM (49, 50). In 16 
the targets we used 𝜙𝜙 = 0.85, and made 𝜙𝜙 an unknown parameter to estimate; in the probes 𝜙𝜙 was 17 
varied in the range 0.75-0.95 (17, 49, 50). The output of the static snapshot simulations was the 18 
particle intensities and positions at the end of the simulation, equivalent to the output of the full 19 
trajectory simulations, but for one-time point (Methods, Section 3). As there is no merging and 20 
splitting history in the static snapshot data, the oligomeric state of each particle in this case was 21 
determined solely from the particle intensities, i.e. by minimizing the objective function in Eq. 2 22 
but without any constraints (Methods, Section 4). Additionally, the only intermediate statistics to 23 
be used for target and probe comparison in the case of static distribution data were the observed 24 
oligomer densities: 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (1) (monomers), 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (2) (dimers), etc.  25 

These tests demonstrated that implementing FISIK with static oligomer distribution data 26 
instead of dynamic single-molecule trajectory data yielded an accurate estimate of the ratio of koff 27 
to pa (Fig 5A). Note that pa is linearly related to the association rate kon (Fig 2C); as a result,  28 
 29 

off a off on dk p k k K∝ = , the dissociation constant. In other words, applying FISIK with dense, 30 

static oligomer distribution data extracts from these data the maximum information possible, 31 
namely the dissociation constant(s) describing molecular interactions. The accuracy of the 32 
estimated Kd’s is expected to depend on the accuracy of the experimental and analytical procedures 33 
employed to calculate the distribution of oligomeric states. For example, in the case of SMLM, 34 
fluorophore blinking and multiple appearances must be accounted for properly to avoid over-35 
counting that results in exaggerated apparent oligomerization (47). 36 

Our tests thus far indicate that FISIK with low-labeled-fraction single-molecule trajectory 37 
data yields accurate estimates of koff, while FISIK with static oligomer distribution data yields 38 
accurate estimates of koff/pa. Therefore, we surmised that combining the two data types should 39 
yield an accurate estimate of both koff and pa, along with estimating ρ, f and 𝜙𝜙 (i.e. 5 parameters in 40 
total). We implemented the combination of data types at the level of FISIK’s solution space.  41 
Specifically, we defined the combined p-value for probe-target comparison as: 42 
 43 
 44 
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Figure 5. Dense but static oligomer distribution data increase FISIK’s power in the case 
of sparse single-molecule trajectory data. (A) Four-dimensional p-value landscape for 
comparing probe oligomer distribution data to the indicated target oligomer distribution data, 
as a function of the population parameters ρ and 𝜙𝜙 and the interaction parameters pa and koff 
(total of 840 probes). Detailed description as in Fig 3A, except that the labeled fraction f is 
replaced by the observed fraction 𝜙𝜙 (see text for details). (B) Five-dimensional p-value 
landscape for comparing combined probe data (trajectories + distribution data) to the indicated 
target (also trajectories + distribution data), as a function of the population parameters ρ, f and 
𝜙𝜙 and the interaction parameters pa and koff (total of 11760 probes). Detailed description as in 
Fig 3A, except that the parameter space includes both f and 𝜙𝜙. (C) Same as (B), but with target 
f increased to 0.6. The correct probe parameters (= the target parameters) had the following p-
values: 0.9995 (rank 1/28 possible solutions) in (A), 0.9980 (rank 1/23 possible solutions) in 
(B), 0.91 (rank 1/12 possible solutions) in (C). 
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 2 
where the p-values are calculated from the Mahalanobis distance as done previously (Eq. 1). With 3 
this, a combination of pa, koff and ρ values will only be accepted as a possible solution if it is a 4 
possible solution in both the dynamic comparison and the static comparison. This strategy indeed 5 
 6 
enabled the accurate estimation of pa and koff with a single-molecule labeled fraction as low as 0.06 7 
(Fig 5B, C; for f = 0.06, estimated pa range 0.04-0.06 and koff  = 1/s for target pa = 0.05 and koff = 8 
1/s). These tests demonstrate that combining these two types of complementary data is indeed a 9 
viable approach to enhance the accuracy of FISIK, without the need to increase the labeled fraction 10 
in single-molecule trajectory data. 11 
 12 
FISIK can estimate molecular interaction parameters in the presence of limited mismatch 13 
between model and system 14 
In our tests of FISIK thus far, there was no mismatch between model (i.e. probe) and the system it 15 
mimics (i.e. target). However, when applying FISIK to experimental data, it is highly likely that 16 
the employed model is an approximation of reality. Therefore, we investigated the performance of 17 
FISIK when there is a model mismatch between probe and target. Specifically, we investigated the 18 
effect of a mismatch in the maximum achievable oligomeric state (Omax, such that pa(n>Omax) = 19 
0)), and a mismatch in the diffusion coefficient D, as both of these are parameters that we have 20 
thus far assumed known instead of determining their values through model fitting. 21 
 To test the effect of mismatches in Omax, we simulated targets with different Omax, while 22 
retaining the probe Omax at 5 (Fig 6A). The employed target parameters were otherwise those of 23 
our reference target (ρ = 4 ± 0.4 mol/µm2, f = 0.2, pa (2≤n≤ Omax) = 0.05 and koff = 1/s; Fig 3A). 24 
High p-value solutions started to appear at target Omax = 3, where the interaction parameters were 25 
estimated with reasonable accuracy (high p-value solutions for pa = 0.04-0.07 and koff = 1.25-1.5/s), 26 
although at the wrong ρ-f combination (8×0.1 instead of 4×0.2). Increasing Omax to 4, the 27 
interaction parameters were estimated accurately and at the correct ρ-f combination, although high 28 
p-value solutions were still present at the 8×0.1 ρ-f combination. For Omax > 5, the solution range 29 
was very similar to that for target Omax = 5 (Fig 6A vs. Fig 3A). These results suggest that FISIK’s 30 
performance is relatively robust against mismatches in Omax; if it is able to estimate the interaction 31 
parameters, they are estimated reasonably accurately. If the mismatch in Omax between target and 32 
probe is too large, it appears that FISIK does not yield any solution, instead of an erroneous one. 33 
This robustness however implies that FISIK as applied to single-molecule tracking data alone is 34 
not able to estimate Omax. Other techniques, such as static distribution data, would be better suited 35 
to estimate Omax, which should then be input into the model. 36 
 To test the effect of mismatches in D, we simulated targets with different D, while retaining 37 
the probe D at 0.1 µm2/s. Again, the employed target parameters were otherwise those of our 38 
reference target (Fig 3A). We found that lower/higher D in target compared to probe were 39 
compensated for by lower/higher pa in the solution (Fig 6B). This is most likely because of the  40 
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Figure 6. FISIK can estimate molecular interaction parameters in the presence of limited 
model mismatch between probe and target. Four dimensional p-value landscape for 
comparing probe trajectories to the indicated targets, as a function of the population parameters 
ρ and f and the interaction parameters pa and koff (total of 3360 probes). Targets are subject to 
mismatch in the maximum achievable oligomeric state Omax (A), and in the diffusion coefficient 
D (B-C). In (B), all molecules in target have the indicated D (which is different from the probe 
D). In (C), D for target molecules follows the indicated normal distribution. Detailed description 
as in Fig 3A. In (A), the correct probe parameters (= target parameters) were outside of the  
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 1 
approximately linear dependence of 𝑘𝑘𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 on pa and D (Fig 2C and D, 3rd column). Mismatches in 2 
D of ~20% were tolerated (e.g. target D = 0.08 or 0.11 µm2/s), but beyond that the estimated pa 3 
range no longer contained the true target pa, at least at the correct ρ-f combination. The tested 4 
mismatches in D had very little effect on estimating koff, on the other hand. In another test, we 5 
allowed D to vary between molecules in the target, following a normal distribution with mean = 6 
probe D (0.1 µm2/s), while retaining that all molecules in the probe had the same D. Even up to a 7 
standard deviation = 40% of the mean D (for larger standard deviations the distribution shifts 8 
substantially from a normal distribution, as D cannot be negative), the solution range remained 9 
very similar to that with no variation in D between molecules (Fig 6C vs. Fig 3A).  10 

These tests indicate that FISIK is relatively sensitive to mismatches in the mean D between 11 
model and system, where mismatches in D are compensated for with the estimated pa, but it is 12 
robust against heterogeneity between molecules around their mean D. Therefore, especially in light 13 
of the coupling between pa and D that these tests revealed, it is important to obtain good estimates 14 
of the mean D, potentially as a function of oligomeric state, via thorough analysis of the single-15 
molecule trajectories, to use in the model. Yet the heterogeneity around the mean D does not have 16 
to be explicitly modeled. 17 
 18 
FISIK can estimate molecular interaction parameters from single-molecule trajectories 19 
subject to resolution limitations and tracking errors 20 
While single-molecule imaging can reveal colocalization of molecules, suggestive of interactions, 21 
on its own it cannot distinguish between molecules interacting with vs. passing by each other, 22 
largely because of the resolution limit. Note that for the purposes of this section we are using the 23 
term interactions in a general sense, thus including direct interactions, indirect interactions and 24 
clustering within a common nanodomain. Distinguishing between these different types of 25 
interactions depends on the known biology and further experimentation of the system under study. 26 
Here we are concerned with distinguishing between them and coincidental colocalization due to 27 
molecules passing by each other. One-color single-molecule imaging suffers the most from the 28 
limited resolution of light microscopy. Multi-color imaging suffers less due to the ability to use 29 
e.g. co-movement in addition to colocalization to assess specific interactions (8). FRET-based 30 
experiments suffer the least from the resolution limit, due to the requirement of very close 31 
proximity for FRET. Nevertheless, fundamentally all light microscopy approaches face the 32 
challenge of distinguishing between proximity due to interactions vs. due to passing-by events.  33 

Here we tested FISIK’s performance when applied to single-molecule trajectories obtained 34 
from one-color imaging data, as the most challenging scenario. We and others have previously 35 

solution range for Omax = 2 and Omax = 3, and had the following p-values for the other tests: 0.6418 
(rank 5/13 possible solutions) for Omax = 4, 0.9892 (rank 1/5 possible solutions) for Omax = 6, and 
0.8984 (rank 2/10 possible solutions) for Omax = 8.  In (B), the correct probe parameters were 
outside of the solution range for D = 0.05, 0.07, and 0.2 µm2/s, and had the following p-values for 
the other tests: 0.5165 (rank 3/10 possible solutions, for D = 0.08 µm2/s), 0.9738 (rank 2/8 possible 
solutions, for D = 0.11 µm2/s), 0.1061 (rank 4/4 possible solutions, for D = 0.14 µm2/s) in (B). In 
(C), the correct probe parameters had a p-value = 0.9991 (rank 1/7 possible solutions).     
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developed particle tracking algorithms to capture merging and splitting events between imaged 1 
molecules in one-color time-lapses (7, 51, 52), reflecting molecular interactions (in the general 2 
sense defined above) (6, 13). For these tests, we used low density and low-medium labeled fraction 3 
simulations (Table S2, Row 1), as FISIK had an overall good performance under these conditions 4 
in the absence of particle tracking errors (Fig 3). We generated synthetic single-molecule image 5 
series that mimicked experimental time-lapses from simulated target trajectories (see Table S3 for 6 
image generation parameters). Then we detected and tracked the molecules in the synthetic image 7 
series using u-track (7), as we would detect and track actual experimental data (see Tables S4 and 8 
S5 for detection and tracking parameters). Finally, we used the tracking output, after a minor “clean 9 
up” (Note S1), as the target data for model calibration within FISIK. Note that the probe trajectories 10 
were used directly as output by the Monte Carlo simulations. 11 

With the above strategy, we tested FISIK by generating images with an average signal-to-12 
noise ratio (SNR) of 20 (high) or 7 (medium). High SNR conditions are not very common in single-13 
molecule data, but they are achievable with quantum dot labeling (6, 8), for example. Medium 14 
SNR conditions are achievable with many organic dyes imaged via total internal reflection 15 
fluorescence microscopy (TIRFM), a common combination for single-molecule imaging. We 16 
started with a target with ρ = 2 ± 0.2 mol/μm2, f = 0.2, pa = 0.05 and koff = 1/s (as in Fig S3C). We 17 
chose this ρ and f combination because a labeled-molecule density of 0.4 mol/μm2 afforded 18 
(visually) acceptable detection and tracking performance (Videos S1-S4), and our previous tests 19 
on error-free data showed that f should be at least 0.2 for FISIK to estimate pa well.  20 

For both SNRs, FISIK estimated koff well, within a narrow range, albeit slightly shifted 21 
toward smaller koff values (estimated koff in the range 0.5-1/s, with most high p-value solutions at 22 
0.5/s and 0.75/s; Fig 7A). We surmised that this was due to the tracking software constraint that 23 
merges and splits were only allowed when there was no possibility of gap closing (Table S5). This 24 
constraint helped reduce the assignment of merge-to-split events to molecules merely passing by 25 
each other, but at the same time it might eliminate short-lived specific interactions between 26 
molecules. To investigate this issue further, we tested FISIK against targets with lower and higher 27 
koff values. Indeed, the downward shift was more pronounced for higher target koff values (Fig 7B, 28 
C). These observations imply that FISIK can estimate koff accurately from single-molecule imaging 29 
data subject to resolution limitations, as long as the dissociation time scale is considerably longer 30 
than the time scale of molecules diffusing past each other, in order to distinguish between the two 31 
events.  32 

Estimating pa was more challenging than estimating koff, and depended more strongly on 33 
the image SNR. Specifically, the range of solutions for pa was shifted toward higher values, and 34 
the shift increased as the SNR decreased. For SNR = 20, the target pa, was often just at the 35 
periphery of the solution range (Fig 7A-C, middle rows). For SNR = 7, the solution was shifted 36 
further away from the target pa of 0.05, and was generally in the range 0.09-0.15 (Fig 7A-C, bottom 37 
rows). Close inspection of the detection and tracking steps of u-track suggested that FISIK 38 
performed worse with lower SNR because of detection errors (specifically related to the detection 39 
of very nearby particles) that propagated into tracking errors, as the tracking step had to balance 40 
the potentially conflicting events of gap closing, merging and splitting. Nevertheless, the solution 41 
range for pa was finite and within 2-4-fold of the target pa, at least for average SNRs down to 7. 42 

The requirement for relatively high SNR raised the concern of the effect of photobleaching 43 
on FISIK’s performance. To address this issue, we simulated targets where the fraction of labeled  44 
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 1 
molecules decreased over time to mimic photobleaching. Starting with our reference target (Fig 2 
3A), we simulated a range of photobleaching rates, inspired by TIRF-based single-molecule 3 
imaging using organic dyes (Fig S4A). In contrast to the targets, the probes did not include any 4 
photobleaching. As expected, for low photobleaching rates that retained ~90% of the labeled 5 
molecules by the end of a 20 s “time-lapse” (0.005 and 0.007/s in Fig S4A), FISIK’s performance 6 
was very similar to that in the absence of photobleaching (Fig S4B, left, vs. Fig 3A). As the 7 
photobleaching rate increased further, such that less than 50% of labeled molecules were retained 8 
by the end of a 20 s “time-lapse” (0.03 and 0.05/s in Fig S4A), the solution range shifted toward 9 
lower ρ × f combinations, presumably to compensate for photobleaching (Fig S4B, bottom row). 10 
The interaction parameters remained in the vicinity of their target values, although pa became less 11 
determinable and its solution shifted toward higher values. For such high photobleaching rates, 12 
including photobleaching explicitly in the probe simulations will most likely improve FISIK’s 13 
ability to accurately estimate the interaction rates. 14 

All in all, these tests demonstrate that FISIK is able to extract molecular interaction 15 
parameters from sub-stoichiometrically labeled single-molecule imaging data, although with some 16 
systematic shifts due to the limited resolution and SNR inherent to light microscopy. For realistic 17 
SNRs commonly encountered in single-molecule imaging data, the imperfections of molecule 18 
detection and subsequently tracking might have to be compensated for by reducing the labeled 19 
fraction in order to maintain good tracking accuracy. If this labeled fraction is insufficient for 20 
interaction rate estimation (especially the association rate), then our collective results suggest that 21 
combining tracking data from multiple channels, and/or combining tracking data with dense but 22 
static oligomer distribution data (Fig 5), would provide sufficient information for FISIK to 23 
estimate accurately the unknown model parameters. 24 
 25 
Conclusion 26 

Figure 7. FISIK’s estimation of interaction parameters from single-molecule trajectories 
is influenced by resolution limitation and image SNR. (A) Four dimensional p-value 
landscape for comparing probe trajectories to the indicated target, as a function of the 
population parameters ρ and f and the interaction parameters pa and koff (total of 3584 probes; 
see Table). Detailed description as in Fig 3A. Top row (titled “Direct simulation”) shows 
landscape for comparing to target trajectories directly as output by the Monte Carlo simulations 
(as done for all figures up to Fig 6). Middle and bottom rows (titled “u-track (image SNR=20)” 
and “u-track (image SNR=7),” respectively) show landscape for comparing to target 
trajectories as output by u-track analysis of images with indicated SNR (see text for image 
generation and tracking details). (B, C) Same as (A), but with koff decreased (B) or increased 
(C) to the indicated values. For direct simulation comparisons, the correct probe parameters (= 
target parameters) had the following p-values: 0.8917 (rank 2/72 possible solutions) in (A),  
0.4138 (rank 14/49 possible solutions) in (B), and 0.7717 (rank 14/47 possible solutions) in 
(C). For u-track comparisons, the correct parameters had a p-value < 0.05 and were outside of 
the solution range. 
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In conclusion, the framework that we have developed, FISIK, is a promising approach for the 1 
inference of in situ interaction kinetics from single-molecule imaging data with sub-stoichiometric 2 
labeling. By including a labeled fraction parameter in FISIK’s modeling component, and then 3 
fitting the model to single-molecule data to determine the unknown model parameters, including 4 
the labeled fraction alongside the association and dissociation rates, FISIK tackles the issue of sub-5 
stoichiometric labeling in a generic manner. Our proof-of-principle tests demonstrate that FISIK 6 
can indeed estimate molecular association and dissociation rates using single-molecule data with 7 
labeled fractions as low as ~0.2 and ~0.06, respectively. Prior knowledge about the molecule 8 
density allows FISIK to estimate the unknown model parameters with greater accuracy. The proof-9 
of-principle tests also show that FISIK’s performance critically depends on the accuracy of 10 
molecule tracking. For molecular systems where accurate tracking requires a labeled fraction that 11 
is insufficient for parameter estimation, combining tracking data from multiple channels, and/or 12 
combining tracking data with dense but static oligomer distribution data, is a viable strategy to 13 
provide sufficient information for FISIK to estimate molecular association and dissociation rates. 14 
As our tests also show, the accuracy of FISIK depends on the accuracy of the model it employs to 15 
describe the biological system under study. Various lines of experimentation will most likely be 16 
needed to define an appropriate model to use within FISIK (e.g. motion types, interdependence 17 
between motion type and interactions, and maximum oligomeric state) and to constrain the model 18 
fitting problem. With this, FISIK is expected to allow us to estimate the interaction rates between 19 
molecules in their native cellular environment, taking full advantage of the rich spatial and 20 
temporal information present in live-cell single-molecule imaging data. 21 
 22 
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