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Abstract 

Microbial cell factories offer an attractive approach for production of biobased products. 

Unfortunately, designing, building, and optimizing biosynthetic pathways remains a complex 

challenge, especially for industrially-relevant, non-model organisms. To address this challenge, 

we describe a platform for in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes 

(iPROBE). In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein 

synthesis and then metabolic pathways are assembled in a mix-and-match fashion to assess 

pathway performance. We demonstrate iPROBE with two examples. First, we tested and ranked 

54 different pathways for 3-hydroxybutyrate production, improving in vivo production in 

Clostridium by 20-fold to 14.63 ± 0.48 g/L and identifying  a new biosynthetic route to (S)-(+)-1,3-

butanediol. Second, we used iPROBE and data-driven design to optimize a 6-step n-butanol 

pathway, increasing titers 4-fold across 205 pathways, and showed strong correlation between 

cell-free and cellular performance. We expect iPROBE to accelerate design-build-test cycles for 

industrial biotechnology. 
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Introduction 

For decades, scientists and engineers have turned to biological systems to help meet 

societal needs in energy, medicine, and materials—especially when chemical synthesis is 

untenable (e.g., antimalarial drugs). Often, biologically-produced small molecules are insufficient 

for production at the optimal titer, rate, or yield because natural sources are difficult to optimize 

and may not scale easily (e.g., plants grow slowly). Thus, engineers seek to design enzymatic 

reaction schemes in model microorganisms to meet manufacturing criteria.1 Success in these 

endeavors depends upon identifying sets of enzymes that can convert readily available molecules 

(e.g., glucose) to high-value products (e.g., medicines), with each enzyme performing one of a 

series of chemical modifications. Unfortunately, this is difficult because design-build-test (DBT) 

cycles—iterations of re-engineering organisms to test new sets of enzymes—are detrimentally 

slow.2,3 As a result, a typical project today might only explore dozens of variants of an enzymatic 

reaction pathway. This is often insufficient to identify a commercially relevant solution because 

selecting productive enzymes using existing single-enzyme kinetic data has limited applicability 

in multi-enzyme pathways and consequently requires more DBT iterations.4 This challenge is 

exacerbated in industrially-relevant, non-model organisms (such as clostridia) for which genetic 

tools are not as sophisticated, high-throughput workflows are often lacking, there exist 

transformation idiosyncrasies, and there is reduced availability of validated genetic parts. 

Yet, many industrial bioprocesses (e.g., synthesis of amino acids,5 organic acids,6-8 

solvents9,10) rely on non-model organisms as they offer exceptional substrate and metabolite 

diversity, as well as tolerance to metabolic end-products and contaminants, making them 

excellent chassis for biochemical production of exotic molecules from an array of possible 

feedstocks. Clostridia specifically were used industrially in acetone-butanol-ethanol (ABE) 

fermentations in the early-to-mid 20th century because of their unique solventogenic metabolism 

to produce large amounts of solvents (e.g., acetone and butanol) but were eventually phased out 
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of use due to the success of petroleum until recently.11 In addition, cellulolytic clostridia can 

degrade lignocellulosic biomass and acetogenic clostridia can robustly ferment on a variety of 

abundant, low-cost C1 gases including waste gases from industrial sources (e.g., steel mills, 

processing plants or refineries) or syngas generated from any biomass resource (e.g., municipal 

solid waste or agricultural waste).12 Acetogenic clostridia have recently proven industrial 

relevance for full commercial scale ethanol production using emissions from the steel making 

process.13 However, these strains tend to lack the natural machinery to produce such solvents or 

other more complex products, and the tools to engineer them are underdeveloped with the 

solutions established for E. coli and yeast not being directly transferrable.14 In fact, until a few 

years ago, Clostridium organisms were considered genetically inaccessible with only a handful of 

genomic modifications being reported.15,16 While developing tools for engineering Clostridium is 

ongoing and promising progress has been made,17,18 discovering methods to speed up metabolic 

engineering DBT cycles for these organisms would accelerate the re-industrialization of such 

organisms.14,19 

Cell-free systems provide many advantages for accelerating DBT cycles.20-22 For example, 

the open reaction environment allows direct monitoring and manipulation of the system to study 

pathway performance. As a result, many groups have used purified enzyme systems to study 

enzyme kinetics and inform cellular expression: testing enzymatic pathway performance in vitro, 

down-selecting promising pathway combinations, and implementing those in cells.20,23-26 Crude 

lysates are becoming an increasingly popular alternative to purified systems to build biosynthetic 

pathways because they inherently provide the context of native-like metabolic networks.27-29 For 

instance, the Panke group has shown that DHAP can be made in crude lysates and real-time 

monitoring can optimize production.29 In addition, our group has shown that 2,3-butanediol,30 

mevalonate,28 n-butanol,27,31 limonene,32,33 and more complex products34 can be constructed in 

crude lysates with high productivities (>g/L/h). However, to our knowledge, no attempts have been 
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made using cell-free prototyping to improve engineering of industrially-relevant, non-model 

organisms. 

To address this opportunity, we report a new in vitro Prototyping and Rapid Optimization 

of Biosynthetic Enzymes approach (termed iPROBE) to inform cellular metabolic engineering. 

The foundational principle is that we can construct discrete enzymatic pathways through modular 

assembly of cell lysates containing enzymes produced by cell-free protein synthesis rather than 

by living organisms (Figure 1). This reduces the overall time to build pathways from weeks (or 

even months) to a few days, providing an increased capability to test numerous pathways by 

avoiding inherent limitations of cell growth and thus diminishing the reliance on single-enzyme 

kinetic data. A key conceptual innovation is that the DBT unit can be cellular lysates rather than 

genetic constructs, allowing us to perform DBT iterations without the need to re-engineer 

organisms. The rapid ability to build pathways in vitro using iPROBE allows us to generate large 

amounts of data describing pathway operation under several operating conditions. We 

demonstrate iPROBE in two ways. First, we use a new quantitative ranking system to bridge cell-

free data and cellular metabolic engineering for the production of 3-hydroxybutyrate (3-HB) in 

Clostridium autoethanogenum from C1 gas. Specifically, we tested 54 different enzyme 

combinations for 3-HB and identify pathway combinations that produce at high-titers in vivo. The 

work also led to identification of a new route to (S)-(+)-1,3-butanediol (1,3-BDO), both non-native 

products for acetogenic clostridia and to our knowledge the first demonstration for biological 

production of the (S)-(+)-isomer of 1,3-butanediol. Second, we show the utility of iPROBE by 

increasing cell-free n-butanol production ~4-fold in less than two weeks by assessing 

performance of 205 pathways using data-driven design-of-experiments. We then selected 9 

pathway combinations from the iPROBE screen to assess butanol production in C. 

autoethanogenum strains, observing a strong correlation (r2 > 0.9) between in cell and cell-free 

pathway performance.  
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Figure 1. A two-pot cell-free framework for in vitro prototyping and rapid optimization of 
biosynthetic enzymes (iPROBE). A schematic overview of the iPROBE approach following a 
DBT and apply framework is depicted. In the design phase, reaction schemes and enzyme 
homologs are selected. In the build phase, lysates are enriched with pathway enzymes via 
overexpression prior to lysis or by cell-free protein synthesis post lysis. Then, lysates are mixed 
to assemble enzymatic pathway combinations of interest. In the test phase, metabolites are 
quantified over time and data is reduced into a single quantitative metric for pathway combination 
ranking and selection. In the apply phase, cell-free pathway combinations are selected and 
implemented in cellular hosts. 
 

Results 

Establishing a two-pot, cell-free framework for pathway prototyping  

We selected 3-hydroxybutyrate (3-HB) biosynthesis as a prime example for pathway 

prototyping with iPROBE given it is non-native to clostridia and its importance as a high-value 

specialty chemical.35,36 Our vision was to demonstrate modular assembly of the pathway by mixing 

BASubstrate Product

... ... ...

729+ possible combinations
3-Step Pathway

59,049+ possible combinations
5-Step Pathway

9+ Homologs per Step

Pathway Design of Experiments

Molecule Biosynthesis Selection

Selective 
Overexpression

Cell Lysis

Cell Lysis

+ + + + +

in vitro
enzyme 
synthesis

Combinatorial Mixing

Substrate

Multiplexed prototyping

Pot #1

Pot #2

Metabolite Analysis

Cellular Metabolic Engineering

B
U

IL
D

D
ES

IG
N

TE
ST

A
PP

LY

TREE Score
single, quantitative value of combined
Titer, Rate, and Enzyme Expression

± propagated error

Pathway Scoring & Selection

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 28, 2019. ; https://doi.org/10.1101/685768doi: bioRxiv preprint 

https://doi.org/10.1101/685768


multiple crude cell lysates each individually enriched with a pathway enzyme, identify best sets of 

enzymes and their stoichiometry for pathway operation, and inform cellular design in an 

industrially proven,12 non-model host organism, in this case acetogenic Clostridium 

autoethanogenum (Figure 1). A unique feature of the iPROBE approach, relative to previous 

works in crude lysate-based cell-free prototyping,27,31-33,37 is that pathways are assembled in two 

steps (i.e., 2 pots), where the first step is enzyme synthesis via cell-free protein synthesis (CFPS) 

and the second step is enzyme utilization via substrate and cofactor addition to activate small 

molecule synthesis. Separating enzyme synthesis and utilization into two separate pots enables 

the modular control of enzyme concentrations because exact amounts can be added to the 

biosynthetic reaction. Moreover, negative physiochemical effects of the CFPS reaction31 on small 

molecule biosynthesis can be reduced. 

We first set out to use iPROBE to study the impact of enzyme stoichiometry on pathway 

performance for the two, non-native enzyme pathway to 3-HB (Figure 2A). A thiolase (Thl) and 

a hydroxybutyryl-CoA dehydrogenase (Hbd), along with a native thioesterase,38 are required to 

make 3-HB. We initially selected a Thl gene from Clostridium acetobutylicum (Cac) and a Hbd 

gene from Clostridium kluyveri (Ckl) (Supplementary Table S1). We used the well-characterized 

E. coli-based PANOx-SP CFPS system39 to produce CacThl and CklHbd, with soluble yields of 

5.85 ± 0.82 µM and 19.31 ± 3.65 µM, respectively. Then, we designed five unique pathway 

combinations titrating different concentrations of Thl while maintaining a constant concentration 

of Hbd by mixing different ratios of CFPS reactions (keeping total CFPS reaction added constant 

using blank reactions containing no protein produced in vitro) (Figure 2B-C). Upon incubation 

with essential substrates, salts, and cofactors (e.g., glucose, NAD, CoA, ATP), we assessed 3-

HB synthesis at 0, 3, 4, 5, 6, and 24 h for each of the five pathway combinations via high 

performance liquid chromatography (HPLC) (Figure 2D). The cell lysate contains endogenous 

enzymes for glycolysis that regenerate NADH40 and convert glucose to acetyl-CoA, providing the 

starting intermediate for 3-HB biosynthesis. As expected, no 3-HB was produced in the absence 
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of Thl. The highest 3-HB titers were observed for 0.5 µM CacThl and 0.5 µM CklHbd. We 

performed a similar titration of CklHbd while maintaining a constant concentration of CacThl 

(Supplementary Figure S1). Taken together, our data show that crude lysates enriched by CFPS 

can be used to assemble metabolic reactions and sets the stage to optimize pathways using a 

two-pot cell-free approach.  

 

Figure 2. Individual pathway enzymes can be tuned in pathway context and ranked using 
TREE scores with iPROBE. (A) The pathway to produce 3-HB from native metabolism (acetyl-
CoA) is selected requiring two enzymes not natively present, CacThl and CklHbd. (B) Five 
pathway combinations are designed to be built and tested varying the concentration of CacThl 
low to high while maintaining CklHbd at one concentration. (C) The five pathway designs are built 
by enriching two E. coli lysates with CacThl and CklHbd, respectively, by CFPS (Pot #1). Then, 
the five pathway combinations are assembled by mixing CFPS reactions containing CacThl, 
CklHbd, and no enzyme (blank) with fresh E. coli lysate. Kanamycin, to stop further protein 
synthesis, glucose and cofactors are added to start biosynthesis of 3-HB. (D) 3-HB is measured 
at 0, 3, 4, 5, 6, and 24 h after the addition of glucose for each of the five pathway combinations. 
Error bars are shown at 24 h and represent technical triplicates. (E) The TREE is score is then 
calculated for each pathway combination with propagated error. 
 

Developing a metric to quantify biosynthetic pathway performance 

To optimize pathways with iPROBE, we next defined a pathway ranking system that would 

enable assessment of activity in the cell-free environment and hold potential to inform cellular 

design. The basis of this ranking system is a single, quantitative metric for our cell-free 

experiments. We call this metric the TREE score (for titer, rate, and enzyme expression; important 

metrics for defining the success of cell-based metabolic engineering). The TREE score combines, 
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through multiplication, titer at reaction completion, rate during the most productive phase of 

pathway operation, and enzyme expression as measured by protein solubility and total enzyme 

amount. Using our initial set of data (Figure 2) as a guide, the TREE score is obtained by 

multiplying 3-HB titer at 24 h, the linear 3-HB production rate between 3 and 6 h, and the sum of 

the average solubility of the pathway enzymes, Thl and Hbd, and the inverse of the total enzyme 

concentration for each of the five pathway combinations (Supplementary Figure S2; Figure 2E). 

While the TREE score rankings are not drastically different from the titers or rates alone, which 

they should not be, they exaggerate differences that might arise from each component of the 

score. Combining titer and rate enables use of both in ranking cell-free pathway performance 

which is helpful as it is unknown whether cell-free titer or rate is more or less important for 

informing cellular metabolic engineering. Incorporating enzyme expression allows pathways that 

have expression difficulties to decrease the overall pathway rank so as to avoid enzymes with 

poor expression properties. By reducing the complexity of available cell-free data to one value, 

the TREE score enables a rapid approach to rank pathways for iPROBE. 

 

iPROBE informs selection of genetic regulatory architectures in Clostridium 

With a pathway ranking system at hand, we next aimed to validate that cell-free 

experiments could generate design parameters for DNA construction of biosynthetic pathways in 

cells. Gene expression involves designing a coding sequence, 5’ and 3’ regulatory elements, and 

vector maintenance components, among other parts. Selection of the promoter regulatory 

strengths (e.g., high, medium, low) for the expression of a coding sequence, in particular, is an 

essential factor for pathway tuning. Thus, we set out to develop a correlation between specific 

enzyme concentrations in iPROBE and specific strength regulatory architectures, relative 

promoter strengths and plasmid copy number for a single operon comprising the 3-HB pathway, 

for expression in C. autoethanogenum. To achieve this goal, we built cell-free pathway 
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combinations for 3-HB by co-titrating seven different enzyme concentrations of Thl and Hbd in 

our reactions (Supplementary Figure S3). Specifically, we built seven cell-free reactions in 

increasing total concentration added, combining CacThl and CklHbd at equimolar amounts. We 

ran each cell-free reaction for 24 h and measured the titer of 3-HB produced (Supplementary 

Figure S3C). We observed that as the amount of enzyme added increases, the amount of 3-HB 

increased up to a threshold amount of 1 µM of each enzyme added. In parallel, we constructed 

plasmids expressing CacThl and CklHbd under eight regulatory architectures (change in promoter 

strength and plasmid copy number) of increasing strength and transformed them into separate 

strains of C. autoethanogenum. We ran small-scale bottle fermentations of each strain under 

anaerobic conditions on carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) gas 

and measured stationary phase titers of 3-HB (Supplementary Figure S3D) and observed a 

similar trend to the cell-free studies. Namely, we found that increases in expression strength led 

to higher 3-HB titers. These data allowed us to build a cell-free to cell correlation that connects 

cell-free 3-HB production and corresponding enzyme concentrations to cellular 3-HB production 

and corresponding plasmid regulatory strength. We found that using < 0.1 µM enzyme in vitro 

corresponds to low regulatory strengths in vivo, using 0.1 - 0.3 µM enzyme in vitro corresponds 

to medium strengths in vivo, and using > 0.3 µM enzyme in vitro corresponds to high strengths in 

vivo. In principle, this allows us to screen many different pathway combinations in cell-free 

systems and provide a rational recommendation for plasmid construction of those pathway 

combinations in Clostridium, which is what we did next. 

 

iPROBE can inform the selection of pathway enzymes in Clostridium 

 To showcase the iPROBE approach, we next screened several possible 3-HB pathway 

combinations using cell-free experiments, ranked a subset of candidate cellular pathway 

combinations using the TREE score, and showed cellular C. autoethanogenum 3-HB biosynthesis 
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from CO/H2/CO2 gas correlates with cell-free experimental results. To do this, we tested six 

enzyme homologs of each Thl and Hbd originating from different Clostridium species (Figure 3A; 

Supplementary Table S1). We selected all pathway combinations of the 12 enzymes keeping a 

fixed total concentration of enzyme added (high expression levels) to build in cell-free reactions 

(Figure 3B-C). By measuring 3-HB production over the course of 24 h along with soluble enzyme 

expression for each of the enzymes (Supplementary Figure S4), we are able to calculate TREE 

scores for each of the 36 pathway combinations (Figure 3D). We found that a majority of pathway 

combinations perform poorly with only a handful achieving TREE scores above a value of 2. We 

wanted to use this information to down-select the number of combinations to test in acetogenic 

clostridia due to the current limitations in high-throughput strain testing. We selected a subset of 

four pathway combinations from the iPROBE screening to test in C. autoethanogenum labeled A, 

B, C, and D. We constructed and transformed DNA with strong regulatory architectures and each 

of the four-pathway enzyme sets into separate strains of C. autoethanogenum (Figure 3E). We 

ran small-scale bottle fermentations of each strain under anaerobic conditions on CO/H2/CO2 gas 

mixture and measured 3-HB titers at four time-points during the fermentation (Figure 3F). We 

observed that the best cell-free pathway combination as determined by TREE score (D) also 

performs the best of the four in Clostridium cells, achieving 33.33 ± 1.44 mM. The worst pathway 

combination in cell-free experiments (A) is also the worst performer in C. autoethanogenum. The 

other two pathway combinations (B, C), which were not statistically different, fall in the middle in 

cellular experiments. At a high-level, these data suggest that the cell-free system is useful for 

guiding pathway selection in cells. This might be especially true for down-selecting pathway 

combinations that should not be tested in cells (i.e., produce little to no product). In fact, the best 

pathway designs tested in two recent studies that explored autotrophic 3-HB production in 

acetogenic clostridia produced ~4 mM and ~1 mM 3-HB.41,42 Their pathways correspond to TREE 

scores of 1.06 ± 0.07 and 0.02 ± 0.00, respectively. Based on our iPROBE screening we would 
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have suggested not testing these combinations in vivo. For context, our best pathway had a TREE 

score of 17.76 ± 3.08. In sum, iPROBE offers a framework to rapidly design, build, and test 

pathway combinations in cell-free experiments in a matter of days, bypassing DNA construction 

and transformation limitations, and to facilitate implementation of promising pathway 

combinations for engineering success in cells. 

      

Figure 3. Enzymatic pathways can be screened with iPROBE to inform Clostridium 
expression for optimizing 3-hydroxybutyrate production. A reaction scheme for the 
production of 3-HB is presented in panel (a). Six homologs have been selected for each reaction 
step. The design in (b) includes the testing of six Thl homologs and six Hbd homologs at 0.5 µM 
each. We built each possible combination in cell-free systems (c) constituting 36 unique pathway 
combinations. We rapidly built these cell-free pathways by expressing each of the 12 enzyme 
variants in lysates by CFPS. We then mixed each to try all 36 possible combinations keeping 
enzyme concentration fixed. (d) 3-HB was measured, and TREE scores were calculated and 
plotted for each iPROBE pathway combination with propagated error. We then selected four 
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pathway combinations to test in C. autoethanogenum (A, B, C, and D). These pathways were 
built in high copy plasmids with the highest strength promoters in single operons (e). Clostridium 
strains containing these pathway combinations were then fermented on gas and 3-HB was 
measured over the course of fermentation (f). Error bars represent technical triplicates. 
 

Scaled-up fermentations of 3-HB pathway prototype 

We next coupled the results of our integrated iPROBE approach with in-house facilities to 

scale cell growth from bench to continuous fermentation scales (Figure 4A). Specifically, the best 

performing strain for 3-HB production selected by iPROBE was chosen for process scale-up from 

0.1-L bottle fermentations to 1.5-L continuous fermentations using CO/H2/CO2 gas as the sole 

carbon and energy source. Over a 2-week fermentation, we monitored 3-HB and biomass in a 

control strain and our iPROBE-selected strain with and without optimized fermentation conditions 

(Figure 4B-C). In optimized fermentations we observed high-titers of 3-HB, ~15 g/L (140 mM) at 

rates of >1.5 g/L/h in a continuous system. This is not only higher than the previously reported 

concentration in acetogenic Clostridium,41,42 but to our knowledge also exceeds the previously 

highest-reported concentration for traditional model organisms like E. coli (titer of ~12 g/L and 

rate of ~0.25 g/L/h in fed-batch)38,43 and yeast (titer of ~12 g/L and rate of ~0.05 g/L/h in fed-

batch)44 without any additional genomic modifications to optimize flux into the pathway. This 

shows the utility of iPROBE in identifying pathways for industrial strain development. We 

anticipate that genome modifications to increase flux could further improve fermentation titers. 

For example, a recent study reported a 2.6-fold improvement in 3-HB production in a related 

engineered acetogenic Clostridium by downregulation of two native genes related to acetate 

production.42  
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Figure 4. Clostridium fermentations show improved production of 3-HB and identification 
of a new route to 1,3-butanediol. (A) The iPROBE-selected optimal pathway, CacThl and 
CklHbd1, for 3-HB production is built in a C. autoethanogenum strain and run in a 14-day 
continuous fermentation on CO/H2/CO2 gas as sole energy and carbon source. Fermentation 
parameter optimizations were performed for the new strain. Comparing fermentation of the control 
strain of C. autoethanogenum (white circles) to the initial (light grey circles) and optimized (dark 
grey circles) fermentations of the iPROBE-selected pathway expression strain, (B) 3-HB and (C) 
biomass were monitored. (D) 1,3-BDO was measured during steady-state fermentation and 
averages are shown for the control strain (-), the iPROBE-selected pathway expression strain 
(light green hexagon), and strain containing the PhaB homolog for Hbd (dark green hexagon). 
 

Surprisingly, we also observed production of a novel metabolite, 1,3-butanediol (1,3-

BDO), at 3-5% of the 3-HB levels and up to 0.5 g/L (Figure 4D). This is attributed to nonspecific 

activity of a native aldehyde:ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase able 

to reduce 3-HB to 3-hydroxybutyraldehyde and further to 1,3-BDO. Indeed, no 1,3-BDO was 

observed when transforming the pathway into a previously generated AOR-knockout strain.45 

These enzymes have previously been shown to reduce a range of carboxylic acids to their 

corresponding aldehydes and alcohols through reduced ferredoxin.15,46 While the (R)-(-)-form of 

1,3-BDO has been produced via other routes,47-49 when using the C. kluyveri-derived Hbd we also 

detected the (S)-(+)-form of 1,3-BDO as determined by chiral analysis, which to our knowledge 

has never been produced in a biological system before. This chiral specificity is determined by 

the chosen 3-hydroxybutyryl-CoA dehydrogenase. Given that 1,3-BDO is used in cosmetics and 

can also be converted to 1,3-butadiene used in nylon and rubber production with a US$20 

billion/year market,35,50 the discovery of this pathway is important. In sum, iPROBE provides a 

quick and powerful DBT framework to optimize and discover biosynthetic pathways for cellular 

metabolic engineering efforts, including those in non-model hosts. 
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Cell-free pathway prototyping for n-butanol biosynthesis 

Having demonstrated the use of iPROBE to optimize the 3-HB pathway for informing 

cellular design in C. autoethanogenum, we next aimed to show that iPROBE could be used to 

optimize longer pathways. We selected the 6-step pathway from acetyl-CoA to nbutanol as a 

model pathway for this because butanol is an important solvent and drop-in fuel with US$5 

billion/year market (Figure 5A). The key idea was to use iPROBE to optimize cell-free butanol 

production by constructing pathway variants with different enzyme homologs and reaction 

stoichiometry. The challenge with this optimization goal is the number of possible permutations. 

Indeed, testing just six homologs for each of the first four steps of the pathway at three different 

enzyme concentrations would alone require 314,928 pathway combinations, which exceeds 

typical HPLC analytical pipelines. Nevertheless, we know that homolog changes and reaction 

stoichiometry should be optimized simultaneously because tuning stoichiometries of one set of 

enzymes (EcoThl, CbeHbd, CacCrt, and TdeTer; Figure 5A, highlighted in blue) does not achieve 

significant improvements (Supplementary Figure S5). To optimize enzyme homologs and 

concentrations simultaneously while also managing the landscape of testable hypotheses, we 

implemented a design-of-experiments using a neural-network-based algorithm to predict 

beneficial pathway combinations. This approach requires an initial data set to seed and train the 

neural networks. 

In creating the initial data set to guide improvements in titer, we chose six homologs of 

each Thl, Hbd, Crt, and Ter (Supplementary Table S1; Figure 5A). We tested five reaction 

stoichiometries for each enzyme homolog in a pathway context consisting of our base set of 

enzymes (Figure 5A, highlighted in blue), totaling 120 pathway combinations, including those in 

Supplementary Figure S5. We built these combinations in cell-free reactions from enzymes 

produced by CFPS, measured butanol production over time, and calculated TREE scores for 
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each (Figure 5B; Supplementary Figure S6). In total, we collected these additional data in five 

experimental sets of 20 pathway combinations with each set taking five days (three days of HPLC 

time). A majority of the enzyme homologs did not out-perform the original enzyme set. This is not 

surprising as the base case has been extensively characterized and tested throughout the 

literature.51-53 However, we find that CklHbd1 can double the TREE score at high concentrations 

and even out-performs the base case Hbd at lower concentrations. This agrees with an 

independent study that found a 1.6-fold improvement in ABE fermentation with C. acetobutylicum 

by replacing the native Hbd with the CklHbd1.54 
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Figure 5. Cell-free pathway testing combined with data-driven design-of-experiments 
quickly screens 205 unique pathway combinations and selects pathways for cellular 
butanol production. A reaction scheme for the production of butanol is presented in panel (a). 
Six homologs have been selected for each of the first four reaction steps and are shown in panel 
(a). (b) The strategy for running an initial set of reactions is to test each homolog at 5 
concentrations individually with the base case set of enzymes (blue). These 120 pathway 
combinations are run in cell-free reactions according to the two-pot iPROBE methodology and 
TREE scores are calculated from 24-h butanol time-courses. The dashed line is placed at the 
TREE score resulting from the base case set of enzymes. (c) Neural-network-based design of 
experiments is implemented using the data presented in (b) to predict enzyme sets and 
concentrations to be constructed. (d) These are then built in cell-free systems. TREE scores are 
calculated for all newly tested pathway combinations from 24-h butanol time-courses. The black 
dashed line is placed at the TREE score resulting from the base case set of enzymes, the grey 
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dashed line corresponds to the TREE score of the best case from (b), and the orange dashed line 
represents the highest TREE score achieved through the data-driven iPROBE approach. (e) Nine 
pathway combinations (two high-performing pathways, two medium-performing pathways, and 
five low-performing pathways) were constructed and transformed in vivo in C. autoethanogenum. 
End-point titers of butanol production (relative to the highest in vivo titer) are plotted against in 
vitro TREE scores for the corresponding pathway combination. Error bars for in vivo titers are 
relative standard deviations for four to six replicates. Error bars for all TREE scores are 
propagated error based on TREE score calculations. 
 

With this initial dataset collected (Figure 5B), we used ten randomly generated, trained, 

and evaluated neural network architectures to make pathway combination predictions (homolog 

set and reaction stoichiometry) to maximize TREE score which we could then build with the cell-

free framework (Figure 5C). Design predictions suggesting enzyme concentrations of < 0.01 µM 

were ruled out, and we built the remaining 43 predictions in cell-free reactions (Supplementary 

Figure S7A). To evaluate our design-of-experiments approach, we compared the results with two 

additional sets of experiments: (i) a set varying reaction stoichiometry more thoroughly using only 

the base set enzymes (21 pathway combinations; Supplementary Figure S7B) and (ii) a hand-

selected set of 18 pathway combinations based on our understanding of the biosynthesis 

(Supplementary Figure S7C). In total we tested 205 unique pathway combinations (base set 

combinations, initial round combinations, and data-driven designs) (Figure 5D; Supplementary 

Figure S6). Nearly 19% of the total pathway combinations screened have higher TREE scores 

than our base case. Without testing every possible combination, we were able to rapidly test a 

manageable subset achieving ~4 times higher TREE scores (~2.5 times higher titer and 58% 

increase in rate) over the base case pathway combination. The top six TREE scores each arose 

from pathways predicted in the neural-network-based design, showcasing the importance of 

merging computational and experimental design. Further analysis of the pathway combinations 

shows that there are enzyme homologs and concentrations that clearly improve the TREE score. 

The chosen thiolase does not seem to matter in the 20 top-performing combinations whereas the 

C. kluyveri Hbd1 is far superior to other Hbd enzymes (Supplementary Figure S8A). We also 

noticed that in the 20 top-performing combinations Hbd is present at significantly (p<0.001) higher 



concentrations and the median Crt concentration is lower, though not significantly, than the initial 

0.3 µM (Supplementary Figure S8B). This suggests that optimal pathway operation occurs when 

enough flux can pass away from central carbon metabolism down the butanol pathway but 

minimal flux flows through the toxic intermediate metabolite, crotonyl-CoA.  

We next assessed iPROBE’s ability to enhance cellular design by selecting nine 

representative pathway combinations from the iPROBE screening and constructing them in C. 

autoethanogenum strains to produce butanol: two pathway combinations scoring among the top 

five combinations, two pathway combinations in the middle range of the data set, and five pathway 

combinations near the tail-end of all combinations tested. To avoid diverting flux toward 3-HB, we 

identified and knocked-out a native thioesterase able to hydrolyze 3-HB-CoA from our screening 

strain. After monitoring butanol production over the course of six days (Supplementary Figure 

S9A), we see a high correlation (r2 = 0.93) between in vivo expression in C. autoethanogenum 

and TREE scores from iPROBE (Figure 5E). This further emphasizes that selecting top-

performing pathways from iPROBE can improve production in Clostridium organisms and 

decreases the number of strains that need to be tested. While overall butanol production was low 

in C. autoethanogenum using the iPROBE-selected pathways, we were able to increase 

production over 200-fold from 0.1 ± 0.0 mM to 22.0 ± 1.3 mM (Supplementary Figure S9B) by 

replacing the trans-2-enoyl-CoA reductase (Ter) enzyme with the ferredoxin-dependent electron 

bifurcating enzyme complex (Bcd-EtfA:EtfB) naturally used for these activities in clostridia.55 This 

is not surprising in light of a recent study that showed Ter is detrimental to ABE fermentation when 

introduced in C. acetobutylicum.56 For comparison, the previously best reported butanol 

production in engineered acetogenic clostridia was ~2 mM.15 Moreover, the Bcd-EtfA:EtfB 

complex is a delicate complex that is extremely oxygen sensitive57 and has so far been inactive 

in E. coli lysates (in alignment with previous reports that highlighted difficulties expressing Bcd in 

E. coli),52 highlighting an area for potential improvement of iPROBE (i.e., compatibility of E. coli 

lysates with non-model organisms). Overall, this work demonstrates the power of coupling data-



driven design-of-experiments with a cell-free prototyping framework to select feasible subsets of 

pathways worth testing in vivo for non-model organisms. 

 

Conclusion 

We demonstrate a new, two-pot framework, iPROBE, that incorporates a highly 

controllable and modular cell-free platform for constructing biosynthetic pathways with a 

quantitative metric for pathway performance selection (the TREE score) to engineer and improve 

small molecule biosynthesis in non-model organisms that can be arduous to manipulate. 

Specifically, we show that by screening 54 biosynthetic pathway combinations for the production 

of 3-HB in cell-free reactions, we can rationally select a handful of pathways to inform cellular 

metabolic engineering in clostridia. Indeed, iPROBE enabled the construction of a strain of C. 

autoethanogenum that produces high-titers and yields of 3-HB (~20x higher than the previous 

highest reported concentration in the literature) in continuous fermentations with carbon 

monoxide/hydrogen/carbon dioxide gas as sole source of carbon and energy. The work also led 

to the identification of a new route to 1,3-BDO and the first production to our knowledge of the 

(S)-isomer of this molecule in a biological system. Beyond the 3-HB example, we also show the 

ability to use iPROBE in conjunction with data-driven design-of-experiments to reduce an 

exceedingly large landscape of testable pathway designs, test a subset of 205 pathway 

combinations in vitro for the production of butanol, and show that by testing a further subset of 

designs in vivo we can improve butanol production in acetogenic clostridia. Highlighting the utility 

of iPROBE for accelerating DBT cycles, the 205 pathway combinations for butanol were built 

cumulatively in 12 days (excluding HPLC time) in cell-free reactions, which we estimate would 

have taken a team of researchers more than 3 months in clostridia. Importantly, we show that 

there is indeed a correlation between pathway performance in vitro and in vivo providing evidence 

of the effectiveness of the iPROBE approach.    



Looking forward, we anticipate that iPROBE will facilitate DBT cycles of biosynthetic 

pathways by enabling the rapid study of pathway enzyme ratios, tuning individual enzymes in the 

context of a multi-step pathway, screening enzyme variants for high-performance enzymes, and 

discovering enzyme functionalities. This in turn will decrease the number of the strains that need 

to be engineered and time required to achieve desired process objectives. This will increase the 

flexibility of biological processes to adapt to new markets, expand the range of fossil-derived 

products that can be displaced with bio-derived alternatives, and enhance the economic benefits 

for co-produced fuels. 

 

 

 

Methods 

Bacterial strains and plasmids 

Escherichia coli BL21(DE3) (NEB) was used for preparation of cell extracts which were used to 

express all exogenous proteins in vitro.37 A derivate of Clostridium autoethanogenum DSM10061 

obtained from the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ; 

Braunschweig, Germany) was used for in vivo characterization and fermentations.58 For butanol 

production, this strain was used with a native thioesterase (CAETHG_1524) knockout made using 

Triple Cross recombination as described previously.59 

 

Twenty-three enzymes were examined in this study (Supplementary Table S1). DNA for all 

enzyme homologs tested were codon adapted for E. coli using IDT codon optimizer. Non-

clostridial sequences were codon adapted for C. autoethanogenum using a LanzaTech in-house 

codon optimizer, and all native clostridial genes were used as is. E. coli and C. autoethanogenum 

adapted sequences are listed in Supplementary Table S2 and Supplementary Table S3, 



respectively. For the cell-free work, the pJL1 plasmid (Addgene #69496) was used. The modular 

pMTL80000 plasmid system60 along with acsA45, fdx45, pta61 and pfor62 promoters were used for 

the C. autoethanogenum plasmid expression. 

 

Cell Extract Preparation 

E. coli BL21(DE3) cells were grown, harvested, lysed, and prepared using previously described 

methods.27,63 

 

iPROBE Reactions 

Cell-free protein synthesis (CFPS) reactions were performed to express each enzyme individually 

using a modified PANOx-SP system described in previous pubications.39,64 Fifty-μL CFPS 

reactions were carried out for each individual enzyme in 2-mL microcentrifuge tubes. Enzyme 

concentrations in CFPS reactions were quantified by 14C-leucine incorporation during in vitro 

translation. Then reactions performed for identical enzymes were pooled together when multiple 

reaction tube-volumes were needed to keep a consistent 50-µL reaction volume and geometry 

for every CFPS reaction. Based on molar quantities of exogenous enzymes in each CFPS 

reaction determined by radioactive measurement, CFPS reactions were mixed to assemble 

complete biosynthetic pathways in 1.5-mL microcentrifuge tubes. CFPS reactions constitute 15 

µL of a 30-µL-total second reaction. When the total CFPS reaction mixture constituted less than 

15 µL, ‘blank’ CFPS reaction was added to make the total amount of CFPS reaction up to 15 µL. 

The ‘blank’ reactions consist of a typical CFPS reaction with no DNA added. This 15 µL CFPS 

mixture was then added to fresh extract (8 mg/mL), kanamycin (50 μg/ml), glucose (120 mM), 

magnesium glutamate (8 mM), ammonium glutamate (10 mM), potassium glutamate (134 mM), 

glucose (200 mM), Bis Tris pH 7.8 (100 mM), NAD (3 mM), and CoA (3 mM); final reaction 



concentrations are listed. Reactions proceeded over 24 h at 30 ºC. Measurements from samples 

were taken at 0, 3, 4, 5, 6, and 24 h. 

 

Quantification of protein produced in vitro 

CFPS reactions were performed with radioactive 14C-Leucine (10 µM) supplemented in addition 

to all 20 standard amino acids. We used trichloroacetic acid (TCA) to precipitate radioactive 

protein samples. Radioactive counts from TCA-precipitated samples was measured by liquid 

scintillation to then quantify soluble and total yields of each protein produced as previously 

reported (MicroBeta2; PerkinElmer).39,40  

 

Metabolite Quantification 

High-performance liquid chromatography (HPLC) was used to analyze 3-HB and n-butanol. We 

used an Agilent 1260 series HPLC system (Agilent, Santa Clara, CA) via a refractive index (RI) 

detector. 3-HB and n-butanol were separated with 5 mM sulfuric acid as the mobile phase and 

one of two column conditions: (1) an Aminex HPX-87H or Fast Acids anion exchange columns 

(Bio-Rad Laboratories) at 35 or 55 °C and a flow rate of 0.6 ml min−1 or (2) a Alltech IOA-2000 

column (Hichrom Ltd, Reading, UK) at 35 or 65 °C and flow rate of 0.7 ml min−1 as described 

earlier.65 1,3-butanediol was measured using gas chromatography (GC) analysis, employing an 

Agilent 6890N GC equipped a Agilent CP-SIL 5CB-MS (50 m×0.25 μm×0.25 μm) column, 

autosampler and a flame ionization detector (FID) as described elsewhere.65 For chiral analysis 

of (S)-(+)-1,3-Butanediol and (R)-(-)-1,3-Butanediol an Agilent 6890N GC equipped with a Restek 

Rt®-bDEXse 30m x 0.25 mm ID x 0.25µm df column and a flame ionization detector (FID) was 

used. Samples were prepared by heating for 5 minutes at 80 °C, followed by a 3-minute 

centrifugation at 14,000 rpm. Exactly 400 µL of supernatant was then transferred to a 2-mL glass 

autosampler vial and 100 µL of and Internal Standard solution (5-methyl-1-hexanol and 



tetrahydrofuran in ethanol) was added. The capped vial was then briefly vortexed. Sample vials 

then were transferred to an autosampler for analysis using a 1.0 µL injection, a split ratio of 60 to 

1, and an inlet temperature of 230 °C. Chromatography was performed with an oven program of 

50 °C with a 0.5 min hold to a ramp of 3 °C/min to 70 °C to a ramp of 2 °C/min to 100 °C with a 

final ramp at 15 °C/min to 220 °C with a final 2-min hold. The column flow rate was 30 cm/sec 

using helium as the carrier gas. The FID was kept at 230 °C. Quantitation was performed using a 

linear internal standard calibration. 

 

TREE Score Calculations 

The TREE Score is calculated by multiplying the titer by the rate by enzyme expression metric. 

𝑇𝑅𝐸𝐸	𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑖𝑡𝑒𝑟	 ∙ 𝑅𝑎𝑡𝑒	 ∙ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 + [𝑇𝑜𝑡𝑎𝑙	𝐸𝑛𝑧𝑦𝑚𝑒]=>) 

The titer is the metabolite concentration in the cell-free reaction at 24 h, when the reaction is 

complete. The error associated with titer is the standard deviation of reaction triplicates. The rate 

is the slope of the linear regression of metabolite concentrations taken at 3, 4, 5, and 6 h time 

points. The rate-associated error is the standard error of the slope calculated by the linear 

regression. The average solubility term is calculated by first determining the solubility (soluble 

protein/total protein, n = 3) for each individual enzyme via 14C-leucine incorporation. The average 

solubility is then the average value of enzyme solubilities (in this case, five enzymes) and the 

error associated with solubility is propagated error. The concentration of total enzyme is 

calculated by the addition of the final concentrations of each enzyme in the reaction with 

propagated error. The final error on the TREE score is the propagated error of each individual 

component. 

 

In vivo Gas Fermentations 



In vivo cultivation and small-scale bottle fermentation studies were carried out as described earlier 

using a synthetic gas blend consisting of 50% CO, 10% H2, 40% CO2 (Airgas, Radnor, PA).62 

Continuous fermentations were carried out in 1.5L continuous stirred tank reactors (CSTRs) with 

constant gas flow as described elsewhere.65,66  

 

Design-of-experiments using neural networks 

A neural network-based approach was used to explore the vast landscape of possible 

experimental designs. The neural networks, which were all designed as deep neural network 

regressions, had between 5 and 15 layers and between 5 and 15 nodes in each layer. We 

randomly generated the network architectures, which we then evaluated based on how accurately 

the trained models predicted the training data. We trained and evaluated 500 unique network 

architectures and selected the top 10. Modeling enzymatic pathways requires a mix of continuous 

and categorical variables. Because many machine learning algorithms require numeric input and 

output variables, we used one-hot encoding, which is a process that converts categorical 

variables into a numerical form that machine learning algorithms can use. This method treats 

categorical variables as a multidimensional binary input that must sum to one. The concentration 

values were used as is, resulting in a 30 variable input matrix: 25 variables representing the 

categorical variation (i.e., different homologs) and 5 representing the concentration. Ten 

predictions were selected from each of the top 10 architectures and then we removed predictions 

that were impossible experimentally (i.e., concentrations too low to pipet accurate volumes). 

 

Statistics 

All error bars on metabolite and protein quantification represent one standard deviation derived 

from technical triplicates. All error bars on TREE score values are propagated error as described 

in the TREE score calculation. In comparing the significance of enzyme concentration on TREE 



scores for butanol production in Supplementary Figure 8B we used the Mann-Whitney test to 

determine whether enzyme concentrations of the enzyme combinations that produced the top 20 

TREE scores are greater than the enzyme concentrations of the entire data set. 

 

Data and Materials Availability 

All cell-free data generated and shown in this manuscript are provided in Supplementary File A 

(.xlsx). Any additional data or unique materials presented in the manuscript may be available from 

the authors upon reasonable request and through a materials transfer agreement. 
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Supplementary Figure S1. Hbd can be tuned in pathway context and assessed using TREE 
scores with iPROBE. Five pathway combinations are designed, built, and tested varying the 
concentration of CklHbd low to high while maintaining CacThl at one concentration. (A) 3-
hydroxybutyrate is measured at 0, 3, 4, 5, 6, and 24 h after the addition of glucose for each of the 
five pathway combinations. Error bars are shown at 24 h and represent technical triplicates. (B) 
The TREE is score is then calculated for each pathway combination. 
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Supplementary Figure S2. The titer, rate, and enzyme expression (TREE) score is 
calculated through multiplication. 3-hydroxybutyrate is measured at 0, 3, 4, 5, 6, and 24 h after 
the addition of glucose for each of the five pathway combinations described in Figure 2. From 
these measurements, 3-HB titer at 24 h (A) and rate of production through 6 h (B) is quantified. 
Error bars shown for titer represent technical triplicates. Error bars shown for rate represent the 
standard error of the linear regression. Enzyme expression is quantified by adding the average 
solubility of each enzyme (C) to the inverse of the total concentration of exogenous enzyme 
present (D). Error bars shown for enzyme concentrations represent technical triplicates.  (E) The 
TREE is score is then calculated by multiplying the titer by the rate by the enzyme expression for 
each pathway combination with error bars representing the propagated error. 
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Supplementary Figure S3. Enzyme concentrations can be tuned with iPROBE to inform 
genetic design for Clostridium expression of 3-hydroxybutyrate. A reaction scheme for the 
production of 3-HB is presented in panel (a). The design in (b) includes the co-titration of CacThl 
and CklHbd at seven concentrations (0, 0.02, 0.05, 0.1, 0.25, 0.5, and 1 µM). We built these seven 
designs in cell-free systems (c) by CFPS of each enzyme in separate lysates (Pot #1) followed 
by mixing to assemble full pathways for 3-HB production (Pot #2). We measured 3-HB over the 
course of 24 h for each. We compared these results to Clostridium-based expression by building 
eight genetic constructs with varying promoters and plasmid copy number (e). We measured final 
titer of 3-HB for each. Error bars represent technical triplicates. Error bars on enzyme 
concentrations are technical replicates with n > 3. 
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Supplementary Figure S4. Cell-free 3-HB titers, rates, and enzyme expression. Six homologs 
have been selected for each reaction step (Thl and Hbd) for 3-HB production and expressed by 
cell-free protein synthesis. Total and soluble yields of protein are displayed in panel (a). Error bars 
represent technical triplicates. iPROBE was run in 54 combinations listed in Supplemental File A. 
Titers at 24 h are shown in panel (b) with error bars representing technical triplicates. Rates 
determined by linear regression between 3 h and 6 h measurements are shown in panel (c) with 
error bars representing the standard error of the linear regression. 
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Supplementary Figure S5. Titrating individual base case enzymes for the production of 
butanol. Cell-free reactions were run with concentrations of 0.3 µM for EcoThl, CbeHbd, CacCrt, 
and TdeTer while 0.6 µM was used for CacAdhE for the ‘Base Set’. Each enzyme concentration 
was altered individually to be 0, 0.1, 0.3, and 0.5 µM with the remaining enzymes remaining at 
the ‘Base Set’ values (essentially a titration of each enzyme). TREE scores are calculated for 
each combination with error bars representing propagated error. 
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Supplementary Figure S6. Cell-free butanol titers, rates, and enzyme expression. Six 
homologs have been selected for each reaction step (Thl, Hbd, Crt, and Ter) for n-butanol 
production and expressed by cell-free protein synthesis. Total and soluble yields of protein are 
displayed in panel (a) with error bars representing technical triplicates. iPROBE was run in 205 
combinations listed in Supplemental File A. Titers at 24 h are shown in panel (b) with error bars 
representing technical triplicates. Rates determined by linear regression between 3 h and 6 h 
measurements are shown in panel (c) with error bars representing the standard error of the linear 
regression. 
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Supplementary Figure S7. Cell-free experimental TREE scores for expert-selected and NN-
based design of experiments. TREE scores were calculated for pathway combinations 
experimentally tested with iPROBE for (a) pathway combinations selected from the neural 
network approach (43 combinations), (b) simultaneous changes in each enzyme’s concentration 
using the base case set of enzymes (21 combinations), and (c) expert-selected pathway 
combinations based on data in Figure 5C and understanding of biosynthesis (18 combinations). 
TREE scores were calculated based on 24 h time-course data of n-butanol production. 
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Supplementary Figure S8. Analysis of iPROBE reaction compositions show enzyme 
homolog and concentration trends for butanol production. Each instance of each enzyme 
homolog of Thl, Hbd, Crt, and Ter tested in the 205 pathway combinations was counted. (A) The 
percentage of each homolog (six homologs total are represented for each enzymatic step) 
appearing in the ‘initial’ 120 combinations and in the ‘top’ 20 combinations (of all 205) is charted. 
(B) The concentrations used for each individual pathway enzyme (regardless of which homolog 
is used) in the assembly of all 205 combinations is plotted (A; grey) next to the concentrations 
used in assembling the top 20 combinations as ranked by TREE score (T; yellow for Thl, green 
for Hbd, blue for Crt, and purple for Ter). The median concentration for each enzyme and group 
is potted as a single black line.    
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Supplementary Figure S9. Cellular butanol expression in C. autoethanogenum is 
significantly enhanced when using Bcd:EtfAB versus TdeTer. (a) Nine pathway combinations 
(two high-performing pathways, two medium-performing pathways, and five low-performing 
pathways) were constructed and transformed in vivo in C. autoethanogenum. Time-course 
measurements of butanol production were taken across six days and are plotted. Error bars for 
in vivo titers are standard deviations for four to six replicates. (b) Two pathways for n-butanol 
production containing CacThl, CacHbd, CacCrt, and either TdeTer or Bcd:EtfAB were built in high 
copy plasmids with the highest strength promoters in single operons. C. autoethanogenum strains 
containing these two pathway combinations were then fermented on gas and n-butanol was 
measured at 4 days. Error bars represent one standard deviation. 
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