1	Macrobdella decora: Old World Leech Gut Microbial Community Structure Conserved in a New
2	World Leech
3	
4	Emily Ann McClure ^a , Michael C. Nelson ^{a*} , Amy Lin ^a , Joerg Graf ^{a,b,f}
5	
6	^a Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut,
7	U.S.A.
8	^b Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, U.S.A.
9	
10	Running Head: Macrobdella decora Conserved Symbionts
11	
12	#Address correspondence to Joerg Graf, Joerg.graf@uconn.edu
13	*Present address: Sema4 Genomics, Branford, Connecticut, U.S.A
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 ABSTRACT

25 Leeches are found in terrestrial, aquatic, and marine habitats on all continents. Sanguivorous 26 leeches have been used in medicine for millennia. Modern scientific uses include studies of 27 neurons, anticoagulants, and gut microbial symbioses. *Hirudo verbana*, the European medicinal leech, maintains a gut community dominated by two bacterial symbionts, Aeromonas veronii and 28 29 *Mucinivorans hirudinis*, which sometimes account for as much as 97% of the total crop 30 microbiota. The highly simplified gut anatomy and microbiome of *H. verbana* make it an 31 excellent model organism for studying gut microbial dynamics. The North American medicinal 32 leech, Macrobdella decora, is a hirudinid leech native to Canada and the northern U.S.A. In this 33 study we show that *M. decora* symbiont communities are very similar to those in *H. verbana*. 34 This similarity allowed for an extensive study in which wild caught animals were sampled to 35 determine effects of geographic separation, time of collection, and feeding on the microbiome. 36 Through 16S V4 rRNA deep sequencing we show that: i) the *M. decora* gut and bladder 37 microbial communities are distinct, ii) the M. decora gut community is affected by feeding and 38 long periods of starvation, and iii) geographic separation does not appear to affect the overall gut 39 microbial community structure. We propose that M. decora is a replacement for H. verbana for 40 studies of wild-caught animals and offer evidence for the conservation of annelid symbionts. 41 Successful culturing and comparison of dominant symbionts from M. decora and H. verbana 42 will provide the ability to assess host-symbiont co-evolution in future work. 43 44

45

46 IMPORTANCE

47 Building evidence implicates the gut microbiome in regulating animal digestion, nutritional 48 acquisition, immune regulation, development, and even mood regulation. Because of the 49 difficulty of assigning causative relationships in complex gut microbiomes a simplified model 50 for testing hypotheses is necessary. Previous research in *Hirudo verbana* has suggested this 51 animal as a highly simplified and tractable animal model of gut symbioses. Our data show that 52 Macrobdella decora may work just as well as H. verbana without the drawback of being an 53 endangered organism and with the added convenience of easy access to field-caught specimens. 54 The similarity of the microbial community structure of species from two different continents 55 reveals the highly-conserved nature of the microbial symbionts in sanguivorous leeches and 56 confirms the medicinal leech as a highly simplified, natural animal model in which to study gut 57 symbioses.

58

59

60 INTRODUCTION

61 Leeches are a diverse animal group capable of surviving in freshwater, marine, and terrestrial 62 environments. They are found on all continents and oceans on planet Earth (1, 2). Records of 63 humans applying leeches medicinally survive from populations as far back as ancient Egypt (3, 64 4), resulting in the name medicinal leech, Hirudo medicinalis Linnaeus, 1758. As our 65 understanding of hirundinid taxonomy improved, Hirudo medicinalis was subdivided into 66 additional species including H.verbana Carena 1820 and H.orientalis Utevsky & Trontelj, 2005 67 (5, 6). Since 2004 in the United States, only *H. medicinalis* and *H. verbana* are approved for use 68 as a medical device and must be shipped from suppliers in Europe (5). Although it shares the 69 same common name, the North American medicinal leech, Macrobdella decora, was rarely used

70 for blood letting. No mechanical or pharmaceutical product has yet been able to replicate the 71 reduction of venous congestion achieved by the medical application of *Hirudo* leeches (briefly 72 reviewed in (7)). This results in a continued need for medicinal leeches and a better 73 understanding of their biology. 74 75 As approved medical devices, the natural feeding habits of leeches are exploited to reduce 76 venous congestion and improve blood circulation in affected patients. To make the most out of 77 unpredictable encounters with prey, hirudinid leeches consume up to five times their body 78 weight in one feeding and can go up to 6-12 months between feedings (1). After initial 79 attachment, the leech stimulates blood flow in the prey by secreting vasodilators and a number of 80 anticoagulant peptides including hirudin and orthologues (8-11). The gastrointestinal system of 81 H. verbana is highly simplified and consists of a pharynx, crop, and intestinum (1, 7). Once 82 consumed, excess ions and water are rapidly removed from the blood meal to form a highly 83 viscous intraluminal fluid (ILF) in the crop (7, 12). ILF remains in the crop over long periods of 84 time before it slowly passes into the intestinum where it is digested (7). 85 86 The gut microbiome of medicinal leeches is especially simple when compared to common

87 mammalian gastrointestinal models. Previous research described an ILF microbiota in *H*.

88 verbana dominated by Aeromonas veronii and Mucinivorans hirudinis (9, 13-17). Subsequent

89 studies revealed the presence of additional *Aeromonas* spp in *H. verbana* and other hirudinid

90 leeches (18-20). Clostridial species have also been detected in culture-independent studies of the

91 ILF of *H. verbana* (14, 21) and *H. orientalis* (20). Several functions for the dominant crop

92 microbiota have been proposed including providing essential nutrients to the host (9, 22, 23),

93	preventing other bacteria from colonizing, inhibiting putrefaction of the ILF (24), aiding the
94	host's immune responses (25, 26), or initiating the digestion of erythrocytes (27).
95	
96	In most animals, the diversity of the microbiome increases along the length of the digestive tract
97	and similar findings have been reported for Hirudo spp. The intestinum contains Alpha-,
98	Gamma-, and Delta-proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes as well as
99	Aeromonas and Mucinivorans (14). A number of closely related hirudiniform leech species have
100	also tested positive for Aeromonas and Bacteroidetes from the digestive tract (8, 19, 20). The
101	composition of the microbial community among the different Hirudo species studied is similar in
102	both crop and intestinum (14, 17, 19, 20).
103	
104	Unlike humans but similar to other annelids (28, 29) the bladder of <i>H. verbana</i> is colonized by a
105	number of microbial species (30). Sequence analysis and fluorescence in situ hybridization
106	micrographs of the H. verbana bladder show a stratified community consisting of Ochrobactrum,
107	Bdellovibrio, Niabella, and Sphingobacterium (30). The difference in bladder microbiome when
108	compared to the ILF or intestinum indicates that <i>H. verbana</i> microbiomes are body site specific
109	and suggests a selection process that regulates the composition of these communities.
110	
111	Much less is known about the gut microbiome of <i>M. decora</i> . Prior studies attempting to
112	characterize the <i>M</i> . decora gut microbiome relied on aerobic culturing methods or sequencing
113	total ILF DNA with primers specific for Aeromonas or Bacteroidetes symbionts. These studies
114	revealed that the Aeromonas species associated with M. decora was A. jandaei (31) and the
115	Bacteroidetes species was most similar to uncultured and unidentified species in a clade with

116	Rikenella, Mucinivorans, and Alistipes (8). In this study, we strived for a more complete
117	understanding of the M. decora gut microbiome through culture-independent 16S rRNA V4 deep
118	sequencing with confirmation by fluorescence in situ hybridization (FISH). This procedure was
119	also performed on H. verbana to compare microbial communities between the two host species
120	using identical techniques.
121	
122	In this work we describe the microbiota of the ILF, bladder, and intestinum in wild and
123	laboratory-maintained specimens of the North American medicinal leech, Macrobdella decora.
124	Comparison of core and common microbial operational taxonomic units (OTUs) from M. decora
125	to those of the well-described H. verbana provides insights about the level of conservation of the
126	microbiomes between distantly-related and geographically-isolated sanguivorous leeches.
127	
128	RESULTS
129	Leech Organs Contain Distinct Microbial Communities
130	The microbial communities of three organs from two leech species (Hirudo verbana and
131	Macrobdella decora) were analyzed in this study: the intestinum, crop, and bladder (Table S1).
132	Due to their small size, for the intestinum and bladder the entire organ was homogenized, while
133	for the crop only the ILF was collected. Total DNA was extracted from the samples and the V4
134	region of the 16S rRNA gene was amplified, sequenced using an Illumina MiSeq, and analyzed
135	to determine the community composition using Qiime 1.9 .1 (32) and R 3.6.0. Of all parameters
136	tested, the leech host species had the greatest effect on microbiome composition
137	(PERMANOVA: F=316.77, R ² =0.53, p=0.001) (Figure 1A). This difference diminished when
120	
130	performing the same analysis at a higher taxonomic level. For example, when the

139	PERMANOVA was performed at the order level (88% sequence identity) the variation
140	accounted for by host species still had the greatest effect on microbiome composition, but that
141	effect decreased to only 25% (PERMANOVA: F=95.79, R ² =0.25, p=0.001) (Figure 1B). This
142	suggests that although the specific genera within the microbial community have changed
143	between leech hosts, the general physiological functions performed by the microbiome have
144	likely been conserved. An additional 47% of the variation between samples was not accounted
145	for by host leech species alone and other factors are important in determining the community
146	composition.
147	
148	In <i>H. verbana</i> samples, the sampled organ had the greatest effect on microbiome composition
149	(PERMANOVA: F=57.56, R ² =0.29, p=0.001) with feeding in the laboratory accounting for 18%
150	of variation (PERMANOVA: F=3.90, R ² =0.18, p=0.001), the supplier of <i>H. verbana</i> animals
151	accounting for 5% of variation (PERMANOVA: F=19.71, R=0.05, p=0.001), and the shipment
152	date of <i>H. verbana</i> accounting for 7% of variation (PERMANOVA: F=6.63, R ² =0.07, p=0.001).
153	This confirms previous results that the bladder and digestive tract have very different
154	microbiomes (14, 30) the microbial composition changes as a result of feeding (15). In addition,
155	these data suggests that leech suppliers and date of shipment affect the observed ILF microbiome
156	of H. verbana.
157	
158	For this study, we obtained the <i>H. verbana</i> from two suppliers: one located in Germany that sold

159 field-caught animals and one in France that sold farm-bred animals. Treatments before shipping,

160 including prolonged starvation time to reduce abundance of human pathogens and potentially

161 feeding animals antibiotic-contaminated blood (33), are additional sources of influence on

162	microbiome variation accounted for but not uniquely discernable within the confounding
163	influences clustered under the 'supplier' variable (18). Laboratory feeding in conjunction with
164	sampled organ or animal source accounted for an additional 7% of variation (PERMANOVA:
165	F=3.82, R ² =0.03, p=0.001 and PERMANOVA: F=3.94, R ² =0.04, p=0.001 respectively). This left
166	\sim 35% of variation unaccounted for by these four variables.
167	
168	In M. decora, the sampled organ had the greatest effect on microbiome composition
169	(PERMANOVA: F=26.47, R ² =0.19, p=0.001) with the month of animal collection accounting for
170	17% of variation (PERMANOVA: F=9.23, R ² =0.17, p=0.001), feeding in the laboratory
171	accounting for 6% of variation (PERMANOVA: F=2.85, R ² =0.06, p=0.001), and animal source
172	accounting for only 5% of variation (PERMANOVA: F=4.37, R ² =0.05, p=0.001). This mirrors
173	the results from <i>H. verbana</i> in that the bladder and digestive tract have very different
174	microbiomes, a change in microbial composition occurs as a result of feeding, and animal
175	collection site and time also affect the observed ILF microbiome of <i>M. decora</i> .
176	
177	Some variables additionally exhibited statistical significance when evaluated as a group.
178	Sampled organ in conjunction with the month that the animals were collected accounted for an
179	additional 15% of variation (PERMANOVA: F=5.16, R ² =0.15, p=0.001). The animal collection
180	month in conjunction with feeding accounted for a final 4% of variation (PERMANOVA:
181	F=4.10, R^2 =0.04, p=0.001). This left ~34% of variation unaccounted for by these four variables.
182	Although the microbial differences between organs and after feeding were expected from
183	previous studies of the <i>Hirudo</i> microbiome (14, 15, 19, 20, 30), it was surprising to discover the
184	large role that collection month played in affecting the <i>M. decora</i> microbiome.

185

186	Deep Sequencing of H. verbana ILF Microbiome Reveals Rare Community Members
187	16S rRNA V4 deep sequencing of the H. verbana ILF identified the same two dominant taxa as
188	reported previously from 454 pyrosequncing of the 16S rRNA V6 region (21), 16S rRNA V3-V4
189	deep sequencing (17), and 16S rRNA clone library analysis (14) (Table 1). The ILF microbiota
190	of H. verbana has been described as being dominated by Mucinivorans and Aeromonas with
191	occasional Clostridial spp (14, 21). In the 36 animals tested, Mucinivorans and Aeromonas
192	together accounted for $30.6 - 99.8\%$ (median = 81.8%) of the sequences from the ILF (Table 1)
193	with <i>Proteiniclasticum</i> making up an additional $0 - 63.4\%$ (median when present = 10.8% ,
194	present in 69% of animals) and <i>Fusobacterium</i> making up an additional $0 - 28.3\%$ (median when
195	present = 11.5%, present in 47% of animals) (Table S2). The <i>Proteiniclasticum</i> OTU was
196	previously reported in the ILF 16S rRNA gene clone libraries of Hirudo orientalis, a closely
197	related leech species (20). The Fusobacterium OTU was previously reported in 16S clone
198	libraries from the intestinum of <i>H. verbana</i> (14). The increase in Clostridial sequences observed
199	in this study compared to previous studies is likely due to the improved DNA extraction
200	techniques, which included a bead-beating step specifically optimized to increase clostridial cell
201	lysis and therefore detection (34).
202	

203 In addition to the four most abundant taxa, common sequences (found in at least 70% of

samples) in the *H. verbana* ILF included three Bacteroidetes, two *Bacteroides* (0 - 13%), median

- when present = 1.6%) and one *Millionella-like* OTU (0 2%, median when present = 0.4%); two
- 206 *Proteocatella* (0 14.9%), median when present = 2.2%); and one *Desulfovibrio* (0 8.7%),
- 207 median when present = 0.6%) (Table 1 and S2). Finding these additional OTUs in such a high

208	percentage of animals is likely due to the much greater sequencing depth of Illumina technology
209	as compared to those previously used. The additional Bacteroides and Millionella-like OTUs
210	have not been described before in <i>H. verbana</i> . However, other researchers have previously noted
211	that, although dominant, Mucinivorans may not be the only Bacteroidales associated with Hirudo
212	leeches (14, 19, 35).
213	
214	Sequences belonging to other taxa noted by previous researchers were also found in the $36 H$.
215	verbana at average concentrations below 1.5% of the total sequences from the ILF community:
216	Firmicutes: <i>Erysipelothrix</i> (max = 5.1%, 17% of animals), <i>Vagococcus</i> (max = 1.2%, 17% of
217	animals), and <i>Enterococcus</i> (max = 0.7% , 17% of animals); Alphaproteobacteria: <i>Ochrobactrum</i>
218	(max = 0.4%, 6% of animals); Deltaproteobactera: <i>Desulfovibrio-like</i> (max = 5.9%, 39% of
219	animals) and <i>Desulfovibrio</i> (0.1%, 3% of animals); Gammaproteobacteria: <i>Proteus</i> (max =
220	16.1%, 44% of animals) and <i>Morganella</i> (max = 5.2% , 53% of animals); Bacteroidetes:
221	<i>Pedobacter</i> (max = 0.6%, 8% of animals) (14, 20, 21) (Table S2).
222	
223	The low concentrations and intermittent presence of many of these previously identified bacteria
224	highlights the importance of greater sequencing depth and a greater number of specimens tested.
225	Our analysis of the microbial community in the ILF of <i>H. verbana</i> confirms that Aeromonas and
226	Mucinivorans comprise the core microbiome with Clostridial species also dominant when
227	present. Our analysis also reveals a more diverse rare H. verbana ILF microbiome than
228	previously described as well as community members that are present in $>70\%$ of the animals.
229	
230	M. decora ILF Microbiome is Similar to H. verbana ILF Microbiome

231	One unique feature of the analysis of <i>H. verbana</i> is that these animals were obtained from leech
232	farms that breed captive animals or maintain field-caught animals for months in captivity before
233	shipping. Analyzing the microbiome of field-caught M. decora, would allow us to assess if the
234	diversity of the microbiome could be greater in animals captured in the wild. The composition of
235	the ILF microbiota from the 52 sampled <i>M. decora</i> was very similar to that of <i>H. verbana</i> in that
236	it is dominated by Bacteroides, Aeromonas, and four Clostridiales spp (Table 1 and S2).
237	Aeromonas and Bacteroides sequences made up $16 - 73.5\%$ (median = 51%) of the M. decora
238	ILF microbiota while the Clostridiales spp accounted for another 22 – 98%. A Bacteroides-like
239	OTU was present in <i>H. verbana</i> ILF at $0 - 2.1\%$ of sequences (63% of animals) and sequences
240	from only one of these Clostridiales species (Alkaliphilus-like) had been reported before from the
241	H. verbana intestinum (14) (Table 1 and S2). To our knowledge, the remaining three
242	Clostridiales species (Papillibacter-like, Clostridium, and Butyricicoccus) have never been
243	identified from any site in Hirudo species.

244

245 Sequences from common OTUs (found in at least 70% of samples) in the M. decora ILF 246 included one additional Bacteroidaceae and three Clostridiales (Table S2). These four OTUs 247 made up an additional 0.6 - 12.8% of the ILF microbial community (median = 4.6%). The 248 presence of more Clostridiales spp in the ILF microbiota is the primary cause for the observed 249 increased alpha diversity in *M. decora* over *H. verbana* (Figure 2A). An increase in alpha 250 diversity between H. verbana and M. decora ILF microbiota may have been a result of a 'zoo 251 effect' in comparing farmed (H.verbana) to newly captured (M. decora) animals, an effect that 252 has been well documented in mammals (36). This hypothesis will be addressed below when 253 comparing the effect of feeding on the microbiota.

254

255 Microbiome of the Intestinum is Similar to that of the ILF

- 256 The intestinum microbiota from nine *H. verbana* samples was dominated by sequences from four
- 257 OTUs: Insolitispirillum-like (0.2 34.6%, median = 25.4%), Aeromonas (2.3 24.7%, median =
- 258 16.6%), *Mucinivorans* (2 51.3%, median = 9.3%), and *Desulfovibrio* (1.7 15.3%, median =
- 4.1%) (Table 1 and S2). Aeromonas and Mucinivorans were also dominant members of the ILF
- 260 community. Sequences from the Insolitispirillum-like and Desulfovibrio OTUs have been
- 261 previously identified in the intestinum of *H. verbana* and *H. orientalis* (19, 20). The difference in
- 262 microbial community between the *H. verbana* ILF and intestinum was marked by changes in the
- 263 relative abundance of sequences from both dominant and common OTUs: Insolitispirillum-like

264 (16.9 \log_2 fold change, p < 0.001), *Rikenella-like* (14.5 \log_2 fold change, p < 0.001),

265 Aquaspirillum-like (13.8 log₂ fold change, p < 0.001), Mucinivorans (-2.6 log₂ fold change, p <

266 0.001) and *Proteocatella* (-11 \log_2 fold change, p < 0.001). The change in microbial composition

267 between the ILF and intestinum may be directly related to the differences in organ functions

between the two (erythrocyte storage vs meal digestion respectively (1)). The almost doubling of

269 OTUs that were present in the intestinum versus those found in the ILF is consistent with

270 previous reports (14, 19) of an increase in alpha diversity between the two organs in *Hirudo* spp

271 (Figure 2B) and confirms that microbial colonization of the ILF is closely regulated.

272

273 In contrast, in *M. decora*, the alpha diversity between ILF and intestinum samples did not change

significantly (Figure 2). The dominant OTUs of both ILF and intestinum from *M. decora* were

- 275 Aeromonas, Bacteroides, Butyricicoccus, and Alkaliphilus-like (Table 1 and S2). In the
- intestinum (45 animals sampled), these OTUs accounted for 52.9 96.7% of the total sequences

277	while in the ILF, these OTUs accounted for $73.2 - 98.8\%$ of the sequences (Table 1 and S2).
278	Sequences from common OTUs (found in at least 70% of samples) in the M. decora intestinum
279	included additional Bacteroides, Proteocatella-like, Desulfovibrio, and two Alkaliphilus-like
280	OTUs. An explanation for the observation that the microbiome of <i>M. decora</i> ILF is not as
281	reduced as that observed in <i>H. verbana</i> may a result of maintaining or raising the animals in a
282	farm.
283	
284	The dominant Alkaliphilus-like OTU from M. decora was previously found in the H. verbana
285	intestinum (14) but was detected only in three intestinum and three bladder samples from H .
286	verbana processed in this study. All of the other OTUs common in the M. decora intestinum
287	were not found in <i>H. verbana</i> samples. In the intestinum, like in the ILF, OTUs defined to the
288	genus level are not the same but when identified to the order level community composition is
289	conserved.
290	
291	H. verbana Bladder Community Contains Three Core OTUs
292	16S rRNA V4 deep sequencing of bladders from ten H. verbana animals revealed a more

293 complex community than had been previously reported through RFLP and 16S rRNA gene

sequencing (30). Kikuchi et al reported the *H. verbana* bladder contains a stratified community

295 including Alphaproteobacteria (Ochrobactrum), Betaproteobacteria (Comamonas-like &

296 Sterolibacterium-like), Deltaproteobacteria (Bdellovibrio), and Bacteroidetes (Niabella &

297 Sphingobacterium) with Ochrobactrum, Comamonas-like, Bdellovibrio, Niabella, and

298 Sphingobacterium found in > 90% of animals tested (30). The deep sequencing carried out in the

299 current study on bladders from ten animals expanded these results by identifying

300 Alphaproteobacteria (Ochrobactrum, Aminobacter, Ensifer, Insolitispirillum-like,

301 Phreatobacter-like), Betaproteobacteria (Ramlibacter, Pelomonas, Variovorax, Acidovorax,

302 Ralstonia), Deltaproteobacteria (Bdellovibrio-like and Desulfovibrio), Bacteroidetes (Niabella,

303 Pedobacter, and Flavobacterium), and Spirochaetes (Spirochaeta-like) in H. verbana bladders

304 although only Ochrobactrum, Ramlibacter (previously Comamonas-like), Bdellovibrio-like, and

305 *Pedobacter* were recovered frequently enough (in \ge 90% of samples) to be considered part of the

306 core (Table 2).

307

308 The increase in OTUs identified in the *H. verbana* bladder was likely due to sequencing three

309 times as many animals as in the previous study as well as sequencing to a much greater depth.

310 The expanded community contains sequences from an additional four Alphaproteobacteria, three

311 Betaproteobacteria, one Deltaproteobacteria, and one Spirochaete. Comparing the 16S rRNA V4

312 sequences to the 16S rRNA sequences produced by Kikuchi et al, indicates that the

313 Ochrobactrum, Ramlibacter, Niabella, and Pedobacter (previously Sphingobacterium) OTUs are

314 the same between the two studies (Table S2). However, the previously-identified

315 Sterolibacterium-like and Bdellovibrio OTUs did not have any similar sequences in the new

316 dataset. The increased number of identified OTUs in conjunction with the small number of

317 OTUs identified as core suggests that there is large variation in the minor members of the

318 bladder communities between individual animals. Further research would be required to

319 determine if this large variation is also apparent between bladders of an individual animal.

320

321 <u>M. decora Bladder Community</u>

322 The ToS rKINA V4 sequencing of <i>M. aecora</i> bladder from 20 animals identified seq	quences
--	---------

- 323 belonging to Alphaproteobacteria (Ochrobactrum, Ensifer, Rhizobium, Rhizobium-like,
- 324 Azospirillum, Phreatobacter-like, Sphingomonas, Rhodopseudomonas), Betaproteobacteria
- 325 (*Ramlibacter*, *Methylopumilus-like*, *Bacteriovorax-like*, *Pandoraea*, and a Rhodocyclaeae sp),
- 326 and Deltaproteobacteria (Bdellovibrio, Cystobacter-like, Desulfovibrio, and Bacteriovorax-like).
- 327 Of these identified taxa, only Ramlibacter, Methylopumilus, Phreatobacter-like, and
- 328 Azospirillum were considered core (Table 2). The Ramlibacter, Ochrobactrum, and
- 329 Sphingobacterium OTUs sequenced from *M. decora* are the same as those identified from *H*.
- 330 *verbana* bladders (30) (Table S2) and suggest a conservation of bladder symbionts at the genus
- 331 level (97% sequence similarity) despite geographic and evolutionary separation.

332

- 333 Surprisingly, Aeromonas, Bacteroides, and Clostridial species were also detected in the bladder
- 334 sequences from *M. decora* and *Aeromonas*, *Mucinivorans*, and Clostridial species were identified
- in the bladder sequences from *H. verbana*. Two possibilities seem likely to be responsible for
- this observation: (i) ILF symbionts are also found in the bladder and nephridia or (ii)
- 337 contamination from the ILF occurred during dissection, PCR, or sequencing (37). The
- 338 contamination seemed especially likely in animals that had been recently fed as the filled crop is
- asily punctured during dissection. In addition, previous data from *H. verbana* bladder
- 340 communities suggested that it was unlikely that these two dominant ILF taxa were present in the

341 bladder (30).

342

343 In an effort to confirm the 16S V4 rRNA deep sequencing results, FISH was used to detect

344 specific taxa in the bladder. Unexpectedly, low levels of Aer66-binding cells were detected in

345	cells lining the <i>M. decora</i> bladder/nephridia of animals 4 and 7 days after feeding (Figure 3).
346	While this observation confirms the deep sequencing results, it raises questions to the origin of
347	these Aeromonas cells. A SILVA probeCheck (38) of the Aer66 probe confirms that it should be
348	specific for Aeromonadaceae, interestingly, there is only a single base pair mismatch to the
349	Ochrobactrum sequence. Thus, it remains unclear if this probe is binding to the highly abundant
350	Ochrobactrum or Aeromonas. Because the Bacteroidetes probe used in this study also targets
351	Pedobacter and Flavobacterium and may cross-react with Phreatobacter-like, we cannot
352	conclusively determine whether the Bacteroidetes symbiont exists within the <i>M. decora</i> bladder.
353	
354	Physically Stratified Bacterial Community in M. decora Bladders
355	FISH imaging of <i>M. decora</i> bladders suggests that most Alphaproteobacteria (Ochrobactrum and
356	Phreatobacter-like) occur intracellularly in the epithelial cells lining the interior of the bladder,
357	while Rhizobiaceae (Aminobacter and Ensifer) occur in the matrix of the bladder contents.
358	Betaproteobacteria (Methylopumilus-like and Ramlibacter) occur in close association with the M.
359	decora bladder epithelial cells (Figure 3). This layered community is consistent with
360	localizations reported previously in <i>H. verbana</i> bladders (30). Together, this data confirms that
361	the M . decora bladder community composition and distribution are similar to those of H .
362	verbana despite differences in specific OTUs and suggests an evolutionary conservation between
363	these hosts and their symbionts.
364	
365	Seasonal Changes Affect the Wild ILF Microbiome
366	The <i>M. decora</i> animals used in this study allowed us to evaluate how a wild leech's microbiome
367	changes during the year. Animals collected during warm months (June-September) had similar

368 ILF and intestinum microbiomes. However, animals collected in October (the beginning of cold 369 months) contained significantly different ILF microbiomes from those collected in April (end of 370 cold months) or during warm months (p = 0.003) (Figure 4A). Those collected in April showed 371 the least variation between individuals.

372

Among intestinum samples, those from animals collected in April were significantly different from those collected in October or during warm months (p = 0.003 and p = 0.009 respectively) (Figure 4B). However, the difference in intestinum microbiome between animals collected in warm months were not significantly different from those collected in October (p = 0.123). The seasonal difference in the microbiome composition was detected over multiple years with animals collected during warm months being more similar to those collected in warm months of other years than to those from animals collected in April or October of the same year.

380

381 Feeding Affects the ILF Bacterial Community

382 Sanguivorous leeches are opportunistic ectoparasites that consume several times of their body 383 weight in a single feeding and rest for months between feeding events (7). Following a feeding 384 event, the abundance of *Mucinivorans* and *Aeromonas* in the *H. verbana* ILF increases (13, 15)). 385 Monitoring of bacterial communities after a laboratory-administered, sterile sheep blood meal in 386 *M. decora* revealed a significant decrease in alpha diversity in ILF by 2 days after feeding (DaF) 387 that rebounded by 30-90 DaF (Figure 6). At 2 and 4 DaF the communities in the ILF were 388 significantly different from those at any other time after feeding (p = 0.009 and p = 0.003389 respectively). A similar change in community was observed in *H. verbana* where *Mucinivorans* 390 and Aeromonas populations increased after feeding (15). Interestingly, M. decora seemed to be

divided into two groups, those that recovered quickly (by 4 – 7 DaF) and those that recovered
more slowly (> 7 DaF). These groups can be seen in the dichotomy in the violin plot of BrayCurtis distances presented in Figure 6B.

394

By 30 DaF, the alpha diversity and common members of the ILF communities of both *H*.

396 *verbana* and *M. decora* returned to levels indistinguishable from those in unfed animals (Figure

397 5 and 6). This would suggest that a single blood meal and maintenance in the artificial lab

398 environment was not sufficient to significantly change the composition of the gut community.

399 However, it should be noted that animals maintained for longer than 90 days before sampling did

400 appear to have a reduced variation between individuals (data not shown). This would suggest

401 that a zoo effect is minimal, although a slight decrease in biodiversity from reduction in the rare

402 microbiome members should be anticipated, as has been described in mammals (39). The

403 abundance of sequences from dominant members of the gut microbial community overall

404 appeared to return to levels comparable to those of unfed animals within 30 DaF (Figure 5).

405

406 The dominant Bacteroides and Aeromonas symbionts identified by deep sequencing were 407 additionally observed through FISH imaging. Immediately after capture, the microbial population in the M. decora crop was below the limit of detection for FISH, although rare 408 409 Aeromonas cells were occasionally found (Figure 7). After feeding a blood meal the microbial 410 population increased at 4 and 7 DaF (Figure 7) with Bacteroidetes forming large microcolonies 411 by 4 DaF and *Aeromonas* pelagically spread throughout the crop by 7 DaF. A similar pattern 412 was previously observed and quantified in *H. verbana* (15). Interestingly, some Aeromonas at 7 413 DaF were found associated with eukaryotic cells within the crop. These cells are likely

414	circulating immune cells from the leech host. Phagocytosis of Aeromonas by leech hemocytes
415	was previously observed in <i>H. verbana</i> when the Aeromonas strain lacked a functioning T3SS
416	but not for the wild type (40).
417	
418	Feeding Does not Affect the Intestinum Bacterial Community
419	Unlike the bacterial community present in the ILF, the intestinum bacterial community appears
420	to be much more stable. No significant change between any of the days after feeding were
421	observed ($p \ge 0.15$). This suggests that growth of any single member of the community is
422	matched by other members. More likely, the intestinum may be a more constant environment
423	with a regular inflow and outflow that is not as much affected by sporadic feeding events. It is
424	also possible that the intestinum serves as a reservoir from which new blood meals may be
425	seeded with symbionts after ingestion.
426	
427	Geographic Location
428	Because <i>M. decora</i> were collected from multiple ponds in nature, we were able to compare the
429	microbial communities of animals from the same species but distant geographic locations. There
430	was no significant difference between microbial communities in the ILF of <i>M. decora</i> from CT,
431	MA, NY, and VT ($p \ge 0.222$) (Figure s1). Statistical analyses on geographic effects were
432	performed only on samples from MA and CT due to the lower sample number for samples from
433	NY and VT.
434	
435	The microbiome from the intestinum of MA animals was significantly different from that of CT

436 animals (p = 0.006), but interestingly the ILF microbiome was indistinguishable between the two

437	leech populations (Figure s1). The difference in microbial communities between the ILF and
438	intestinum was significant in animals from MA ($p = 0.006$), but not in animals from CT ($p =$
439	0.084), and was associated with a decrease in Alkaliphilus-like ($p = 0.022$) and increase in
440	<i>Papillibacter-like</i> ($p = 0.001$) OTUs. In the ILF, these OTUs make up ~ 8.2% of the total ILF
441	sequences while in the intestinum they make up less than 1.6%. This difference between ILF and
442	intestinum microbiota is almost imperceptible in animals from CT. The slight differences in
443	Clostridiales species between MA and CT animals suggests a site-specific variation in less
444	abundant community members within M. decora, however the site-specific dominant symbionts
445	and core community remained the same and indicate a conservation of symbionts despite
446	geographic separation.
447	
448	
449	
450	
451	
452	
453	
454	
455	DISCUSSION
456	In this study we have used deep sequencing of the V4 region of the 16S rRNA gene and FISH to
457	characterize the microbiome from three organs in the North American medicinal leech,
458	Macrobdella decora. At the taxonomic level of order, the microbiomes described from wild-
459	caught M. decora appeared very similar to those from Hirudo verbana. However, at the genus

460	level, the microbiomes were easily differentiated between the two host leech species. This is
461	similar to findings in other animal models where often the host-specific genera show an
462	evolutionary pattern that mimics that of the host's evolution (41-45).
463	
464	In both leech species, the gut microbial communities are dominated by Aeromonas,
465	Bacteroidales, and Clostridiales species. This is consistent with previous findings that
466	Bacteroidetes and Aeromonas are common but not obligate in the gut of animals and insects fed
467	on blood (46-51). Siddall et al. have shown that many sanguivorous leeches maintain a gut
468	symbiosis with Aeromonas and Bacteroidetes species (8). Because of the difficulty of
469	distinguishing Aeromonas species based solely on 16S sequencing data (52, 53), we are unable to
470	determine whether the Aeromonas species from M. decora is the same as that from H. verbana.
471	
472	In-depth genetic analyses of an Aeromonas veronii strain isolated from H. verbana has shown
473	that the ability to grow in blood is not sufficient for leech gut colonization, but rather that a
474	number of colonization factors such as secretion systems (54), carbon starvation response (55),
475	oxidative stress response inhibition (7), and heme acquisition processes (56) are critical in
476	enhancing leech gut colonization. New studies comparing genomic variation between
477	Aeromonas strains isolated from sanguivorous leech species to those of non host-associated
478	environmental strains may be used to further identify genes critical for host colonization and
479	persistence.
480	
481	In addition to confirming a similar core and common microbiome between the two leech hosts,

482 our study also identified a rich rare microbiome. Previous research in a variety of environments

483 has concluded that although a relatively small number of OTUs may dominate samples, low-484 abundance populations may be responsible for driving changes in observed phylogenetic 485 diversity (57, 58). Rare species may have a significant role in metabolic cycles and may be a 486 hidden driver of ecosystem functioning (59). Because dominant and core microbes are easier to 487 identify and predict, rare microbes may be overlooked keystone species responsible for 488 regulating the community's development and function (59). In our study, the ability to examine 489 an increased number of animals, to examine three body sites from each animal, and to sequence 490 to a much greater depth resulted in the detection of an increased level of inter-animal variations 491 in the less abundant microbiota and suggest a greater diversity in the rare microbiome than 492 previously predicted.

493

494 We were also able to observe the effect of geographic isolation on the less abundant members of 495 the gut microbial community in *M. decora*. The very slight but statistically significant 496 differences in community composition between animals from MA and CT indicated that the 497 relationship with dominant symbionts is consistently conserved despite geographic separation of 498 ~100 km. It is possible that this is due to a small sample size as we compared 13 unfed M. 499 decora from MA and seven from CT and previous studies of synthetic and natural microbial 500 communities found that insufficient sampling could yield an artificial difference between 501 geographically separated communities (60, 61). As has been noted previously in the termite gut 502 (58), the difference in community composition is based on minor members of the community 503 and is reminiscent of a similar pattern observed in community differences between suppliers of 504 H. verbana (data not shown). We therefore hypothesize that the conserved members of the

505 community have been evolutionarily maintained in hirudinid leeches despite species-

506 diversification and continent-dividing events.

508	Not only was the core gut microbiome similar between <i>M. decora</i> and <i>H. verbana</i> , but also the
509	dynamic response of these symbionts in response to feeding a blood meal. FISH imaging
510	confirmed similar colonization patterns of the ILF of Aeromonas and Bacteroidetes from H.
511	verbana and M. decora. Although part of the decrease in alpha diversity in the leech ILF
512	microbiome post blood meal consumption may be due to innate immune properties of the blood
513	meal (62), in a number of vertebrate species it has also been shown that extreme feeding or
514	fasting events do result in decreased alpha diversity (63, 64). In H. verbana, it has been
515	suggested that the Aeromonas symbiont may provide additional antimicrobial peptides
516	responsible for restricting bacterial colonization in addition to host-produced antimicrobial
517	peptides (65). Because the core community and post-feeding community dynamics are similar in
518	<i>M. decora</i> , it is reasonable to assume that a similar process may also occur in this host species.
519	
520	While our laboratory-maintained animals were tracked for 30-90 days after feeding, in the wild
521	leeches are thought to go for even longer periods of time between feedings as the animals are
522	inactive during the cold months. This extended period between feedings likely resulted in a
523	starved phenotype in animals collected in April. Our results are consistent with the long
524	starvation period occurring during the cool months affecting the gut microbial community of M .
525	decora and the relative nimiety of the warm months where feedings may occur regularly. The
526	observed seasonal effect may also be driven by the sequencing of transient environmental

microbes from within the leech crop, as has been observed in a recent limited survey of wild *H*. *verbana* (17).

529

530 Changes in gut microbial populations as a result of irregular feeding events has been observed in 531 other animals too. Other researchers have observed Clostridial populations increase rapidly in 532 response to feeding while Bacteroidales numbers increase at a slower rate and high levels of 533 Bacteroidales or Rikenellaceae are indicative of long periods between feedings in avian, 534 reptilian, and mammalian hosts (63, 64, 66). In our experiments, a higher numbers of 535 Bacteroidales sequences were found in the ILF of *M. decora* collected in April when compared 536 to those collected in June-October. The proportion of Bacteroidales sequences additionally 537 decreased in leeches immediately after feeding (when the number of Clostridiales sequences 538 increased). FISH imaging did indicate that Bacteroidales increase in number four days after 539 feeding, suggesting that the change in sequence ratio is due to a combination of rapid replication 540 of Clostridiales and a much slower replication of Bacteroidales. This consistency with 541 community dynamics observed in other animal models then suggests that leeches may be good 542 models to predict microbial changes due to intermittent feedings or extended periods of 543 starvation.

544

In addition to the conservation of *Aeromonas*, Bacteroidetes, and Clostridial gut symbionts, the
bladder taxa *Comamonadaceae*, *Ochrobactrum*, and *Nubsella* appear to have also been
evolutionarily maintained within Hirudiniform leech bladders. They are common in annelid
bladders as are *Bordetella*, *Methylophilus*, *Achromobacter*, *Variovorax*, *Azospirillum*,

549 Mesorhizobium, Phyllobacterium, Rhizobium, Desulfovibrio, Pedobacter, Spirochaeta (28). The

550	taxa from the bladders of both H. verbana and M. decora were very similar to those found in
551	other annelids, which include Alphaproteobacteria (Ochrobactrum, Azospirillum, Brucellaceae,
552	Rhizobiaceae, Rhodospirillaceae, & Bradyrhizobiaceae), Betaproteobacteria (Comamonadaceae,
553	Methylophilaceae, & Rhodocyclaceae) and Bacteroidetes (Pedobacter) (28, 29). This
554	observation suggests an even greater conservation than that observed in digestive symbionts as
555	the conservation has occurred at the genus level in medicinal leeches and at the family level over
556	multiple evolutionary events in the annelids.
557	
558	The Ramlibacter (previously Comamonas-like), Ochrobactrum, and Pedobacter (previously

559 Sphingobacterium) OTUs sequenced from *M. decora* are the same as those identified from *H*.

560 verbana bladders (30). However, the Pedobacter sequenced in this study does not seem to be the

same that Ott isolated from the mucus castings of adult *H. verbana* (67). This may indicate a

562 difference between the bacteria on the outside of the leech and those adapted to colonize the

563 bladder of the leech, as has been observed in the specialization of Aeromonas strains inside the

leech gut (27, 54-56, 68). Further research is required to determine how these two leech species

are able to maintain such specific bladder symbioses and by what means the symbionts are

566 efficiently transmitted between animals.

567

568 Based on the deep-sequencing absence of Niabella, Pedobacter, Ramlibacter, Ensifer,

569 Phreatobacter, and Aminobacter sequences in ILF and intestinum samples, the low abundance of

570 *Ochrobactrum* sequences in ILF samples (max = 0.4%), and the absence of any ALF968-,

571 Rhiz1244-, or Bet42a-binding cells in FISH images (data not shown) we hypothesize that these

572 genera are specific to the bladder. Presence of these OTUs in an ILF sample might be due to

573	contamination during dissection or a diseased state of the animal. This has occurred in previous
574	studies where bladder-specific symbionts were found in the ILF and intestinum of 3 wild H .
575	verbana (17) and Pedobacter and Ochrobactrum were cultured from intestinum samples (14,
576	69). The fact that, in the Worthen study, Pedobacter and Ochrobactrum clones were only
577	recovered from recently-fed animals supports the possibility of sample contamination during
578	dissection (recently fed animals have larger bladders). Because of the friability of leech tissue
579	and the examples of bladder symbionts appearing in ILF and intestinum samples, careful
580	dissection technique is critical to reduce contamination during sample acquisition.
581	
582	Our research has identified a conservation of gut and bladder symbioses in medicinal leech
583	species from Europe and North America. While the community structure of <i>H. verbana</i> and <i>M</i> .
584	decora microbiomes have specific similarities, the differences that exist between the two can be
585	exploited in the future to gain a better understanding of host/symbiont co-evolution. Not only are
586	the gut symbionts conserved, but their dynamics in response to a blood feeding are similar as
587	well. From our data we can hypothesize that the gut microbiome composition is affected by
588	periods of starvation and torpidity. In H.verbana, the simple gut community helps to digest the
589	blood meal (7) and protect the host from invading bacteria (65). It is likely that the microbial
590	communities in the gut of <i>M. decora</i> perform very similar functions. Future work should focus
591	on isolating dominant members of both symbioses to compare conserved metabolic and
592	colonization abilities and to test for host species specialization. Through understanding
593	molecular and mechanistic studies enabled by simple systems, especially in evolutionarily
594	conserved biological processes and metabolic capabilities, one can form predictions that are
595	more challenging to test in more complex communities.

596 METHODS

- 597
- 598 Animals
- 599 *M. decora* were collected from ponds located in Storrs, CT (41°49'3.074"N, 72°15'32.704"W),
- 600 Groton, MA (42°35'26.993"N, 71°32'25.63"W), Caroga, NY (43°11'28.684"N,
- 601 74°28'10.026"W), and Mount Snow, VT (42°58'25.3"N, 72°55'47.9"W). If sacrificed within 1
- 602 week of collection, animals were maintained in native pond water.
- 603 H. verbana were purchased from Leeches U.S.A. (Westbury, NY U.S.A.) and BBEZ (Biebertal,
- 604 Germany) and maintained as described below.
- 605
- 606 Husbandry
- 607 Leeches were maintained in circular tanks (up to 10 animals/tank) in an environmental chamber
- 608 with 12/12h day/night cycles at 25/23°C respectively. Sterile dilute instant ocean (DIO)
- 609 consisting of 34 mg/L instant ocean salts (Aquarium Systems, Inc Mentor, OH U.S.A.) in
- 610 nanopure water was changed weekly or when the animals vomited or an animal in the tank died.

611 Tanks contained a minimum of one autoclaved rock.

612

- 613 Tanks were cleaned by completely emptying the old water and performing multiple complete,
- 614 small volume, water changes until water remained clear for at least 20 min after the last change.
- 615 Tanks were then filled to previous level and returned to environmental chamber.

616

617 Feeding

618	Animals were fed as described previously (4). Sheep blood with heparin anticoagulant was
619	purchased from Lampire Biological Laboratories (Pipersville, PA U.S.A.). Animals were fed in
620	groups of 1-3 animals on sterile 50 mL Falcon tubes containing 30 mL sheep blood, warmed to
621	37°C, and covered with Parafilm (American National Can, Greenwich, CT U.S.A.). All animals
622	were allowed to feed to satiety and then let sit in sterile DIO for ~30 min before handling after
623	feeding.
624	
625	Dissection
626	Animals were removed from the tank and the anterior end was tied with string to inhibit
627	regurgitation before narcotizing in 70% ethanol (13). Animal was then treated with RNase away
628	and rinsed with molecular biology grade water. An additional string was tied around to bissect
629	the animal into anterior and posterior fractions.
630	Bladder: A small primary incision was made immediately lateral to the dorsal lateral dextral
631	stripe and immediately posterior to the second string. Bladders were identified and carefully
632	dissected so as to minimize contamination from ILF. Bladders were briefly rinsed in sterile
633	phosphate buffered saline, PBS, then placed in sterile bead-beating tube. Each sample consisted
634	of 1-3 bladders from the same leech. In this manuscript, the term 'bladders' includes bladders
635	and the attached nephridia.
636	ILF: To access the crop contents, a secondary central incision was made immediately below the
637	second string. Approximately 100 μ L ILF was collected as it was released and placed in a sterile
638	bead-beating tube. In animals with especially low volumes of ILF, a sterile pipette tip was used

639 to gently scrape the inside of the crop.

640 Intestinum: To access the intestinum, a second incision was made immediately lateral to the 641 anus. The intestinum was carefully dissected from the anus and consisted of ≥ 1 cm intestinum 642 with contents. Samples were placed in bead-beating tubes or 1.5 mL microcentrifuge tubes and 643 snap frozen in liquid nitrogen before storage at -80°C. 644 Tissue Fixation and Embedding 645 646 After bladder, ILF, and intestinum sample were collected a fully bissecting incision was made 647 immediately posterior to the second string. The anterior portion of the animal was placed in 648 methacarn (6:3:1 methanol:chloroform:acetic acid) (70). Tissues in methacarn were stored at 4°C 649 with rocking. Regular fixative changes were made when the fixative was no longer clear. Tissues 650 were dissected and a final fixative change was performed with fresh anhydrous methacarn before 651 incubating for one additional week, 4°C with rocking. The anhydrous methacarn was replaced 652 with anhydrous methanol and the tissues stored at 4°C until embedding. Tissues were cleared 653 with a decreasing methanol:xylene series then embedded in Paraplast Plus[®] (Millipore Sigma, 654 St. Louis, MO U.S.A.).

655

656 Fluorescence *In-Situ* Hybridization (FISH)

657 Paraffin-embedded tissues were sectioned at 6-8 μ m using a microtome and placed on poly-L-

658 lysine-coated slides. Sections on slides were cleared with xylene then rehydrated with an

659 ethanol:water series. Slides were bleached for 8-12 h using 2% hydrogen peroxide and a standard

fluorescent light bulb (with concomitant cooling over an ice bath). 0.54M NaCl, 12mM Tris-Cl,

661 30% formamide, and 1.2% sodium doecyl sulfate with 1μ M Cy3 probe, 1μ M Cy5 probe, and

 3μ M Eub338. Slides were observed using a Nikon A1R microscope (laser wavelengths 405nm

663 (DAPI), 488nm (Alexa488), 558nm (Cy3), 640nm (Cy5)) and images processed using ImageJ
664 1.51s (71).

665

666 Bead-beating DNA Extraction

Modified version of previous protocol published by Yu et al (72). $300 \,\mu$ L cell lysis buffer was

added to sample in bead tube containing 0.1mm and 0.5mm zirconia/silica beads (BioSpec

669 Products, OK, U.S.A.) beads. Samples were beaten for 90 sec and briefly centrifuged before

transferring supernatant to clean 1.5 mL microcentrifuge tube. An additional 150 μ L lysis buffer

671 was added to the bead tube and sample was beaten again 90 sec. The supernatant previously

672 removed was returned to bead tube and incubated for 15min at 56°C with 5 sec vortexing every 4

673 min. The sample was briefly centrifuged before adding 100 μ L 10 M ammonium acetate at 4°C

and vortexed 15 sec before incubating for 10 min on ice. The sample was centrifuged for 10min

at 16 000 x g. The supernatant was transferred to clean 1.5mL MCF tube and to which $350 \,\mu\text{L}$

676 ethanol at 4°C was added before vortexing for 10 sec and transferring the supernatant to a

677 QIAamp Mini spin column (Qiagen Germantown, MD U.S.A.). The sample was process as

678 recommended in the QIA amp DNA Mini Handbook and eluted with 10 mM Tris-Cl, pH 8.5. The

679 eluted DNA concentration was measured using Qubit[™] dsDNA HS Assay Kit (Thermo Fisher

680 Scientific Carlsbad, CA U.S.A.). Stored at -20°C.

681

682 MasterPure DNA Extraction

683 MasterPure complete DNA extraction without column purification into 50μ L TE was performed

684 according to manufacturer's protocol (Epicentre Madison, WI U.S.A.). No significant difference

685 was found between the two extraction methods (PERMANOVA: $p \ge 0.23$).

6	8	6
0	o	v

687 Sequencing and Initial OTU Picking

- 688 Extracted DNA samples were analyzed by amplifying the V4 hypervariable region of the 16S
- ribosomal RNA (rRNA) gene using primers designed in (73). PCR reactions were prepared as in
- 690 (58) and sequenced using an Ilumina MiSeq (Illumina San Diego, CA U.S.A.) with custom
- 691 sequencing primers added to the reagent cartridge (73) and sequenced 2×250 bp. The sequence
- data was deposited in the NCBI SRA under project ID PRJNA544194.

693

- Resulting community sequences were processed using MacQiime as outlined in (58) using a
- 695 GreenGenes reference library (2013-08 release). Sequences not clustered were identified using

the Ribosomal Database Project (74) to the lowest possible taxonomic level.

- 697
- 698 Bacterial Community Analysis
- 699 Resulting sequencing data was analyzed using MacQiime and R as described below. Complete

700 coding is available in supplemental materials and via GitHub:

701 https://github.com/joerggraflab/McClureE_Md2019/. (32, 75)

702

Sample Selection: Samples with 1) fewer than 10,000 reads or 2) fewer than 3 OTUs were

704 excluded from analysis.

705

706 Positive Controls: Two types of positive control were prepared and sequenced. 1) Amplification

707 of a dilution series of a ZymoBIOMICS Microbial Community DNA Standard (Zymo Research,

708 Irvine, CA U.S.A.), 2) Some samples were amplified multiple times with different PCR primers

and on different runs to confirm the reproducibility of the data (data not shown). For samples
amplified and sequenced multiple times, the sample with the most reads was used for analysis.

712	Negative Controls: Two types of negative controls were prepared and sequenced. 1) Reagent
713	controls were prepared by performing the DNA extraction procedure using the same reagents
714	without any sample. The resulting DNA yields for these reagent controls after extraction were
715	always below the limit of detection for the Qubit dsDNA High-Sensitivity Assay. 2) Negative-
716	PCR controls were prepared by performing V4-specific PCR amplification on molecular biology
717	grade water. The resulting reactions produced no bands when analyzed with the QIAxcel DNA
718	Fast Analysis cartridge (Qiagen Germantown, MD U.S.A.).
719	
720	After sequencing, each negative control contained less than 2,000 reads. Negative controls were
721	combined and compared to identify contaminating OTUs using maxNeg and meanNeg. maxNeg
722	was defined as the maximum count of a single OTU found in a negative control and was

determined to be 379 reads. meanNeg was defined as the mean count of all OTUs when found in

negative controls and was determined to be 4 reads. OTUs were first restricted by requiring that

each OTU be present in at least 1 sample with a read count >= maxNeg. This resulted in a

726 dataset consisting of 158 OTUs.

727

728 Contaminating OTUs were further identified through the use of the decontam package (76).

After removal of contaminants identified by decontam OTUs, the dataset consisted of 157 OTUs,

730 indicating that most contaminant OTUs were found at counts <= maxNeg and so were not

731 considered as community members.

7	2	2
1	3	7

733	After initial trimming, all samples contained a minimum of 10,000 reads (maximum = 375,834,
734	minimum=10,287, median=62,015).
735	
736	Effect of Extraction Method: A PERMANOVA analysis using the Bray-Curtis metric was
737	performed through the adonis function of the vegan package (77) to determine the effect of
738	extraction method. No significant difference was found between the two extraction methods
739	(PERMANOVA: $p \ge 0.23$).
740	
741	Effect of Leech Species: A PERMANOVA analysis using the Bray-Curtis metric was performed
742	through the adonis function of the vegan package (77) to determine the effect of leech species.
743	This analysis was performed twice 1) with taxa split into original OTUs as determined by Qiime
744	and 2) with taxa agglomerated at the order level (using tax_glom function of the phyloseq (75)
745	package).
746	Non-metric Multidimensional Scaling (NMDS) plots were prepared using the distance, ordinate,
747	and plot_ordination function of the phyloseq package (75). Distances were calculated with the
748	Unifrac method (78).
749	Variation within <i>H. verbana</i> and <i>M. decora</i> was evaluated separately with a PERMANOVA
750	analysis using the Bray-Curtis metric through the adonis function of the vegan package (77).
751	Sample groups were probed for the effect of sampled organ, feeding, animal supplier/source, and
752	shipment/collection date.
753	

754	Core and Common OTUs: The average read count of a single OTU in any negative control was
755	calculated to be 4 (meanNeg). This number was then used to calculate a conservative estimate
756	for the minimum fraction of a sample that an OTU must compose to be considered present in that
757	sample. It was assumed that any true OTU would contain a read count greater than or equal to
758	meanNeg, so in the smallest sample with 10,287 total reads, an OTU must contain at least 4
759	reads or .03% of the total community in order to be considered present. The Core community
760	was defined to consist of only those OTUs present in at least 90% of samples in a group. The
761	Common community was defined to consist of only those OTUs present in at least 70% of
762	samples in a group.
763	
764	Alpha Diversity: Alpha diversity was calculated using the Shannon metric in the plot_richness
765	function of the phyloseq package (75). Alpha diversity was calculated for ILF and intestinum
766	samples separately.
767	
768	Effect of <i>M. decora</i> Collection Month: A PERMANOVA analysis using the Bray-Curtis metric
769	was performed through the adonis function of the vegan package (77) to determine the effect of
770	collection month/season on <i>M. decora</i> samples. This analysis was performed twice 1) with ILF
771	samples and 2) with intestinum samples.
772	NMDS plots were prepared using the distance, ordinate, and plot_ordination function of the
773	phyloseq package (75). Distances were calculated with the Unifrac method (78).
774	
775	Plotting gut community over time: For each time point after feeding, taxa were assessed for
776	presence ($\geq 0.1\%$ of total reads) or absence. At any time point, if the taxon was determined to be

777	present in ≤ 1 samples, it was considered absent from that time point. Ggplot2 was used to
778	produce a stat_boxplot with whiskers at 1.5x interquartile range.
779	
780	ACKNOWLEDGEMENTS
781	This research was supported by NIH R01 GM095390 to J. Graf, P. Visscher, and H. Morrison,
782	NSF 1710511 to J. Graf and V. Cooper and the University of Connecticut. We would like to
783	thank R. Rubinstein for help with Python code used to prepare tables and the Microbial
784	Resources and Services Facility of the University of Connecticut for sequencing the samples. J

- 785 Graf is a leech microbiology consultant for the German leech farm Biebertaler Blutegelzucht
- 786 GmbH, Biebertal, Germany, and the company does not direct or approve J. Graf's research and

787 publications.

788

789 REFERENCES

- 1. Sawyer RT. 1986. Leech biology and behavior. Clarendon Press, Oxford.
- 2. Brinkmann A, Jr. 1947. Two new antarctic leeches. Nature 160:756.
- 792 3. Whitaker IS, Rao J, Izadi D, Butler PE. 2004. Historical Article: *Hirudo medicinalis*:
- ancient origins of, and trends in the use of medicinal leeches throughout history. Br J
- 794 Oral Maxillofac Surg 42:133-7.
- Graf J. 2000. The symbiosis of *Aeromonas* and *Hirudo medicinalis*, the medicinal leech.
 ASM News 66:147-153.
- 5. Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS. 2007. Diverse

798 molecular data demonstrate that commercially available medicinal leeches are not *Hirudo*

799 *medicinalis*. Proc Biol Sci 274:1481-1487.

800	6.	Utevsky SY, Trontelj P. 2005. A new species of the medicinal leech (Oligochaeta,
801		Hirudinida, Hirudo) from Transcaucasia and an identification key for the genus Hirudo.
802		Parasitol Res 98:61-6.
803	7.	Marden JN, McClure EA, Beka L, Graf J. 2016. Host Matters: Medicinal Leech
804		Digestive-Tract Symbionts and Their Pathogenic Potential. Front Microbiol 7:1569.
805	8.	Siddall ME, Min GS, Fontanella FM, Phillips AJ, Watson SC. 2011. Bacterial symbiont
806		and salivary peptide evolution in the context of leech phylogeny. Parasitology 138:1815-
807		27.
808	9.	Rio RVM, Attardo GM, Weiss BL. 2016. Grandeur Alliances: Symbiont Metabolic
809		Integration and Obligate Arthropod Hematophagy. Trends in Parasitology 32:739-749.
810	10.	Min GS, Sarkar IN, Siddall ME. 2010. Salivary transcriptome of the North American
811		medicinal leech, Macrobdella decora. J Parasitol 96:1211-21.
812	11.	Whitaker IS, Oboumarzouk O, Rozen WM, Naderi N, Balasubramanian SP, Azzopardi
813		EA, Kon M. 2012. The efficacy of medicinal leeches in plastic and reconstructive
814		surgery: a systematic review of 277 reported clinical cases. Microsurgery 32:240-50.
815	12.	Wenning A, Zerbst-Boroffka I, Bazin B. 1980. Water and salt excretion in the leech. J
816		Comp Physiol B 139:97-102.
817	13.	Graf J. 1999. Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the
818		medicinal leech: a novel model for digestive tract associations. Infect Immun 67:1-7.
819	14.	Worthen PL, Gode CJ, Graf J. 2006. Culture-independent characterization of the
820		digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl
821		Environ Microbiol 72:4775-4781.

- 822 15. Kikuchi Y, Graf J. 2007. Spatial and temporal population dynamics of a naturally
- 823 occurring two-species microbial community inside the digestive tract of the medicinal
- leech. Appl Environ Microbiol 73:1984-1991.
- 825 16. Nelson M, Bomar L, Maltz M, Graf J. 2015. Mucinivorans hirudinis gen. nov., sp. nov.,
- an anaerobic, mucin-degrading bacterium isolated from the digestive tract of the
- 827 medicinal leech, *Hirudo verbana*. Int J Syst Evol Microbiol 65:990-5.
- 828 17. Neupane S, Modry D, Pafčo B, Zurek L. 2019. Bacterial Community of the Digestive
- 829 Tract of the European Medicinal Leech (*Hirudo verbana*) from the Danube River.
- 830 Microb Ecol doi:10.1007/s00248-019-01349-z.
- 831 18. Beka L, Fullmer MS, Colston SM, Nelson MC, Talagrand-Reboul E, Walker P, Ford B,
- 832 Whitaker IS, Lamy B, Gogarten JP, Graf J. 2018. Low-Level Antimicrobials in the
- 833 Medicinal Leech Select for Resistant Pathogens That Spread to Patients. mBio 9.
- 19. Laufer AS, Siddall ME, Graf J. 2008. Characterization of the digestive-tract microbiota
- 835 of *Hirudo orientalis*, a european medicinal leech. Appl Environ Microbiol 74:6151-4.
- 836 20. Whitaker IS, Maltz M, Siddall ME, Graf J. 2014. Characterization of the digestive tract
- 837 microbiota of *Hirudo orientalis* (medicinal leech) and antibiotic resistance profile. Plast
 838 Reconstr Surg 133:408e-418e.
- 839 21. Maltz MA, Bomar L, Lapierre P, Morrison HG, McClure EA, Sogin ML, Graf J. 2014.
- 840 Metagenomic analysis of the medicinal leech gut microbiota. Front Microbiol 5:151.
- 841 22. Nogge G. 1981. Significance of symbionts for the maintenance of an optimal nutritional
- state for successful reproduction in hematophagous arthropods. Parasitology 82:101-104.
- 843 23. Manzano-Marin A, Oceguera-Figueroa A, Latorre A, Jimenez-Garcia LF, Moya A. 2015.
- 844 Solving a bloody mess: B-vitamin independent metabolic convergence among

845		gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the
846		leech Haementeria officinalis. Genome Biol Evol 7:2871-84.
847	24.	Rio RVM, Anderegg M, Graf J. 2007. Characterization of a catalase gene from
848		Aeromonas veronii, the digestive-tract symbiont of the medicinal leech. Microbiol
849		153:1897-1906.
850	25.	Husnik F. 2018. Host-symbiont-pathogen interactions in blood-feeding parasites:
851		nutrition, immune cross-talk and gene exchange. Parasitology 145:1294-1303.
852	26.	Silver AC, Graf J. 2011. Innate and procured immunity inside the digestive tract of the
853		medicinal leech. Inv Survival Journal 8:173-178.
854	27.	Maltz M, Graf J. 2011. The type II secretion system is essential for erythrocyte lysis and
855		gut colonization by the leech digestive tract symbiont Aeromonas veronii. Appl Environ
856		Microbiol 77:597-603.
857	28.	Davidson SK, Powell R, James S. 2013. A global survey of the bacteria within
858		earthworm nephridia. Mol Phylogenet Evol 67:188-200.
859	29.	Viana F, Paz LC, Methling K, Damgaard CF, Lalk M, Schramm A, Lund MB. 2018.
860		Distinct effects of the nephridial symbionts Verminephrobacter and Candidatus
861		Nephrothrix on reproduction and maturation of its earthworm host Eisenia andrei. FEMS
862		Microbiol Ecol 94.
863	30.	Kikuchi Y, Bomar L, Graf J. 2009. Stratified bacterial community in the bladder of the
864		medicinal leech, Hirudo verbana. Environ Microbiol 11:2758-70.
865	31.	Siddall ME, Worthen PL, Johnson M, Graf J. 2007. Novel role for Aeromonas jandaei as
866		a digestive tract symbiont of the North American medicinal leech. Appl Environ
867		Microbiol 73:655-8.

868	32	Caporaso JG	Kuczvnski J	Stombaugh J	Bittinger K	Bushman FD	Costello EK	Fierer
000	J - .	Cuporabo v O.	, ILGOL , HOILI U	, bronnoadgin o	, Dittinger it.			

- 869 N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE,
- 870 Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR,
- Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010.
- 872 QIIME allows analysis of high-throughput community sequencing data. Nat Methods
- 873 7:335-336.
- 874 33. Sartor C, Bornet C, Guinard D, Fournier PE. 2013. Transmission of *Aeromonas*875 *hydrophila* by leeches. Lancet 381:1686.
- 876 34. Ge H, Jensen PD, Batstone DJ. 2011. Temperature phased anaerobic digestion increases
 877 apparent hydrolysis rate for waste activated sludge. Water Res 45:1597-1606.
- 878 35. Ott BM, Rickards A, Gehrke L, Rio RV. 2014. Characterization of shed medicinal leech
 879 mucus reveals a diverse microbiota. Front Microbiol 5:757.
- 880 36. Alexiev A, Oliverio AM, Prest TL, Korpita TM, McKenzie VJ, Song SJ, Di Fiore A,
- Seguin-Orlando A, Feh C, Mendelson JR, Sanders J, Knight R, Delsuc F, Amato KR,
- 882 Metcalf JL, Orlando L, Kowalewski M, Avenant NL, Link A. 2017. The Effects of
- 883 Captivity on the Mammalian Gut Microbiome. Integr Comp Biol 57:690-704.
- 884 37. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J. 2014. Analysis, optimization
 885 and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS ONE
 886 9:e94249.
- 887 38. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007.
- 888 SILVA: a comprehensive online resource for quality checked and aligned ribosomal
- 889 RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188-7196.

- Kohl KD, Dearing MD. 2014. Wild-caught rodents retain a majority of their natural gut
 microbiota upon entrance into captivity. Environ Microbiol Reports 6:191-5.
- 40. Silver AC, Kikuchi Y, Fadl AA, Sha J, Chopra AK, Graf J. 2007. Interaction between
- innate immune cells and a bacterial type III secretion system in mutualistic and
- pathogenic associations. Proc Natl Acad Sci USA 104:9481-9486.
- 41. Clark MA, Moran NA, Baumann P, Wernegreen JJ. 2000. Cospeciation between bacterial
- endosymbionts (*Buchnera*) and a recent radiation of aphids (*Uroleucon*) and pitfalls of
 testing for phylogenetic congruence. Evolution 54:517-25.
- 898 42. Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE,
- 899 Peeters M, Hahn BH, Ochman H. 2014. Rapid changes in the gut microbiome during
- human evolution. Proc Natl Acad Sci USA doi:10.1073/pnas.1419136111:201419136.
- 901 43. Chandler JA, Morgan Lang J, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial
- 902 Communities of Diverse *Drosophila* Species: Ecological Context of a Host–Microbe
 903 Model System. PLOS Genetics 7:e1002272.
- 904 44. Brune A, Dietrich C. 2015. The Gut Microbiota of Termites: Digesting the Diversity in
 905 the Light of Ecology and Evolution. Annu Rev Microbiol 69:145-166.
- 906 45. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K,
- 907 Rawls JF. 2011. Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595-608.
- 46. Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. 2011. Dynamic gut microbiome across
- 909 life history of the malaria mosquito *Anopheles gambiae* in Kenya. PLoS ONE 6:e24767.
- 910 47. Aksoy S. 2000. Tsetse--A haven for microorganisms. Parasitol Today 16:114-8.
- 911 48. Strand MR. 2018. Composition and functional roles of the gut microbiota in mosquitoes.
- 912 Curr Opin Insect Sci 28:59-65.

913 49.	Zepeda Mendoza ML	Xiong Z.	Escalera-Zamudio M.	Runge AK.	Thézé J. Streicker	D.
---------	-------------------	----------	---------------------	-----------	--------------------	----

- 914 Frank HK, Loza-Rubio E, Liu S, Ryder OA, Samaniego Castruita JA, Katzourakis A,
- 915 Pacheco G, Taboada B, Löber U, Pybus OG, Li Y, Rojas-Anaya E, Bohmann K,
- 916 Carmona Baez A, Arias CF, Liu S, Greenwood AD, Bertelsen MF, White NE, Bunce M,
- 917 Zhang G, Sicheritz-Pontén T, Gilbert MPT. 2018. Hologenomic adaptations underlying
- 918 the evolution of sanguivory in the common vampire bat. Nat Ecol Evol 2:659-668.
- 919 50. Michel AJ, Ward LM, Goffredi SK, Dawson KS, Baldassarre DT, Brenner A, Gotanda
- 920 KM, McCormack JE, Mullin SW, O'Neill A, Tender GS, Uy JAC, Yu K, Orphan VJ,
- 921 Chaves JA. 2018. The gut of the finch: uniqueness of the gut microbiome of the
- 922 Galápagos vampire finch. Microbiome 6:167-167.
- 51. Siddall ME, Barkdull M, Tessler M, Brugler MR, Borda E, Hekkala E. 2019. Ideating
 iDNA: Lessons and limitations from leeches in legacy collections. PLOS ONE
- 925 14:e0212226.
- 52. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP, Graf J. 2014. Bioinformatic
 genome comparisons for taxonomic and phylogenetic assignments using *Aeromonas* as a
 test case. mBio 5:e02136.
- 929 53. Morandi A, Zhaxybayeva O, Gogarten JP, Graf J. 2005. Evolutionary and Diagnostic
- 930 Implications of Intragenomic Heterogeneity in the 16S rRNA Gene in *Aeromonas*
- 931 Strains. J Bacteriol 187:6561-6564.
- 932 54. Silver AC, Rabinowitz NM, Kuffer S, Graf J. 2007. Identification of Aeromonas veronii
- 933 genes required for colonization of the medicinal leech, *Hirudo verbana*. J Bacteriol
- 934 189:6763-72.

935	55.	Bomar L, Graf J. 2012. Investigation into the physiologies of Aeromonas veronii in vitro
936		and inside the digestive tract of the medicinal leech using RNA-seq. Biol Bull 223:155-
937		66.
938	56.	Maltz M, LeVarge B, Graf J. 2015. Identification of iron and heme utilization genes in
939		Aeromonas and their role in the colonization of the leech digestive tract. Front Microbiol
940		6:763.
941	57.	Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl
942		GJ. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere".
943		Proc Natl Acad Sci USA 103:12115-12120.
944	58.	Benjamino J, Lincoln S, Srivastava R, Graf J. 2018. Low-abundant bacteria drive
945		compositional changes in the gut microbiota after dietary alteration. Microbiome 6:86.
946	59.	Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC,
947		Rivett DW, Salles JF, van der Heijden MGA, Youssef NH, Zhang X, Wei Z, Hol WHG.
948		2017. Where less may be more: how the rare biosphere pulls ecosystems strings. The
949		ISME Journal 11:853-862.
950	60.	Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. 2018. Why
951		do microbes exhibit weak biogeographic patterns? The ISME Journal 12:1404-1413.
952	61.	Woodcock S, Curtis TP, Head IM, Lunn M, Sloan WT. 2006. Taxa-area relationships for
953		microbes: the unsampled and the unseen. Ecol Lett 9:805-12.
954	62.	Indergand S, Graf J. 2000. Ingested blood contributes to the specificity of the symbiosis
955		of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech. Appl
956		Environ Microbiol 66:4735-4741.

957	63.	Vasai F, Brugirard Ricaud K, Bernadet MD, Cauquil L, Bouchez O, Combes S, Davail S.
958		2014. Overfeeding and genetics affect the composition of intestinal microbiota in Anas
959		platyrhynchos (Pekin) and Cairina moschata (Muscovy) ducks. FEMS Microbiol Ecol
960		87:204-16.
961	64.	Costello EK, Gordon JI, Secor SM, Knight R. 2010. Postprandial remodeling of the gut
962		microbiota in Burmese pythons. The ISME journal 4:1375-1385.
963	65.	Tasiemski A, Massol F, Cuvillier-Hot V, Boidin-Wichlacz C, Roger E, Rodet F, Fournier
964		I, Thomas F, Salzet M. 2015. Reciprocal immune benefit based on complementary
965		production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas
966		veronii. Sci Rep 5:17498.
967	66.	Carey HV, Walters WA, Knight R. 2013. Seasonal restructuring of the ground squirrel
968		gut microbiota over the annual hibernation cycle. Am J Physiol Regul Integr Comp
969		Physiol 304:R33-R42.
970	67.	Ott BM, Beka L, Graf J, Rio RV. 2015. Draft Genome Sequence of Pedobacter sp. Strain
971		Hv1, an Isolate from Medicinal Leech Mucosal Castings. Genome Announc 3.
972	68.	Silver AC, Williams D, Faucher J, Horneman AJ, Gogarten JP, Graf J. 2011. Complex
973		evolutionary history of the Aeromonas veronii group revealed by host interaction and
974		DNA sequence data. PLoS One 6:e16751.
975	69.	Mumcuoglu KY, Huberman L, Cohen R, Temper V, Adler A, Galun R, Block C. 2010.
976		Elimination of symbiotic Aeromonas spp. from the intestinal tract of the medicinal leech,
977		Hirudo medicinalis, using ciprofloxacin feeding. Clin Microbiol Infect 16:563-7.

	978	70.	Puchtler H,	Waldrop FS	S, Meloan SN	, Terry MS.	Conner HM.	1970. Methacarn
--	-----	-----	-------------	------------	--------------	-------------	------------	-----------------

- 979 (methanol-Carnoy) fixation. Practical and theoretical considerations. Histochemie 21:97-980 116.
- 981 71. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of
- 982 image analysis. Nat Methods 9:671-675.
- Yu Z, Morrison M. 2004. Improved extraction of PCR-quality community DNA from
 digesta and fecal samples. Biotechniques 36:808-12.
- 985 73. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a
- 986 Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon
- 987 Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol
 988 79:5112-5120.
- 989 74. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S,
- 990 Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN,
- 991 Davies GJ, Martens EC, Brumer H. 2014. A discrete genetic locus confers xyloglucan
- 992 metabolism in select human gut Bacteroidetes. Nature doi:10.1038/nature12907.
- McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible Interactive
 Analysis and Graphics of Microbiome Census Data. PLOS ONE 8:e61217.
- 995 76. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical
 996 identification and removal of contaminant sequences in marker-gene and metagenomics
 997 data. Microbiome 6:226.
- 998 77. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR,
- 999 O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan:

- 1000 Community Ecology Package. R package version 2.5-5, <u>https://CRAN.R-</u>
- 1001 project.org/package=vegan.
- 1002 78. Lozupone C, Knight R. 2005. UniFrac: a New Phylogenetic Method for Comparing
- 1003 Microbial Communities. Appl Environ Microbiol 71:8228-8235.
- 1004
- 1005
- 1006 TABLES
- 1007 Table 1. Average percent of total 16S rRNA V4 sequences of core and common OTUs in ILF
- 1008 and intestinum samples from Hirudo verbana and Macrobdella decora
- 1009

		Hirud	o verbana	Macrob	della decora	A No
Phylum	Genus	ILF	Intestinum	ILF	Intestinum	Accession No.
	Bacteroides	1.37%	0.38%	39.82%	40.48%	SAMN11823292
Destavoidatas	Mucinivorans-like	0%	8.89%	0%	0%	SAMN11823282
Dacteroidetes	Millionella-like	0.35%	9.79%	0%	0.65%	SAMN11823299
	Mucinivorans	58.20%	16.83%	0%	0.00%	SAMN11823269
	Alkaliphilus-like	0%	1.11%	20.42%	28.62%	SAMN11823295
Clastridia	Clostridium	0%	0%	2.78%	0.50%	SAMN11823294
Closundia	Papillibacter-like	0%	0%	2.71%	1.15%	SAMN11823296
	Butyricicoccus	0%	0%	18.51%	6.70%	SAMN11823293
Alphaproteobacteria	Insolitispirillum-like	0%	21.02%	0%	1.67%	SAMN11823298
Deltaproteobacteria	Desulfovibrio	0.71%	6.1 <mark>5%</mark>	0.62%	1.27%	SAMN11823279
Gammaproteobacteria	Aeromonas	18.07%	15.88%	8.10%	9.15%	SAMN11823291

1010

1011

^{*} OTUs determined at the 97% confidence level. Those OTUs indicated as "-like" indicate the most closely-related genus listed in RDP.

[†] Core (present in \ge 90% of samples) OTUs are highlighted in green. Common (present in \ge 70% of samples) OTUs are highlighted in yellow. Core and common OTUS were determined for each species of leech and sampled organ individually.

- 1018 Table 2. Presence of bladder OTUs in total 16S rRNA V4 sequences from Macrobdella decora
- 1019 and *Hirudo verbana* bladder samples.

Class	Comme	GenBank	Hirudo	verbana	Macrobdella decora	
Class	Genus	Accession No.	Median	Max ^s	Median	Max
	Ochrobactrum	SAMN11823287	15.46%	94.99%	0%	12%
	Ensifer		0.18%	13.18%	0.37%	13.14%
Alphanratachastaria	Aminobacter		0.40%	2.92%	N.D.	N.D.
Alphapioleobacteria	Azospirillum		N.D.	N.D.	15.13%	28.86%
	Azospirillum	SAMN11823283	N.D.	N.D.	19.08%	45.92%
	Phreatobacter-like	SAMN11823288	0.86%	9.52%	3.23%	21.54%
Pataprotochastoria	Methylopumilus-like	SAMN11823285	N.D.	N.D.	6.68%	17.40%
Betaproteobacteria	Ramlibacter	SAMN11823289	20.81%	75.62%	20.94%	38.93%
Deltaproteobacteria	Bdellovibrio-like	SAMN11823266	2.22%	20.09%	N.D.	N.D.
Pastaroidatas	Niabella	SAMN11823286	0.63%	9.20%	N.D.	N.D.
Dacteroidetes	Pedobacter	SAMN11823267	18.48%	44.24%	N.D.	N.D.

[‡] Median percentage of total 16S V4 rRNA sequences, when OTU is present. Core (present in \ge 90% of samples) OTUs are highlighted in green.

[§] Maximum percentage of total 16S V4 rRNA sequences.

1031 Supplemental Table 1. Number of samples collected of each sample type for this study. Only one

sample of each sample type was collected per animal, however multiple sample types were often

1033 collected from the same animal. A total of 36 Hirudo verbana and 52 Macrobdella decora

animals were used in this study.

	I	LF	Intes	tinum	Bladder		
Da1F**	M. decora	H. verbana	M. decora	H. verbana	M. decora	H. verbana	
0	17	10	15	2	8	2	
1	6	—	6	—	2	—	
2	2	6	2	_	_	1	
4	6	4	9	_	4	_	
7	9	8	9	_	3	_	
30	7	_	4	_	2	_	
90+	5	8	_	7	1	9	

1037 Supplemental Table 2. See Excel

^{**} Days after first laboratory-administered, sheep blood meal

1048 Supplemental Table 3. FISH probes used in this study

Probe	Nucleotide sequence (5'-3')	Reference	Target Organism(s)
ALF968	GGTAAGGTTCTGCGCGTT	Neef (1997)	Aminobacter, Insolitispirillum-like, Ochrobactrum, Phreatobacter-like, Sphingomonas
BET42a	GCCTTCCCACWTCGTTT	Manz <i>et al</i> . (1992)	Achromobacter, Acidovorax, Pelomonas, Ramlibacter, Variovorax
CF319a	TGGTCCGTGTCTCAGTAC	Manz et al. (1996)	Bacteroides, Flavobacterium, Pedobacter, Mucinivorans, (some) Phreatobacter-like, (some) Bdellovibrio
AER66	CTACTTTCCCGCTGCCGC	Kampfer (1996)	Aeromonas
Rhiz1244	TCGCTGCCCACTGTCACC	Thayanukul (2010)	Aminobacter, Ensifer, Phreatobacter-like, (some) Ocrobactrum
Eub338	GCTGCCTCCCGTAGGAGT	Amann et al. (1990)	(most) Eubacteria

- 1064 FIGURES

1066	Figure 1. Unifrac-calculated NMDS plot of leech-associated microbiota showing that the
1067	microbiota is host species-specific at the genus level, but not at higher taxonomic levels. Two
1068	leech species were sampled (<i>Hirudo verbana</i> = orange and <i>Macrobdella decora</i> = cyan) at three
1069	organ sites (ILF = circle, intestinum = triangle, bladder = cross). A) When OTUs were calculated
1070	at 97% sequence similarity (~Genus), 53% of the total variation between samples is described by
1071	separating the two leech host species. B) When OTUs were calculated at 88% sequence
1072	similarity (~Order), only 25% of the total variation between samples is described by separating
1073	the two leech host species. Ellipses were calculated at 95% confidence.
1074	
1075	Figure 2. Shannon Alpha-diversity showing the microbiome of Macrobdella decora ILF is more
1076	diverse than that of <i>Hirudo verbana</i> but the opposite is true of the intestinum microbiomes.
1077	Calculations for leech A) ILF and B) intestinum samples. All samples were collected before
1078	feeding or greater than 28 days after feeding. Alpha diversity does not change between the ILF
1079	and intestinum of wild-caught <i>M. decora</i> (grey) but increases in farm-raised <i>H. verbana</i> (white).
1080	

1081	Figure 3.	. False-color	FISH m	icrographs	of Macro	bdella deco	<i>bra</i> bladder	samples.	From left to
1001				ner ogrespino	01 10100000				

- 1082 right, columns contain images with probes DAPI (blue Eukaryotic DNA), Eub338 (green -
- 1083 Eubacteria), CF319a (white : Bacteroidetes Mucinivorans, Bacteroides, Niabella, Pedobacter),
- 1084 (red), and composite. From top to bottom, the fourth (red) column contains images with probes
- 1085 Alf968 (Alphaproteobacteria Ochrobactrum, Azospirillum, Phreatobacter-like), Bet42a
- 1086 (Betaproteobacteria Methylopumilus-like, Ramlibacter), Rhiz1244 (Rhizobiales -
- 1087 Ochrobactrum, Phreatobacter-like), Aer66 (Aeromonas). The M. decora bladder is colonized in
- 1088 a stratified manner with intracellular *Azospirillum*, epithelial-associated Betaproteobacteria, and
- 1089 *Phreatobacter-like* and *Niabella* in the matrix. *Aeromonas* (red arrows) is present associated with
- 1090 eukaryotic cells, suggesting that they have been carried here by leech hemocytes and are not
- 1091 normal flora for the bladder. Bars = 10μ m.
- 1092

1093 Figure 4. Unifrac-calculated NMDS plot of wild-caught Macrobdella decora - associated 1094 microbiota shows that month of collection affects gut microbiome. Animals were collected in 1095 three seasons: late cold (April - light blue), warm (June - pink, July - red, August - brown, and 1096 September - brown), and early cold (October - dark blue). A) ILF samples. ILF microbiota from 1097 animals collected in October were significantly different from that of animals collected in April 1098 or warm months. B) Intestinum samples. Intestinum microbiota from animals collected in April 1099 were significantly different from that of animals collected in warm months or October. Ellipses 1100 drawn at 95% confidence interval.

1101

1102 Figure 5. Box and Whisker plot of leech-associated gut microbiota showing that the prevalence

1103 of taxa in the ILF appears to be greatly affected within ~48h of a blood meal, while the

1104 prevalence of taxa in the intestinum maintains relative stability. The prevalence of 9 core gut 1105 taxa from deep-sequenced microbiomes of A) Hirudo verbana ILF, B) Macrobdella decora ILF, 1106 and C) M. decora intestinum were assessed at 7 time points after a blood meal (0, 1, 2, 4, 7, 30, 1107 and 90+ days after feeding). See Supplemental Table 1 for number of samples analyzed at each 1108 time point. 1109 1110 Figure 6. Macrobdella decora ILF diversity changes with time after feeding. A) Shannon 1111 diversity index calculates a drop in ILF microbiome diversity by 2 days after feeding (DaF) that 1112 rebounds by 7 - 30 DaF. B) Bray-curtis distance calculation shows that ILF microbiomes at 2 - 71113 DaF are significantly different from those of unfed animals (0 DaF) and that the community 1114 rebounds at 30 - 90 DaF. Note the appearance of two sub-populations of ILF samples that i) 1115 appears to rebound by \sim 4 DaF and ii) appears to require > 7 DaF to rebound.

1116

1117 Figure 7. False-color FISH micrograph of Macrobdella decora ILF. From left to right, columns 1118 contain images with probes DAPI (blue - Eukaryotic DNA), Eub338 (green - Eubacteria), 1119 CF319a (white : Bacteroidetes - Mucinivorans, Bacteroides), Aer66 (red - Aeromonas), and 1120 composite. From top to bottom, the rows contain images from animals sacrificed 0 days (wild-1121 caught animals), 4 days, and 7 days after a laboratory-administed sterile blood meal. Blue 1122 arrows indicate eukaryotic cells (most likely leech hemocytes), green arrows indicate notable 1123 bacteria, white arrows indicate Bacteroidetes microcolonies, and red arrows indicate Aeromonas. 1124 Background fluorescence is from crop contents, especially the blood meal at 4 and 7 days. Few 1125 bacteria are present in the crop of wild-caught, unfed animals. Bacteroidetes colony expansion 1126 occurs by 4 days after feeding, while *Aeromonas* prevalence increases by 7 days after feeding.

- 1127 Other bacteria are present at 4 days after feeding, however their numbers appear to be
- 1128 overwhelmed by Bacteroidetes and Aeromonas growth at 7 days after feeding. In animals 7 days
- after feeding, *Aeromonas* occasionally are found associated with hemocytes. Bars = 10μ m.
- 1130
- 1131 Sup Figure 1. Unifrac-calculated NMDS plot of wild-caught Macrobdella decora associated
- 1132 microbiota. Animals were collected from four states of the Northeastern U.S.A.: Connecticut
- 1133 (orange), Massachusetts (cyan), New York (green), and Vermont (black). A) ILF samples show
- 1134 no significant difference between ILF of *M. decora* from CT, MA, NY, and VT ($p \ge 0.222$).
- 1135 B) Intestinum samples from CT and MA are significantly different from each other (p = 0.006).
- 1136 Ellipses drawn at 95% confidence interval.

1137

Figure 1: Unifrac-calculated NMDS plot of leech-associated microbiota showing that the microbiota is host species-specific at the genus level, but not at higher taxonomic levels. Two leech species were sampled (*Hirudo verbana* = orange and *Macrobdella decora* = cyan) at three organ sites (ILF = circle, intestinum = triangle, bladder = cross). A) When OTUs were calculated at 97% sequence similarity (~Genus), 53% of the total variation between samples is described by separating the two leech host species. B) When OTUs were calculated at 88% sequence similarity (~Order), only 25% of the total variation between samples is described by separating the two leech host species. Ellipses calculated at 95% confidence.

Figure 2: Shannon Alpha-diversity showing the microbiome of *Macrobdella decora* ILF is more diverse than that of *Hirudo verbana* but the opposite is true of the intestinum microbiomes. Calculations for leech A) ILF and B) intestinum samples. All samples were collected before feeding or greater than 28 days after feeding. Alpha diversity does not change between the ILF and intestinum of wild-caught *M. decora* (grey) but increases in farm-raised *H. verbana* (white).

Figure 3: False-color FISH images of *Macrobdella decora* bladder samples. From left to right, columns contain images with probes DAPI (blue - Eukaryotic DNA), Eub338 (green - Eubacteria), CF319a (white : Bacteroidetes - *Mucinivorans, Bacteroides, Niabella, Pedobacter*), (red), and composite. From top to bottom, the fourth (red) column contains images with probes ALF968 (Alphaproteobacteria - *Ochrobactrum, Azospirillum, Phreatobacter*-like), Bet42a (Betaproteobacteria - *Methylopumilus*-like, *Ramlibacter*), Rhiz1244 (Rhizobiales - *Ochrobactrum, Phreatobacter*-like), Aer66 (*Aeromonas*). The *M. decora* bladder is colonized in a stratified manner with intracellular *Azospirillum*, epithelial-associated Betaproteobacteria, and *Phreatobacter*-like and *Niabella* in the matrix. *Aeromonas* (red arrows) is present associated with eukaryotic cells, suggesting that they have been carried here by leech hemocytes and are not normal flora for the bladder. Bars = 10μ m.

Figure 4: Unifrac-calculated NMDS plot of wild-caught *Macrobdella decora* - associated microbiota shows that month of collection affects gut microbiome. Animals were collected in three seasons: late cold (April - light blue), warm (June - pink, July - red, August - brown, and September - brown), and early cold (October - dark blue). A) ILF samples. ILF microbiota from animals collected in October were significantly different from that of animals collected in April or warm months. B) Intestinum samples. Intestinum microbiota from animals collected in April were significantly different from that of animals collected in warm months or October. Ellipses drawn at 95% confidence interval.

Figure 5: Box and Whisker plot of leech-associated gut microbiota showing that the prevalence of taxa in the ILF appears to be greatly affected within \sim 48h of a blood meal, while the prevalence of taxa in the intestinum maintains relative stability. The prevalence of 9 core gut taxa from deep-sequenced microbiomes of A) *Hirudo verbana* ILF, B) *Macrobdella decora* ILF, and C) *M. decora* intestinum were assessed at 7 time points after a blood meal (0, 1, 2, 4, 7, 30, and 90+ days after feeding). See Supplemental Table 1 for number of samples analyzed at each time point.

Figure 6: *Macrobdella decora* ILF diversity changes with time after feeding. A) Shannon diversity index calculates a drop in ILF microbiome diversity by 2 days after feeding (DaF) that rebounds by 7–30 DaF. B) Bray-curtis distance calculation shows that ILF microbiomes at 2–7 DaF are significantly different from those of unfed animals (0 DaF) and that the community rebounds at 30–90 DaF. Note the appearance of two sub-populations of ILF samples that i) appears to rebound by ~4 DaF and ii) appears to require > 7 DaF to rebound.

Figure 7: False-color FISH images of *Macrobdella decora* ILF. From left to right, columns contain images with probes DAPI (blue - Eukaryotic DNA), Eub338 (green - Eubacteria), CF319a (white : Bacteroidetes - *Mucinivorans, Bacteroides*), Aer66 (red - *Aeromonas*), and composite. From top to bottom, the rows contain images from animals sacrificed 0 days (wild-caught animals), 4 days , and 7 days after a laboratory-administed sterile blood meal. Blue arrows indicate eukaryotic cells (most likely leech hemocytes), green arrows indicate notable bacteria, white arrows indicate Bacteroidetes microcolonies, and red arrows indicate *Aeromonas*. Background fluorescence is from crop contents, especially the blood meal at 4 and 7 days. Few bacteria are present in the crop of wild-caught, unfed animals. Bacteroidetes colony expansion occurs by 4 days after feeding, while *Aeromonas* prevalence increases by 7 days after feeding. Other bacteria are present at 4 days after feeding, however their numbers appear to be overwhelmed by Bacteroidetes and *Aeromonas* growth at 7 days after feeding. In animals 7 days after feeding, *Aeromonas* occasionally are found associated with hemocytes. Bars = 10μ m.