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all the data, i.e. also on the held-out test data, which 
could bias the cross-validation. However, the 18 held 
out single-trials likely had a minimal effect on the 
correlation structure of the thousands of trials 
underlying the mean firing rate responses, and the 
dimensionality reduction did not use the EMG (i.e. is 
unsupervised). The lack of bias can be seen in the 
difference in decoding accuracy between the 
projections on the arm and intention subspaces, albeit 
sharing this preprocessing scheme.  
Recurrent neural network 
A schematic of the recurrent neural network (RNN) 
model is shown in Fig. 4a. The equation describing the 
RNN’s dynamics is: 

!𝒙 𝑡 = −𝒙 𝑡 + !! ! ! ! !!!! ! !!!!
! !!𝒄 +𝐖!"𝒚 𝑡 +𝐖!"𝒍 𝑡  

where 𝒙 𝑡  is an N-dimensional vector of RNN 
unit activity levels (N = 1000) at time 𝑡, 𝜙 is the tanh 
activation function, 𝐖 is the matrix of the recurrent 
weights, 𝒑!  and 𝒑!  are the current hold and target 
positions, respectively (in Cartesian coordinates), 
𝐖!and 𝐖! are their respective input weight matrices, 
𝒄 is a binary context input vector, with associated input 
weight matrix 𝐖! , 𝒚 𝑡  is the vector of visual 
feedback of the current (or in another version of the 
RNN, delayed) cursor position, with associated input 
weights matrix 𝐖!" , 𝒍 𝑡  is the proprioceptive 
feedback of current (or delayed) muscle fiber lengths 
and first derivatives, with associated weights 𝐖!", and 
𝜏 = 20  ms is the network time constant. 

 The network’s muscle-command outputs are 
generated by: 

𝒖 𝑡 = 𝑓 𝐖!𝜙 𝒙 𝑡  
where 𝒖 𝑡  are the 6-dimensional muscle 

commands at time 𝑡, 𝐖� is a readout weight matrix, 
and 𝑓 𝒛 = 0.0083 ∙ 𝑙𝑛 1 + 𝑒!𝒛  is a soft-rectification 
function. During BMI, cursor position, 𝒚 𝑡 , is 
controlled directly by the following network outputs: 

𝒚 𝑡 ! !!"#! ! !  
where !!"# is the BMI readout weight matrix.  
All input weight matrices !! ! !! ! !! ! !!" ! !!" 

are random, sampled from the uniform distribution 
over !!!! !!, and fixed. The recurrent weights ! are 
initialized randomly from ! !!!!!! !!! ! and are 
adjusted during training. During training, the recurrent, 
! , and muscle readout weights, !!! , are adjusted 
using the Full-FORCE algorithm53. During training for 
arm-control, the context input is set to ! ! !!!!!, but is 
interleaved with batches of trials with ! ! !!!!!  in 
which the arm is trained to remain at rest at the side of 
the workspace (cursor doesn’t move). During these 
arm-at-rest training trials, an additional randomly 

fluctuating input is injected into the network to avoid it 
from learning a fixed point. 

The model arm that is driven by the RNN is 
adapted from21,54 (Fig. 4c), and follows these forward 
dynamics: 
! ! !!! ! ! !! !! ! ! !! ! ! ! !! ! ! ! !  

where !!!! is a vector consisting of the shoulder 
and elbow joint angles, ! !  is the moment of inertia 
tensor, and the current muscle commands ! ! , current 
muscles lengths ! !  and velocities ! !  determine the 
arm’s two joint torques ! ! . The matrices !, !, and 
the dependence of the muscle torque on the other 
model parameters are provided in21. In order to require 
non-zero posture activity, we introduced torque due to 
gravity, given by: 

!! ! ! !
!
!

!"# !
!!!! !"# !!

!!!! !"# !! ! !!
 

where !!!! , !!!! are the masses and lengths of the 
upper arm and forearm, respectively21, ! ! !!!! ! !! 
is the acceleration due to gravity, and ! ! !"# is the 
incline angle of the workspace plane.  

We used the following procedures to generate 
labeled muscle-commands to train the network. 
Desired cursor kinematics were derived analytically to 
generate the 2-dimensional reach trajectory labels, 
! ! , for which static cursor position during the hold-
epoch is just a special case: 

! ! ! !! ! !! ! !! !"
!
!

!
! 15

𝑡
𝑇

!

+ 6
𝑡
𝑇

!
 

where 𝑇 is the trial duration. This equation results 
from assuming trajectories are 

6th order polynomials, which start at the hold 
position, 𝒑! , end at the target position, 𝒑! , have 
vanishing initial and final velocity and acceleration, 
and have minimal jerk. The resulting trajectories are 
straight, with bell-shaped speed profiles. Inverse 
dynamics was solved numerically by using gradient 
descent to minimize this optimal-control loss function: 

𝐿 𝒖 𝑡 =
1
2𝑇

𝑑𝑡′
!

!
𝒚 𝑡′ − 𝒚 𝑡′ !

 

where 𝒚 𝑡′  is the cursor trajectory produced by 
the input 𝒖 𝑡 , assuming 𝒖 0 = 0. 

 During arm-control training, hold and target 
positions are chosen randomly within the 20×20 cm 
workspace. After the network has been trained, the 
recurrent and muscle-command output weights are 
frozen. Next, the BMI output weights are trained in 
batches, using recursive least squares. The cursor 
trajectory labels for the first training batch are the 
cursor trajectory labels calculated for arm-control, 
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however for all remaining batches the labels are 
calculated in the same way as for the experimental 
BMI (as described above). Batches of training and 
testing continue until performance plateaus. To 
emphasize, during the entire BMI training phase only 
the BMI output weights and not the recurrent weights 
are trained.  
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