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ABSTRACT 40 
Somatic mutations in cancer genomes are caused by multiple mutational processes each of 41 
which generates a characteristic mutational signature. Using 84,729,690 somatic mutations 42 
from 4,645 whole cancer genome and 19,184 exome sequences encompassing most cancer 43 
types we characterised 49 single base substitution, 11 doublet base substitution, four 44 
clustered base substitution, and 17 small insertion and deletion mutational signatures. The 45 
substantial dataset size compared to previous analyses enabled discovery of new signatures, 46 
separation of overlapping signatures and decomposition of signatures into components that 47 
may represent associated, but distinct, DNA damage, repair and/or replication mechanisms. 48 
Estimation of the contribution of each signature to the mutational catalogues of individual 49 
cancer genomes revealed associations with exogenous and endogenous exposures and 50 
defective DNA maintenance processes. However, many signatures are of unknown cause. 51 
This analysis provides a systematic perspective on the repertoire of mutational processes 52 
contributing to the development of human cancer including a comprehensive reference set 53 
of mutational signatures in human cancer. 54 
 55 
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INTRODUCTION 57 
Somatic mutations in cancer genomes are caused by mutational processes of both 58 
exogenous and endogenous origins that have operated during the cell lineage between the 59 
fertilised egg and the cancer cell1. Each mutational process may involve components of DNA 60 
damage/modification, DNA repair and DNA replication, any of which may be normal or 61 
abnormal, and generates a characteristic mutational signature that may incorporate base 62 
substitutions, small insertions and deletions, genome rearrangements, and chromosome 63 
copy number changes2. The catalogue of mutations from an individual cancer genome may 64 
have been generated by multiple mutational processes and thus incorporates multiple 65 
superimposed mutational signatures. Therefore, in order to systematically characterise the 66 
mutational processes contributing to cancer, mathematical methods have been developed 67 
that can be used to (i) decipher mutational signatures from a set of somatic mutational 68 
catalogues, (ii) estimate the numbers of mutations attributable to each signature in each 69 
sample, and (iii) annotate each mutation class in each tumour with the probability of arising 70 
from each signature3-15. 71 
 72 
Previous studies of multiple cancer types identified >30 single base substitution signatures, 73 
some of known but many of unknown aetiologies, some ubiquitous and others rare, some 74 
part of normal cell biology and others associated with abnormal exposures or operative 75 
during neoplastic progression6,16-27. Six genome rearrangement signatures have also been 76 
identified in breast cancer18 and further patterns of rearrangements have been 77 
described13,28-30. However, analysis of other mutation classes has been relatively 78 
limited31,17,18,32,33. 79 
 80 
Thus far, mutational signature analysis has predominantly used cancer exome sequences. 81 
However, the many fold greater numbers of somatic mutations in whole-genome sequences 82 
provide substantially increased power for signature decomposition, enabling better 83 
separation of partially correlated signatures and extraction of signatures that contribute 84 
relatively small numbers of mutations. Furthermore, technical artefacts and differences in 85 
sequencing technologies and mutation calling algorithms can themselves generate 86 
mutational signatures. Therefore, the uniformly processed and highly curated sets of all 87 
classes of somatic mutations from the 2,780 cancer genome sequences of the Pan Cancer 88 
Analysis of Whole-Genomes (PCAWG) project34,35, combined with almost all other cancer 89 
genomes and exomes for which suitable mutational catalogues are publicly available,  90 
https://www.synapse.org/#!Synapse:syn11801788, presents a notable opportunity to 91 
establish the repertoire of mutational signatures and to determine their activities across the 92 
range of cancer types. 93 
 94 
 95 
RESULTS 96 
Cancer genomes and somatic mutations 97 
Somatic mutational catalogues from 23,829 samples of most cancer types, including the 98 
2,780 highly curated PCAWG whole-genomes34,35, 1,865 additional whole-genomes and 99 
19,184 exomes were studied. From these, 79,793,266 somatic single base substitutions, 100 
814,191 doublet base substitutions and 4,122,233 small insertions and deletions (indels) 101 
were analysed for mutational signatures, ~10–fold more mutations than any previous study 102 
(https://www.synapse.org/#!Synapse:syn11801889)4,36.  103 
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 104 
To enable mutational signature analysis classifications were developed for each type of 105 
mutation. For single base substitutions, the primary classification comprised 96 classes 106 
constituted by the six base substitutions C>A, C>G, C>T, T>A, T>C, T>G (in which the 107 
mutated base is represented by the pyrimidine of the Watson-Crick base pair) plus the 108 
flanking 5’ and 3’ bases (https://cancer.sanger.ac.uk/cosmic/signatures/SBS). In some 109 
analyses, two flanking bases 5’ and 3’ to the mutated base were considered (generating 110 
1,536 classes) or mutations within transcribed genome regions were selected and classified 111 
according to whether the pyrimidine of the mutated base pair fell on the transcribed or 112 
untranscribed strand (192 classes). A classification was also derived for doublet base 113 
substitutions (78 classes, https://cancer.sanger.ac.uk/cosmic/signatures/DBS). Indels were 114 
classified as deletions or insertions and, when of a single base, as C or T and according to the 115 
length of the mononucleotide repeat tract in which they occurred. Longer indels were 116 
classified as occurring at repeats or with overlapping microhomology at deletion 117 
boundaries, and according to the size of indel, repeat, and microhomology (83 classes, 118 
https://cancer.sanger.ac.uk/cosmic/signatures/ID). 119 
 120 
Mutational signature analysis 121 
The mutational catalogues from the 2,780 PCAWG whole-genome, 1,865 additional whole-122 
genome, and 19,184 exome sequences of cancer were analysed separately 123 
(https://doi.org/10.7303/syn11801889)34,35. For each of these catalogue sets, signature 124 
extraction was conducted using methods based on nonnegative matrix factorisation 125 
(NMF)3,6 on each cancer type individually and also on all cancer types together. Analyses 126 
were carried out separately for single base substitutions (SBS signatures), doublet base 127 
substitutions (DBS signatures) and indels (ID signatures) and also for the three mutation 128 
types together (1697 mutation classes if the 1536 classes of SBS in pentanucleotide context 129 
was employed) generating composite signatures. 130 
 131 
Mutational signatures were extracted using two independently developed NMF-based 132 
methods: (i) SigProfiler, a further elaborated version of the framework used to generate the 133 
signatures shown in the previous version of the COSMIC compendium of mutational 134 
signatures (COSMICv2)3,18,36-38, and (ii) SignatureAnalyzer, based on a Bayesian variant of 135 
NMF used in several previous publications6,15,39,40. NMF determines both the signature 136 
profiles and the contributions of each signature to each cancer genome as part of its 137 
factorization of the input matrix of mutation spectra. However, given a substantial number 138 
of signatures and/or heterogeneous mutation burdens across samples, it is possible to 139 
reconstruct the mutations observed in a particular sample in multiple ways, often with very 140 
small and/or biologically implausible contributions from many signatures. Therefore, each 141 
method developed a separate procedure to estimate the contributions of signatures to each 142 
sample (Methods). 143 
 144 
We tested SignatureAnalyzer and SigProfiler on 11 sets of synthetic data, encompassing a 145 
total of 64,400 synthetic samples, in which known signature profiles were used to generate 146 
catalogues of synthetic mutational spectra. Both approaches performed well in re-extracting 147 
the known signatures in realistically complex data. The tests highlighted the importance of, 148 
and challenges in, selecting the number of signatures, because extracted signatures 149 
discordant from the known input usually arose from difficulty in selecting the correct 150 
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number of signatures. Thus, these tests confirmed that use of NMF-based approaches to 151 
extract signatures is not a purely algorithmic process. Instead, signature extraction requires 152 
human judgement that considers all of the available data, including evidence from 153 
experimental delineation of mutational signatures and the literature on DNA damage and 154 
repair, and prior evidence of biological plausibility. In addition, signature extraction requires 155 
human-guided sensitivity analysis to confirm that extractions from different groupings of 156 
tumours yield essentially the same signatures. These types of evidence and techniques were 157 
used in the determination of the signature profiles reported here. The findings we report 158 
from tests on synthetic data are consistent with results regarding NMF, and the related 159 
areas of probabilistic topic modelling and latent Dirichlet allocation, in multiple problem 160 
domains41-43. It is widely understood that the choice of the number of latent variables (for 161 
our purposes, the number of mutational signatures) is rarely amenable to complete 162 
automation. In further simulations, we also found that mutation catalogues from whole 163 
genomes allowed substantially better signature extraction than the much smaller catalogues 164 
from whole exomes and that signature extraction on whole genome data from half as many 165 
tumours would have supported inferior signature extraction. See Methods for further 166 
details; all results are at https://doi.org/10.7303/syn18497223 and a summary can be found 167 
at https://doi.org/10.7303/syn18511087.1. 168 
 169 
The results of SigProfiler and SignatureAnalyzer exhibited many similarities, and we assigned 170 
the same identifiers to similar signatures extracted by the two methods 171 
https://www.synapse.org/#!Synapse:syn12016215. However, there were also noteworthy 172 
differences. The number of SBS signatures found in low mutation burden tumours in the 173 
PCAWG set (94.4% of cases that harbour 47% of mutations) was similar: 31 by SigProfiler 174 
and 35 by SignatureAnalyzer. The number of additional SBS signatures extracted from 175 
hyper-mutated PCAWG samples (5.6% of cases and 53% of mutations), however, was 176 
different: 13 by SigProfiler and 25 by SignatureAnalyzer. There were also differences in SBS 177 
signature profiles, including among signatures found in low mutation burden cases. The 178 
latter primarily involved “flat”, relatively featureless signatures, which are mathematically 179 
challenging to deconvolute. Finally, there were differences in signature attributions to 180 
individual samples. In general, SignatureAnalyzer used more signatures to reconstruct the 181 
mutational profiles (Extended Data Figure 1, 182 
https://www.synapse.org/#!Synapse:syn12169204, 183 
https://www.synapse.org/#!Synapse:syn12177011) and the attribution to flat signatures 184 
was different, with SigProfiler assigning mutations to SBS5 and SBS40 and SignatureAnalyzer 185 
using combinations of multiple signatures (Extended Data Figure 2ab, 186 
https://www.synapse.org/#!Synapse:syn12169204). The DBS and ID signatures were 187 
generally similar between the two methods (Extended Data Figure 2cd). These comparisons 188 
provide a useful perspective on both the consistency and variability of signature extraction 189 
and attribution depending on the methodology used. 190 
 191 
The final sets of reference mutational signatures were determined from the PCAWG analysis 192 
supplemented by additional signatures from the other datasets. SBS signatures using the 96 193 
mutation classification were supported by the outcomes of analyses using the 192 and 1536 194 
mutation classifications, the existence of individual cancer samples dominated by a 195 
particular signature, and, where available, prior experimental evidence for certain 196 
mutational signatures (Methods, 197 
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https://doi.org/10.7303/syn12025148, https://doi.org/10.7303/syn12009645, COSMIC at 198 
https://cancer.sanger.ac.uk/cosmic/signatures). Each signature was allocated a number 199 
consistent with, and extending, the COSMICv2 annotation37. Some previous signatures split 200 
into multiple constituent signatures and these were numbered as before but with additional 201 
letter suffixes (e.g., single SBS17 split into signatures SBS17a and SBS17b). DNA sequencing 202 
and analysis artefacts also generate mutational signatures, and we indicate which signatures 203 
are possible artefacts (https://www.synapse.org/#!Synapse:syn12009767) but do not 204 
present them below. However, future studies employing this signature set as a reference 205 
may consider utilizing artefact signatures for data quality control. The results of both 206 
SignatureAnalyzer and SigProfiler were used throughout the research reported here. 207 
However, for brevity and for continuity with the signature set previously displayed in 208 
COSMIC37, which has been widely used as a reference, SigProfiler results are outlined below 209 
and SignatureAnalyzer results are provided at (Extended Data Figures 3,4, 210 
https://www.synapse.org/#!Synapse:syn11738307). 211 
 212 
Single base substitution (SBS) mutational signatures 213 
There were substantial differences in numbers of SBSs between samples (ranging from 214 
hundreds to millions) and between cancer types, as previously observed44 (Figure 1). In total, 215 
67 SBS mutational signatures were extracted, of which 49 were considered to be likely of 216 
biological origin (Figure 2, Methods, https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). 217 
Except for SBS25, all mutational signatures reported in COSMICv2 (i.e., 218 
https://cancer.sanger.ac.uk/cosmic/signatures_v2) 4,23,37 were confirmed in the new set of 219 
analyses (median cosine similarity between the newly derived signatures and those on 220 
COSMICv2: 0.95, excluding "split" signatures which are discussed below; range 0.74 to 221 
0.9996 https://www.synapse.org/#!Synapse:syn12016215). SBS14, SBS16, and SBS20 222 
changed the most; for explanation, see https://cancer.sanger.ac.uk/cosmic/signatures/SBS/. 223 
SBS25 was previously found only in cell lines derived from Hodgkin lymphomas, at least one 224 
of which had been previously treated with chemotherapy, and, to our knowledge, no data 225 
from primary cancers of this type are currently available. The newly derived signatures 226 
showed much improved separation from each other and hence more distinct signature 227 
profiles, presumably due to the substantially increased statistical power of this analysis 228 
(online Methods section Better separation compared to COSMICv2 signatures). 229 
 230 
Thirteen new likely real SBS signatures compared to the set previously described in 231 
COSMICv237 were extracted (excluding those that are the consequence of signature 232 
splitting). Some were in cancers with a previously unanalysed exogenous exposure (SBS42), 233 
some were in chemotherapy treated samples which have often been excluded from 234 
previous studies (SBS31, SBS32, SBS35) and some were rare and hence absent by chance 235 
from previous analyses (SBS36, SBS44). Others were more common, but contributed 236 
relatively few mutations to individual cancer genomes, or were similar to previously 237 
discovered signatures and thus not isolated from datasets based predominantly on cancer 238 
exome sequences (e.g., SBS38, SBS39, SBS40). Notably, SBS40 was extracted from kidney 239 
cancer in which it appears to be required for optimal reconstruction of mutational 240 
catalogues. It is a relatively featureless (“flat”) signature, with similarity to SBS5 and other 241 
flat signatures, and this may account for it only clearly emerging now with the availability of 242 
whole cancer genomes. SBS40 may contribute to other cancer types but its similarity to 243 
SBS5 renders this uncertain and larger datasets will be required to clarify the extent of its 244 
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activity. For some new signatures there were plausible underlying aetiologies (Figure 3, 245 
Extended Data Figures 4,5): SBS31 and SBS35, prior platinum compound chemotherapy45; 246 
SBS32, prior azathioprine therapy; SBS36, inactivating germline or somatic mutations in 247 
MUTYH which encodes a component of the base excision repair machinery46,47; SBS38, 248 
additional effects of ultraviolet light (UV) exposure; SBS42, occupational exposure to 249 
haloalkanes27; SBS44, defective DNA mismatch repair due to MLH1 inactivation48. SBS33, 250 
SBS34, SBS37, SBS39, SBS40, and SBS41 are of unknown cause. 251 
 252 
Three previously characterised base substitution signatures (SBS7, SBS10, SBS17) split into 253 
multiple constituent signatures (Figure 2). We previously regarded SBS7 as a single signature 254 
composed predominantly of C>T at CCN and TCN trinucleotides (the mutated base is 255 
underlined) together with many fewer T>N mutations. It was found in malignant melanomas 256 
and squamous skin carcinomas and is likely due to UV induced pyrimidine dimer formation 257 
followed by translesion DNA synthesis by error-prone polymerases which predominantly 258 
insert adenine opposite damaged bases. With the larger dataset now available, SBS7 has 259 
decomposed into four constituent signatures: SBS7a consisting mainly of C>T at TCN; SBS7b 260 
consisting of C>T mainly at CCN and to a lesser extent at TCN; SBS7c and SBS7d, which 261 
constituted relatively minor components of the previous SBS7 and consist predominantly of 262 
T>A at NTT and T>C at NTT respectively49. Splitting of a mutational signature likely reflects 263 
the existence of multiple distinct mutational processes, initiated by the same exposure, 264 
which have closely, but not perfectly, correlated activities. For example, the constituent 265 
signatures of SBS7 are probably all initiated by UV-induced DNA damage. SBS7a and SBS7b 266 
may reflect different dipyrimidine photoproducts whereas SBS7c and SBS7d may be due to 267 
low frequencies of misincorporation by translesion polymerases of T and G opposite 268 
thymines in pyrimidine dimers rather than the more frequent and non-mutagenic A. 269 
Splitting of SBS10 and SBS17 is described at 270 
https://cancer.sanger.ac.uk/cosmic/signatures/SBS/. 271 
 272 
Several base substitution signatures showed transcriptional strand bias 273 
(https://www.synapse.org/#!Synapse:syn12009767). Transcriptional strand bias is often 274 
attributable to transcription coupled nucleotide excision repair (TC-NER) acting on DNA 275 
damaged by exogenous exposures which cause covalently bound bulky adducts or 276 
crosslinking to other bases and consequent distortion of the helical structure. This results in 277 
stalling of RNA polymerase and hence recruitment of the TC-NER machinery. An excess of 278 
DNA damage on untranscribed compared to transcribed strands of genes may also 279 
contribute to transcriptional strand bias50. Both mechanisms, however, result in more 280 
mutations of a damaged base on the untranscribed compared to the transcribed strands of 281 
genes. Assuming that either or both are responsible for the observed transcriptional strand 282 
biases (which may not always be the case), DNA damage to cytosine (SBS7a, SBS7b), 283 
guanine (SBS4, SBS8, SBS19, SBS23, SBS24, SBS31, SBS32, SBS35, SBS42), thymine (SBS7c, 284 
SBS7d, SBS21, SBS26, SBS33) and adenine (SBS5, SBS12, SBS16, SBS22, SBS25) may underlie 285 
these mutational signatures (see https://cancer.sanger.ac.uk/cosmic/signatures/SBS/ for 286 
plots of strand bias). Although the likely underlying DNA damaging agents are known for 287 
SBS4 (tobacco mutagens), SBS7a, SBS7b, SBS7c, SBS7d (UV), SBS22 (aristolochic acid), SBS24 288 
(aflatoxin), SBS25 (prior chemotherapy), SBS31 and SBS35 (platinum compounds), SBS32 289 
(azathioprine), and SBS42 (haloalkanes), the causes of the remainder are unknown. Indeed, 290 
some signatures showing transcriptional strand bias are associated with defective DNA 291 
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mismatch repair (SBS21 and SBS26) and it is conceivable that, for these, exogenous DNA 292 
damage is not involved. The extent of transcriptional strand bias appears to differ in 293 
different sectors of the genome. For example, consideration of the whole transcribed 294 
genome showed absent or minimal transcriptional strand bias in the APOBEC related SBS2 295 
and SBS13 and in the defective polymerase epsilon proof-reading related SBS10a. However, 296 
consideration of exons alone showed clear evidence of transcriptional strand bias in these 297 
signatures (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). The mechanism(s) 298 
underlying this amplification of transcriptional strand bias in exons is unknown and appears 299 
to be signature specific, since there is minimal difference in the extent of transcriptional 300 
strand bias between exons and other transcribed regions for other signatures (for example, 301 
SBS4 and SBS22). 302 
 303 
Employing the single base substitution classification of 1536 mutation types, which uses the 304 
pentanucleotide sequence context two bases 5’ and two bases 3’ to each mutated base, 305 
yielded a set of signatures largely consistent with that based on substitutions in 306 
trinucleotide context alone. Notably, however, the pentanucleotide context enabled the 307 
extraction of two forms of both SBS2 and SBS13, one with mainly a pyrimidine (C or T) and 308 
the other with a purine (A or G) at the -2 base (the second base 5’ to the mutated cytosine). 309 
These may represent the activities of the cytidine deaminases APOBEC3A and APOBEC3B, 310 
respectively51. If so, APOBEC3A accounts for many more mutations than APOBEC3B in 311 
cancers with high APOBEC activity. Several other signatures showed non-random sequence 312 
contexts at +2 and -2 positions. In particular, the -2 bases in SBS17a and SBS17b and the -2 313 
and +2 bases in SBS9 were predominantly A and T. In general, however, sequence context 314 
effects were much stronger for bases immediately 5’ and 3’ to the mutated bases. 315 
 316 
SBS signatures showed substantial variation in the numbers of cancer types and cancer 317 
samples in which they were found, ranging from SBS1 and SBS5 which were present in 318 
almost every cancer type and almost every cancer sample, to SBS23 which was only 319 
observed in a small subset of liver cancers (Figure 3). The numbers of mutations per cancer 320 
sample attributed to each signature also varied greatly, from a few tens of mutations for 321 
SBS1 to millions of mutations for SBS10b. Almost all individual cancer samples exhibited 322 
multiple signatures, with a mode of three signatures per sample in the PCAWG set 323 
(https://www.synapse.org/#!Synapse:syn12169204). The assigned signatures reconstruct 324 
well the mutational spectra of the cancer samples (in PCAWG samples, median cosine 325 
similarity 0.97; 96.3% of samples with cosine similarity >0.90) (illustrative examples are 326 
shown in Figure 4). 327 
 328 
Clustered single base substitution mutational signatures 329 
Some mutational processes generate mutations that cluster in small regions of the genome. 330 
The relatively limited number of mutations generated by such processes, compared to those 331 
acting genome-wide, may result in failure to detect their signatures by standard methods. 332 
To obviate this problem, we first identified clustered mutations in each genome and 333 
analysed these separately (Methods). Four main signatures associated with clustered 334 
mutations were identified (Figure 2) and were consistent with previous reports15,16,32. Two 335 
found in multiple cancer types were similar to single base substitution SBS2 and SBS13, 336 
which have been attributed to APOBEC enzyme activity (mostly APOBEC3B) and represent 337 
foci of kataegis17,32,52. Two additional clustered mutational signatures, one characterised by 338 
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C>T and C>G mutations at (A|G)C(C|T) trinucleotides53 and the other T>A and T>C 339 
mutations at (A|T)T(A|T) were found in lymphoid neoplasms and likely represent direct and 340 
indirect consequences of activation induced cytidine deaminase (AID) mutagenesis and 341 
translesion DNA synthesis by error-prone polymerases (SBS84 and SBS85 respectively)15. 342 
The possibility that further processes may generate clustered mutations is not excluded. 343 
 344 
 345 
Doublet base substitution (DBS) mutational signatures 346 
Tandem doublet, triplet, quadruplet, quintuplet, and sextuplet base substitutions 347 
(https://www.synapse.org/#!Synapse:syn11801938, 348 
https://www.synapse.org/#!Synapse:syn11726620) at immediately adjacent bases were 349 
observed at ~1% the prevalence of single base substitutions. In most cancer genomes, the 350 
observed number of DBSs was considerably higher than expected from random adjacency of 351 
SBSs (https://www.synapse.org/#!Synapse:syn12177057) indicating the existence of 352 
commonly occurring, single mutagenic events that cause substitutions at neighbouring 353 
bases. There was substantial variation in the number of DBSs, ranging from zero to 20,818 in 354 
a sample. Across cancer types, the numbers of DBSs were generally proportional to the 355 
numbers of SBSs in that cancer type (Figure 1). However, colorectal adenocarcinomas had 356 
significantly fewer DBSs than expected, and lung cancers and melanomas had more 357 
(Extended Data Table 1). The large dataset analysed here allowed, for the first time, 358 
systematic analysis of DBS and indel signatures (described below). Eleven DBS signatures 359 
were extracted (Figure 2). Of these, to our knowledge, only two have been previously 360 
reported33 evidencing further the value of the large numbers  of mutations from whole 361 
genome data. 362 
 363 
DBS1 was characterised almost exclusively by CC>TT mutations (Figure 2), contributed 100s-364 
10,000s of mutations in malignant melanomas (Figure 3) with SBS7a and SBS7b. DBS1 365 
exhibited transcriptional strand bias consistent with damage to cytosines 366 
(https://www.synapse.org/#!Synapse:syn12177063). CC>TT mutations associated with UV 367 
induced DNA damage are well established in the literature, were previously reported in 368 
melanomas, and are thought to be due to generation of pyrimidine dimers and subsequent 369 
error-prone translesion DNA synthesis by polymerases that introduce adenines opposite the 370 
damaged bases33,54. 371 
 372 
Reanalysis after exclusion of malignant melanomas and other cancers with evidence of UV 373 
exposure still yielded a signature (termed DBS11) characterised predominantly by CC>TT 374 
mutations and smaller numbers of other doublet base substitutions at CC and TC which 375 
contributed 10s of mutations to many samples of multiple cancer types (Figures 2 and 3). 376 
DBS11 was associated with SBS2 which is due to APOBEC activity. Thus, APOBEC activity may 377 
also generate DBS11, although the mechanism by which it induces doublet base 378 
substitutions is not well understood. 379 
 380 
DBS2 was composed predominantly of CC>AA mutations, with smaller numbers of CC>AG 381 
and CC>AT mutations, and contributed 100s-1000s of mutations in lung adenocarcinoma, 382 
lung squamous and head and neck squamous carcinomas, which are often caused by 383 
tobacco smoking, which has been reported previously (Figures 2 and 3)33. DBS2 showed 384 
transcriptional strand bias indicative of guanine damage 385 
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(https://www.synapse.org/#!Synapse:syn12177064) and was associated with SBS4 which is 386 
caused by tobacco smoke exposure. It is likely, therefore, that DBS2 can be a consequence 387 
of DNA damage by tobacco smoke mutagens.  388 
 389 
Analysis of each cancer type separately, however, revealed a signature very similar to DBS2 390 
contributing 100s of mutations to liver cancers and 10s of mutations to cancers of other 391 
types without evidence of tobacco smoke exposure. A pattern closely resembling DBS2 and 392 
characterised predominantly by CC>AA mutations, together with smaller contributions of 393 
CC>AG and CC>AT, dominates DBSs in normal mouse cells and is particularly frequent in the 394 
liver55. The nature of the mutational processes underlying these doublet signatures in 395 
smoking-unrelated human cancers and in normal mice is unknown. However, acetaldehyde 396 
exposure in experimental systems generates a mutational signature characterised primarily 397 
by CC>AA and lower burdens of CC>AG and CC>AT mutations together with C>A single base 398 
substitutions56. Acetaldehyde is an oxidation product of alcohol and a constituent of 399 
cigarette smoke. The role of acetaldehyde, and perhaps other aldehydes, in generating 400 
DBS2, whether associated with tobacco smoking, alcohol consumption or in non-exposed 401 
cells, merits further investigation57. 402 
 403 
DBS3, DBS7, DBS8 and DBS10 showed 100s-1000s of mutations in rare colorectal, stomach 404 
and oesophageal cancers some of which showed evidence of defective DNA mismatch 405 
repair (DBS7, DBS10) or polymerase epsilon exonuclease domain mutations (DBS3) 406 
generating hypermutator phenotypes (Figures 2, 3). DBS5 was found in cancers previously 407 
exposed to platinum chemotherapy and is associated with SBS31 and SBS35. The remaining 408 
DBS signatures are of uncertain cause. 409 
  410 
Small insertion and deletion (ID) mutational signatures 411 
Indels were usually present at ~10% the frequency of base substitutions (Figure 1). There 412 
was substantial variation between cancer genomes in numbers of indels, even when cancers 413 
with evidence of defective DNA mismatch repair were excluded. Overall, the numbers of 414 
deletions and insertions were similar, but there was variation between cancer types with 415 
some showing more deletions and others more insertions of various subtypes (Figure 1). 416 
Seventeen indel mutational signatures were extracted (Figure 2).  417 
 418 
Indel signature 1 (ID1) was composed predominantly of insertions of thymine and ID2 of 419 
deletions of thymine, both at long (≥5) thymine mononucleotide repeats (Figure 2). 10s to 420 
100s of mutations of both signatures were found in the large majority of most cancer types 421 
but were particularly common in colorectal, stomach, endometrial and oesophageal cancers 422 
and in diffuse large B cell lymphoma (Figure 3). Most of these cancers are likely to be DNA 423 
mismatch repair proficient on the basis of the relatively limited numbers of indels and 424 
absence of the SBS signatures (SBS6, SBS14, SBS15, SBS20, SBS21, SBS26, and SBS44) 425 
associated with DNA mismatch repair deficiency. Together, ID1 and ID2 accounted for 97% 426 
and 45% of indels in hypermutated and non-hypermutated cancer genomes, respectively 427 
(Extended Data Table 2), and both signatures have also been found in non-neoplastic cells58. 428 
They are likely due to the intrinsic tendency to slippage during DNA replication of long 429 
mononucleotide tracts. However, the mechanistic basis for separation into two signatures, 430 
one presumably due to slippage of the nascent strand (ID1) and the other the template 431 
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strand (ID2) is unclear. Similarly, the substantial differences in their mutation frequencies 432 
between cancer types are not well understood. 433 
 434 
ID3 was characterised predominantly by deletions of cytosine at short (≤5bp long) 435 
mononucleotide cytosine repeats and exhibited 100s of mutations in tobacco smoking 436 
associated cancers of the lung and head and neck (Figures 2 and 3). There was 437 
transcriptional strand bias of mutations, with more guanine deletions than cytosine 438 
deletions on the untranscribed strands of genes, compatible with TC-NER of adducted 439 
guanine (https://www.synapse.org/#!Synapse:syn12177065, 440 
https://www.synapse.org/#!Synapse:syn12177066). The numbers of ID3 mutations in 441 
cancer samples positively correlated with the numbers of SBS4 and DBS2 mutations, both of 442 
which have been associated with tobacco smoking (Extended Data Figure 6). It is therefore 443 
likely that DNA damage by components of tobacco smoke underlie ID3 but the 444 
mechanism(s) by which indels are generated is unclear.  445 
 446 
ID13 was characterised predominantly by deletions of thymine at thymine-thymine 447 
dinucleotides and exhibited large numbers of mutations in malignant melanomas of the skin 448 
(Figures 2 and 3). The numbers of ID13 mutations correlated with the numbers of SBS7a, 449 
SBS7b and DBS1 mutations, which have been attributed to DNA damage induced by UV 450 
(Extended Data Figure 6). It is, however, notable that a similar mutation of the other 451 
pyrimidine, i.e., deletion of cytosine at cytosine-cytosine dinucleotides, does not feature 452 
strongly in ID13, perhaps reflecting the predominance of thymine compared to cytosine 453 
dimers induced by UV59. The mechanism(s) underlying thymine deletion is unclear.  454 
 455 
ID6 and ID8 were both characterised predominantly by deletions ≥5bp (Figure 2). ID6 456 
exhibited overlapping microhomology at deletion boundaries with a mode of 2bp and often 457 
longer stretches. This signature was correlated with SBS3 which has been attributed to 458 
defective homologous recombination based repair (Extended Data Figure 6). By contrast, 459 
ID8 deletions showed shorter or no microhomology at deletion boundaries, with a mode of 460 
1bp, and did not strongly correlate with SBS3 mutations (Figures 2 and 3). These patterns of 461 
deletion may be characteristic of DNA double strand break repair by non-homologous 462 
recombination based end-joining mechanisms, and if so, suggest that at least two distinct 463 
forms of end-joining mechanism are operative in human cancer60. 464 
 465 
A small fraction of cancers exhibited very large numbers of ID1 and ID2 mutations (>10,000) 466 
(Figure 3, https://cancer.sanger.ac.uk/cosmic/signatures/ID). These were usually 467 
accompanied by SBS6, SBS14, SBS15, SBS20, SBS21, SBS26 and/or SBS44 which are 468 
associated with DNA mismatch repair deficiency, sometimes combined with POLE or POLD1 469 
proofreading deficiency (SBS14, SBS20)40. Occasional cases with these signatures 470 
additionally showed large numbers of ID7 indels 471 
(https://www.synapse.org/#!Synapse:syn11738668). In addition, rare samples showed large 472 
numbers of either ID4, ID11, ID14, ID15, ID16 or ID17 mutations but did not show ID1 and 473 
ID2 mutations or the single base substitution signatures usually associated with DNA 474 
mismatch repair deficiency. The mechanisms underlying these signatures are unknown. 475 
 476 
Composite mutational signatures 477 
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In the analyses described above mutational signatures were extracted for each mutation 478 
type separately. However, mutational processes in nature generate composite signatures 479 
that may include SBSs, DBSs, IDs, genome rearrangements and chromosome number 480 
changes. We therefore also extracted signatures using combined catalogues of SBSs, DBSs, 481 
and IDs (257 mutation subclasses or 1697 if the 1536 classification of single base 482 
substitutions was used). Fifty-two composite signatures were extracted.  483 
 484 
A composite signature with components similar to SBS4, DBS2 (characterised predominantly 485 
by CC>AA mutations) and ID3 (characterised predominantly by deletion of cytosine at short 486 
runs of cytosines) was found mainly in lung cancers, suggesting that it is the consequence of 487 
tobacco smoke exposure (Extended Data Figure 7). Similarly, composite signatures with 488 
components similar to SBS7a, SBS7b, DBS1 (characterised predominantly by CC>TT 489 
mutations) and ID13 (characterised predominantly by deletion of thymine at thymine–490 
thymine dinucleotides) were found in skin cancers and are thus likely due to UV induced 491 
DNA damage (Extended Data Figure 7). A further composite signature in breast and ovarian 492 
cancers included features of SBS3 and ID6 combined with ID8 (deletions >5bp with varying 493 
degrees of overlapping microhomology) and is likely associated with defective homologous 494 
recombination based repair (Extended Data Figure 7). In these composite signatures 495 
attributions of the constituent SBS, DBS and ID signatures extracted independently in the 496 
main analyses were correlated with each other, adding support to the existence of the 497 
composite signatures (Extended Data Figure 6). Various forms of defective DNA mismatch 498 
repair were also associated with multiple SBS, DBS and ID signatures.  499 
 500 
Correlations with age 501 
A positive correlation between age of cancer diagnosis and the number of mutations 502 
attributable to a signature suggests that the mutational process underlying the signature 503 
has been operative, at a more or less constant rate, throughout the cell lineage from 504 
fertilized egg to cancer cell, and thus in normal cells from which that cancer type 505 
develops4,61. Confirming previous reports, the numbers of SBS1 and SBS5 mutations 506 
correlated with age, exhibiting different rates in different tissue types (q-values in 507 
https://www.synapse.org/#!Synapse:syn12030687, 508 
https://www.synapse.org/#!Synapse:syn20317940 509 
https://www.synapse.org/#!Synapse:syn12217988). In addition, SBS40 correlated with age 510 
in multiple cancer types. However, given the similarity in signature profile between SBS5 511 
and SBS40 the possibility of misattribution between these signatures cannot currently be 512 
excluded. The numbers of DBSs and IDs were much lower than the numbers of SBSs and the 513 
numbers of samples in which DBS and ID signatures could be attributed were also lower. 514 
Nevertheless, DBS2 and DBS4 correlated with age and, consistent with the interpretation of 515 
activity in normal cells, the profiles of DBS2 and DBS4 together closely resemble the 516 
spectrum of DBS mutations found in normal mouse cells55. Neither DBS2 nor DBS4, 517 
however, was clearly correlated with an SBS or ID signature that correlates with age. ID1, 518 
ID2, ID5 and ID8 showed correlations with age in multiple tissues. ID1 and ID2 indels are 519 
likely due to slippage at poly T repeats during DNA replication and correlated with the 520 
number of SBS1 substitutions. SBS1 has previously been proposed to reflect the number of 521 
mitoses a cell has experienced and thus SBS1, ID1 and ID2 may all be generated during DNA 522 
replication at mitosis4. The number of ID5 mutations correlated with the number of SBS40 523 
mutations and thus the mutational processes underlying these two age-correlated 524 
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signatures may also harbour common components. ID8 is predominantly composed of 525 
deletions >5bp with no or 1bp of microhomology at their boundaries. These are likely due to 526 
DNA double strand breaks which have not been repaired by homologous recombination 527 
based mechanisms, but instead by a non-homologous-end joining mechanism. The features 528 
of ID8 resemble those of some ionising radiation associated mutations and this may, 529 
therefore, be an underlying aetiological factor62. Taken together, the results indicate that 530 
multiple mutational processes operate in normal cells. 531 
 532 
 533 
DISCUSSION 534 
Cancers arise as a result of somatic mutations. Mutational signature analysis therefore 535 
provides important insights into cancer development through comprehensive 536 
characterisation of the underlying mutational processes. There are, however, important 537 
constraints, limitations and assumptions in the analytic frameworks we have used that 538 
should be recognised. Although designed to reflect the mutational consequences of 539 
recurrent mutational processes, mutational signatures extracted from sample sets in which 540 
multiple mutational processes are operative remain mathematical approximations, with 541 
profiles that can be influenced by the mathematical approach used and by additional 542 
factors, such as the other mutational processes present. For conceptual and practical 543 
simplicity, we have assumed that there is a single signature associated with each mutational 544 
process and have provided an average reference signature to represent it. However, we do 545 
not discount the possibility that further nuances and variations of signature profiles exist, 546 
for example between different tissues. Moreover, although the extent of separation 547 
between partially correlated signatures has been improved in this analysis, some signatures 548 
may still represent combinations of constituent signatures. Contributions from each 549 
signature to the burden of mutations in each sample have been estimated. However, with 550 
increasing numbers of signatures and multiple orders of magnitude differences in mutation 551 
burdens from certain signatures, prior knowledge can help to avoid biologically implausible 552 
results. Thus, further development of methods for deciphering mutational signatures and 553 
attribution of mutations is warranted and this needs to be supplemented by signatures 554 
derived from experimental systems in which the causes of the mutations are known. The 555 
numbers of DBSs, clustered substitutions, IDs and genome rearrangements (reported in ref. 556 
30) are small compared to single base substitutions. Thus, larger datasets may be required to 557 
robustly characterise their mutational signatures. Nevertheless, the results outlined here 558 
indicate that signatures with many similarities and some differences can be found by 559 
different mathematical approaches, and that these are confirmed in many different ways, 560 
including experimentally elucidated signatures22,31,45,48,49,61,63-69 and the observation of 561 
tumours dominated by a single signature 562 
(https://www.synapse.org/#!Synapse:syn12016215). 563 
 564 
Prior reports have provided only a relatively limited examination of doublet and indel 565 
mutational spectra and, to the best of our knowledge, no previous comprehensive analysis 566 
of doublet and indel mutational signatures has been performed. Here, we provide the first 567 
systematic analysis of these mutation types by considering 83 mutational subtypes for 568 
indels and 78 mutational subtypes for doublets. This analysis also includes almost all publicly 569 
available exome and whole-genome cancer sequences, amounting in aggregate to 23,829 570 
cancers of most cancer types. Some rare or geographically restricted signatures may not 571 
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have been captured and signatures of therapeutic mutagenic exposures have not been 572 
exhaustively explored. Nevertheless, it is likely that a substantial proportion of the naturally-573 
occurring mutational signatures found in human cancer have now been described. This 574 
comprehensive repertoire provides a foundation for future research into (i) geographical 575 
and temporal differences in cancer incidence to elucidate underlying differences in 576 
aetiology, (ii) the mutational processes and signatures present in normal tissues and caused 577 
by non-neoplastic disease states, (iii) clinical and public health applications of signatures as 578 
indicators of sensitivity to therapeutics and past exposure to mutagens, and (iv) mechanistic 579 
understanding of the mutational processes underlying carcinogenesis. 580 

581 
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Figure legends. 599 
Figure 1. Mutation burdens of single base substitutions, doublet base substitutions and 600 
small insertions and deletions for the 2,780 PCAWG tumours. Each sample is displayed 601 
according to its tumour type. Tumour types are ordered according to the median number of 602 
single base substitutions. The numbers of cases of each tumour type are shown. The 603 
proportions of each mutation subclass in each sample are shown as coloured bar charts. 604 
 605 
Figure 2. Profiles of single base substitution, doublet base substitution and small insertion 606 
and deletion mutational signatures. The subclassifications of each mutation type (single 607 
base substitutions, 96 subtypes; doublet base substitutions, 78 subtypes; indels, 83 608 
subtypes) are described in the main text. Magnified versions of signatures SBS4, DBS2 and 609 
ID3 (which are all associated with tobacco smoking) are shown to illustrate the positions of 610 
each mutation subtype on each plot. 611 
 612 
Figure 3. The number of mutations contributed by each mutational signature to the 2,780 613 
PCAWG tumours. The numbers of mutations attributed are shown by cancer type. The size 614 
of each dot represents the proportion of samples of each tumour type that show the 615 
mutational signature. The colour of each dot represents the median mutation burden of the 616 
signature in samples which show the signature. Contributions are shown for single base 617 
substitution, doublet base substitution and indel mutational signatures separately. 618 
Contributions of composite signatures to the PCAWG cancers and single base substitution 619 
signatures to the complete set of cancer samples analysed are shown in Supplementary 620 
information. 621 
 622 
Figure 4. Illustrative examples of mutational spectra of individual cancer samples. A breast 623 
cancer, a lung cancer, and a malignant melanoma and their contributory single base 624 
substitution, doublet base substitution, and small insertion and deletion mutational 625 
signatures. 626 
  627 
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Online Methods 628 
 629 
Principles and strategy of mutational signature analysis adopted in this report 630 
Conceptual principles. 631 

• Multiple mutational processes generate the somatic mutations present in each 632 
individual human cancer.  633 

• Each mutational process generates a particular pattern of somatic mutations known 634 
as a mutational signature. 635 

• Each mutational process may incorporate a component of DNA 636 
damage/modification, DNA repair and DNA replication, each of which may be part of 637 
normal or abnormal cell biology. Differences in any of the three components may 638 
result in a different mutational signature, thus, by definition, constituting a distinct 639 
mutational process.  640 

• Multiple mutational processes operating continuously or intermittently during the 641 
cell lineage from the fertilised egg to the cancer cell may contribute to the aggregate 642 
set of mutations found in the cancer cell. Thus, the catalogue of somatic mutations 643 
from a single cancer sample often includes mutations of many different mutational 644 
signatures. 645 
 646 

Aims of the study. 647 
• To decipher the mutational signatures present in essentially the full set of whole 648 

genome and exome sequenced human cancers from which data is currently available 649 
and subsequently to estimate the contributions of each signature to each cancer 650 
genome. 651 
 652 

Approach used. 653 
• Several mathematical approaches have been used to deconvolute/extract the 654 

mutational signatures present in a set of mutational catalogues3,6,7,9,14-16,39,70-72. They 655 
are all based on the premise that different mutational processes (and thus their 656 
signatures) contribute to different extents to different samples within the set.  657 

• Two independently developed methods based on NMF (SigProfiler and 658 
SignatureAnalyzer) were applied separately to the sets of mutational catalogues. By 659 
using two methods we aimed to provide perspective on the impact different 660 
methodologies can have on numbers of signatures generated, signature profiles and 661 
attributions. The two methods are described in detail below and the code for both is 662 
available (https://www.synapse.org/#!Synapse:syn11801488). Results from the two 663 
methods have been compared (https://www.synapse.org/#!Synapse:syn12177006). 664 

• Briefly, SigProfiler employs an elaboration of previously presented approaches for 665 
signature extraction and for attribution of mutation counts to mutational signatures 666 
in individual tumours3,4,18,36. 667 

• Briefly, SignatureAnalyzer employs a Bayesian variant of NMF6,15,39. This method 668 
enables inferences for the number of signatures through the automatic relevance 669 
determination technique and delivers highly interpretable and sparse 670 
representations for both signature profiles and attributions at a balance between 671 
data fitting and model complexity.  672 
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• The methods that SigProfiler and SignatureAnalyzer use for determining the number 673 
of extracted signatures are presented in the detailed descriptions of each of these 674 
methods, below. 675 

• Both methods assume that the spectra of individual tumours can be represented as 676 
linear combinations of signatures. Thus, if the combination of two simultaneously 677 
operating mutational processes were to create a signature profile that is not a linear 678 
combination of the two, both SigProfiler and SignatureAnalyzer would extract this as 679 
a separate signature. We believe this is the case for SBS20, which appears to be due 680 
to the simultaneous operation of POLD1 mutation and mismatch repair deficiency. 681 
 682 

Role of NMF in extraction and attribution of mutational signatures. 683 
• NMF is the approximate representation of a nonnegative matrix ܸ, in this case the 684 

observed mutational spectra (or profiles) of a set of tumors, as the product of two 685 
usually smaller nonnegative matrices, ܹ and ܪ, which are the signatures and the 686 
attributions respectively.  687 

• In our experience, however, calculating a single NMF is rarely sufficient to allow 688 
confident extraction and attribution of signatures that reflect the underlying 689 
biological mutational processes. There are two main reasons for this:  690 

o The profiles of extracted signatures can vary substantially depending on the 691 
tumour samples present in ܸ. For example, this may be especially evident 692 
when some tumors in ܸ have high numbers of mutations (e.g., samples due 693 
to UV exposure or DNA mismatch repair deficiency), while others have low 694 
numbers. In situations such as this, signatures due to highly mutagenic 695 
processes sometimes capture mutations from other processes and also 696 
"bleed" into other signatures. 697 

o With multiple potentially similar signatures operating, there are multiple 698 
possible and reasonably accurate reconstruction solutions for each tumour, 699 
often with many small and/or biologically implausible contributions.  700 

• To address these challenges two key additional analytic features have been 701 
incorporated into our analyses: 702 

o Both SigProfiler and SignatureAnalyzer carried out multiple NMFs on 703 
different subsets of tumours for signature extraction, and indeed, each 704 
signature extraction by SigProfiler entails 1024 NMFs with different random 705 
initial conditions. We describe below how we selected representative 706 
mutational signature profiles. 707 

o Both SigProfiler and SignatureAnalyzer developed a process of attributing 708 
signature activities to tumours that is separate from the process of extracting 709 
(discovering) the signatures. 710 

• The use of multiple extractions to support confidence in results: 711 
o SignatureAnalyzer, carried out the main extraction procedure on (1) the 712 

majority of the PCAWG tumours excluding certain highly mutated tumours 713 
and (2) the melanomas, microsatellite-instable tumours, and a single 714 
temozolomide-exposed tumour 715 
(https://www.synapse.org/#!Synapse:syn11738314).  716 

o SigProfiler extracted signatures from 717 
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 Separate extraction of SBS, DBS, and ID signatures from all PCAWG 718 
whole-genomes together (the main source of the reference 719 
mutational signature). 720 

 Separate extraction of SBS, DBS, and ID signatures from PCAWG 721 
whole-genomes with each tumour type examined by itself. 722 

 Extraction of SBS signatures from all non-PCAWG whole-genomes 723 
together. 724 

 Extraction of SBS signatures from non-PCAWG whole-genomes with 725 
each tumour type examined by itself. 726 

 Separate extraction of SBS and ID signatures from all TCGA exomes 727 
together. 728 

 Separate extraction of SBS and ID signatures from TCGA exomes with 729 
each tumour type examined by itself. 730 

 Separate extraction of SBS and ID signatures from all non-TCGA 731 
exomes together. 732 

 Separate extraction of SBS and ID signatures from non-TCGA exomes 733 
with each tumour type examined by itself. 734 

This allowed the extraction of signatures that were not present in the PCAWG 735 
tumours (e.g., SBS42, which has been attributed to haloalkane exposure and 736 
seen only in whole exome sequencing data). It also served as an important 737 
validation, as extraction of similar signatures from single tumour types and 738 
other sample sets supports the correctness of the signature extracted from 739 
the PCAWG samples (https://www.synapse.org/#!Synapse:syn12016215). 740 

o Signature extraction from each tumour type (or from some other subset of 741 
cancers) separately has the advantages of:  742 
 Usually including fewer (and different) mutational signatures in each 743 

tumour type sample set than in the set of all cancers together and 744 
thus fewer (and different) opportunities for inter-signature 745 
interference.   746 

 Allowing multiple independent opportunities for extraction of a 747 
signature that is present in multiple tumour types, and thus of 748 
obtaining validation/confirmation of the signature’s existence and 749 
profile. 750 

 Allowing extraction of a signature that may (for a number of reasons) 751 
fail to be extracted in analysis of all tumour types together. 752 

 Providing primary evidence for the existence of the signature in each 753 
tumour type.  754 

 Allowing separation of highly mutated cancer types/samples from 755 
cancer types/samples with low mutation burdens. 756 

o Signature extraction from multiple  tumour types together has the 757 
advantages of: 758 
 Usually including more samples with a particular signature than in 759 

each individual cancer type and thus being better powered to 760 
separate a signature from other partially correlated signatures and/or 761 
from signatures with similar profiles.  762 
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 Providing a single profile for a signature rather than the multiple 763 
slightly different profiles which emerge from extraction of each 764 
tumour type separately. 765 

• The profiles of the mutational signatures extracted from cancer are highly variable. 766 
They range from some that have contributions from mutations of all subtypes in the 767 
mutation classification (“flat” or “featureless” signatures, e.g., SBS5 and SBS40) to 768 
others that are essentially defined by mutations at only one (or a small number) of 769 
the mutation subtypes (e.g., signatures SBS2, SBS13, SBS10a and SBS10b). There 770 
appears to be less concordance between the results of SigProfiler and 771 
SignatureAnalyzer for flat signatures than for signatures with distinct features 772 
indicating that generally, these may be more difficult to accurately extract and 773 
distinguish from each other. However, there is experimental support for the 774 
existence of SBS5 and SBS361,68. 775 

• We represented each signature as a single reference. This selection of a single 776 
reference signature does not exclude the possibility that signature profiles may show 777 
nuances and further complexity and may vary in different contexts (e.g., in different 778 
tissues). The rationale for selecting a single reference signature was the view that 779 
this would be a level of granularity useful to most researchers. For those with 780 
specialised interests in particular mutational processes and their components, we 781 
also provided the signatures extracted from individual tumour types, comprising 782 
PCAWG and non-PCAWG genomes and exomes 783 
(https://www.synapse.org/#!Synapse:syn12025142). 784 

• Attribution of signatures to cancer samples: 785 
o The reference signatures from SigProfiler and SignatureAnalyzer were used to 786 

estimate the number of mutations due to each signature in each tumour 787 
(https://www.synapse.org/#!Synapse:syn11804065). 788 

o SigProfiler and SignatureAnalyzer differ in their approaches for attributing 789 
signatures. However, both incorporate a set of rules based on prior 790 
knowledge and biological plausibility, and incorporate techniques to 791 
encourage sparsity in the number of signatures attributed to a given tumour. 792 

o Sparsity (limiting the numbers of signatures and limiting the numbers of 793 
signatures attributed to each cancer sample) is an important concept and 794 
feature of both SigProfiler and SignatureAnalyzer (both in signature 795 
extraction and attribution). Our prior beliefs are that (i) there is a limited set 796 
of significantly contributing mutational processes (and hence a limited set of 797 
mutational signatures) operating to generate somatic mutations across all 798 
cancers and (ii) that a limited set of mutational processes contribute to 799 
individual cancer genomes (as opposed to all mutational signatures 800 
contributing to all samples). Our aim in discovering mutational signatures is 801 
to reflect the underlying biological processes and to attribute them 802 
appropriately. It is not a mathematical exercise in which the main objective 803 
and priority is to minimize the difference between ܹ  and the original 804 ܪ×
spectra in ܸ. Indeed, if the latter was the main aim, for 96 mutation classes a 805 
set of 96 signatures each constituted entirely of mutations in just one class 806 
(and therefore ignoring sparsity), will always provide error free 807 
reconstruction but will provide absolutely no information about underlying 808 
mutational processes. 809 
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 810 
Presentation of the results of signature extraction and attribution from SigProfiler and 811 
SignatureAnalyzer. 812 

• The results (signatures and attributions) of the two methods have been presented 813 
separately. We have done this in preference to combining them. We have handled 814 
the two outputs in this way because we believe that this provides a simpler 815 
conceptual and technical basis on which the research community can understand 816 
the results, can employ the methods in future and can compare results with those 817 
shown in this paper. We also do not have a basis for believing that a 818 
combined/averaged/overlapping single result set is a better representation of the 819 
natural truth than either of the two result sets individually and do not have a well-820 
founded and simple technical approach for combining them. We have, however, 821 
provided comparisons of the outputs. 822 

• For brevity and for continuity with previous publications, the results from SigProfiler, 823 
a further elaborated version of previously described approaches3,4,18,36 that 824 
generated the 30 signatures previously shown in COSMICv237, are shown in the main 825 
manuscript, and the results from SignatureAnalyzer in supplementary data 826 
(https://www.synapse.org/#!Synapse:syn11738307). 827 

• Nomenclature of signatures is based on and extends the nomenclature previously 828 
used in COSMIC (COSMICv2, https://cancer.sanger.ac.uk/cosmic/signatures_v2)37. 829 

• Both methods analysed each mutation type (SBSs, DBSs and IDs) separately and also 830 
together as a composite signature. In future, however, SigProfiler will usually use the 831 
separately extracted single base substitution, indel and doublet base substitution 832 
signatures as its standard. This generally facilitates portability, and comparison of 833 
signature profiles with those from a variety of sample sets including targeted 834 
sequences, exomes etc.  835 

• SBS signatures reported in Supplementary Data include possible artefacts 836 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/ and see below). 837 
 838 

Quality control: annotating signatures as likely real or a possible artefact 839 
• Sequencing artefacts and differences in analysis pipelines can also generate 840 

mutational signatures. We have annotated which signatures are likely real or 841 
“possible artefact”. 842 

• There are multiple reasons for believing a signature reflects a biological mutational 843 
signature rather than an artefact. 844 

o The input data supporting the signature seem correct: key mutational 845 
features of the putative signature look real in a mapped-read browser such as 846 
Integrative Genomics Viewer (IGV, 847 
https://software.broadinstitute.org/software/igv/), or characteristic mutations 848 
are experimentally confirmed in the tumour and normal samples. Inspection 849 
in a mapped read browser is especially important in checking for possible 850 
problems in potentially new signatures arising in datasets other than the 851 
highly scrutinized and checked PCAWG and TCGA sets. Features associated 852 
with experimental, mapping, or other computational artefacts include strong 853 
preference for the first read, very low variant allele fractions, variants in 854 
regions of low germ-line sequencing coverage, variants found near indels in 855 
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low-complexity regions, variants from a signature only found in one 856 
sequencing centre etc. 857 

o The 96-mutation profile and additional features (e.g., strand asymmetry, 858 
association with replication timing), are known to result from a particular 859 
process in experimental systems. Examples: UV, polymerase epsilon 860 
proofreading deficiency, aristolochic acid and cisplatin exposure. 861 

o The putative signature is broadly consistent with previous biochemical 862 
knowledge of mutational processes (e.g., preference for G adducts in 863 
aflatoxin). 864 

o The putative signature dominates the spectra of some tumours (column J of 865 
https://www.synapse.org/#!Synapse:syn12016215). 866 

o The putative mutational signature is consistently deciphered from multiple 867 
independent datasets; this indicates that the signatures is either a common 868 
sequencing artefact or something real. 869 

o The putative signature correlates with known or suspected mutational 870 
exposures, endogenous processes, or repair defects, especially if some of 871 
those exposures/processes/repair defects result in overwhelming mutational 872 
spectra. Examples: melanoma / fair skin / UV exposure, POLE mutations, 873 
MMR deficiency and APOBEC germ line variants. 874 

o The putative signature correlates with other clinical characteristics, such as 875 
age at diagnosis (examples SBS1 and SBS5) or tobacco smoking (SBS4). 876 

o The mutational signature exhibits a strong transcriptional strand bias; it is 877 
hard to imagine an artefact with transcriptional strand bias. 878 

o The putative signature shows association with other genomic features, such 879 
as microindels in homopolymers, replication strand, replication timing, or 880 
nucleosome occupancy. 881 
 882 

Cancer sample sets on which different analyses have been conducted. 883 
• Because PCAWG genomes are of high quality with respect to the calling of all 884 

mutation types, all our analyses (all types of signature extraction and all types of 885 
signature attribution) have been conducted on the 2,780 PCAWG genomes. 886 

• SigProfiler also extracted SBS signatures from the non-PCAWG whole genomes, 887 
TCGA exomes, and non-TCGA exomes and attributed SBS signatures to them. 888 

• ID signatures have been extracted and attributed to PCAWG genomes and to a 889 
subset of TCGA exomes with large numbers of indels (the latter SigProfiler only). We 890 
have not done this for indels in non-PCAWG whole genome sequences and non-891 
TCGA exomes (i) because of the unknown and variable accuracy and standardisation 892 
of indel mutation calls from different groups generating the data, (ii) because in 893 
some cases no indel calls were provided by the data generator and (iii) because for 894 
exomes in most cases there would be very few mutations. 895 

• DBS signatures have been extracted and attributed to PCAWG genomes only. We 896 
have not done this for the other categories of samples because of the unknown and 897 
variable quality of the mutation calls, the possibility that filters introduced for quality 898 
control might deliberately exclude doublet mutations, and the small numbers of 899 
doublet mutations in exomes.  900 

• Consistent with the above, composite mutational signatures have only been 901 
extracted and attributed for PCAWG genomes. 902 
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 903 
Splitting of mutational signatures. 904 

• Certain previously existing single signatures have split into multiple constituent 905 
signatures in this analysis. This is likely due to the existence of multiple, partially 906 
correlated mutational processes with the same initiating factor (for example, UV 907 
exposure) but subsequent differences in underlying mechanisms which differ in 908 
intensity in different tissues or other contexts. A previous example of this for which 909 
we have allocated different signature numbers is the split of the usually co-occurring 910 
but independently varying consequences of APOBEC mutagenesis into signatures 911 
SBS2 and SBS13 (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). 912 

• Depending on the extent of correlation of the two signatures, and the available 913 
dataset/statistical power such signatures may manifest as a single signature, 914 
overlapping partially separated signatures or as two separate signatures. 915 

• We are aware that splitting of signatures can also be a mathematical artefact. 916 
However, we have used multiple extractions to confirm and validate signature splits 917 
and applied the principle of sparsity to limit artefactual splits 918 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). 919 

 920 
Better separation compared to COSMICv2 signatures 921 
As described in the manuscript, all mutational signatures previously reported on COSMIC 922 
were confirmed in the new set of analyses with median cosine similarity of 0.95. However, 923 
the separation between the COSMICv2 mutational signatures 924 
(https://cancer.sanger.ac.uk/cosmic/signatures_v2) is much worse compared to the 925 
separation between the PCAWG mutational signatures. One can easily discern this by visual 926 
examination of signature profiles. For example, in COSMICv2, signatures 5 and 16 have a 927 
cosine similarity of 0.90, thus making them hard to distinguish from one another. In 928 
contrast, in the current PCAWG analysis, SBS5 and SBS16 have a cosine similarity of 0.65. 929 
This allows unambiguously assigning SBS5 and SBS16 to different samples. In the PCAWG 930 
analysis, the larger number of samples has allowed reducing the bleeding between 931 
signatures and has given more unique and easily distinguishable signatures. One can 932 
evaluate the overall separation of a set of mutational signatures by examining the 933 
distribution of cosine similarities between the signatures in the set. The COSMICv2 934 
signatures have a median cosine similarity between the signatures in COSMICv2 of 0.238. In 935 
contrast, the PCAWG signatures have a much lower median cosine similarity between the 936 
signatures in PCAWG of 0.098. This 2-fold reduction in similarity is highly statistically 937 
significant (p-value: 9.1 x 10-25) and indicates a better separation between the signatures in 938 
the current PCAWG analysis. 939 
 940 
Correlations of mutational signature activity with age 941 
Prior to evaluating the association between age and the activity of a mutational signatures, 942 
all outliers for both age and numbers of mutations attributed to a signature in a cancer type 943 
were removed from the data. Outlier was defined as any value outside three standard 944 
deviations from the mean value. A robust linear regression model that estimates the slope 945 
of the line and whether this slope is significantly different from zero (F-test; p-value<0.05) 946 
was performed using the MATLAB function robustfit 947 
(https://www.mathworks.com/help/stats/robustfit.html) with default parameters. The p-948 
values yielded from the F-tests were corrected using the Benjamini-Hochberg procedure for 949 
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false discovery rate. Results are at https://www.synapse.org/#!Synapse:syn12030687 and 950 
https://www.synapse.org/#!Synapse:syn20317940. 951 
 952 
SigProfiler overview 953 
SigProfiler incorporates two distinct steps for identification of mutational signatures based 954 
on the previously described methodology3,4,18,36. The first step, SigProfilerExtraction, 955 
encompasses a hierarchical de novo extraction of mutational signatures based on somatic 956 
mutations and their immediate sequence context, while the second step, 957 
SigProfilerAttribution, focuses on accurately estimating the number of somatic mutations 958 
associated with each extracted mutational signature in each sample.  959 
 960 
SigProfilerExtraction 961 
(Note: This phase is termed SigProfiler in the MATLAB code and SigProfilerExtractor in 962 
Python). The hierarchical de novo extraction approach is an extension of our previous 963 
framework for analysis of mutational signatures (Extended Data Figure 8a)3,18. Briefly, for a 964 
given set of mutational catalogues, the previously developed algorithm was hierarchically 965 
applied to an input matrix ܯ	 ∈ 	ℝା௄×ீ  of non-negative integers with dimension K × G, 966 
where K is the number of mutation types and G is the number of samples. This previously 967 
described algorithm deciphers a minimal set of mutational signatures that optimally 968 
explains the proportion of each mutation type and estimates the contribution of each 969 
signature to each sample. The algorithm uses multiple NMFs to identify the matrix of 970 
mutational signatures, ܲ	 ∈ 	ℝା௄×ே, and the matrix of the activities of these signatures, ܧ	 ∈971 	ℝାே×ீ, as previously described3. The unknown number of signatures, N, is determined by 972 
human assessment of the stability and accuracy of solutions for a range of values for N, as 973 
described3. The identification of M and P is done by minimizing the generalized Kullback-974 
Leibler divergence: 975 
 976 min௉∈ℝశ(಼,ಿ)ா∈ℝశ(ಿ,ಸ)෍(ܯ௜௝݈ܯ݃݋௜௝ܯ෡௜௝௜௝ − ௜௝ܯ +  ,(෡௜௝ܯ
 977 
where ܯ	෢ 	∈ 	ℝା௄×ீ  is the unnormalized approximation of ܯ , i.e., ܯ	෢ = ܲ	 × ܧ	 . The 978 
framework is applied hierarchically to increase its ability to find mutational signatures 979 
generating few mutations or present in few samples. In detail, after application to a 980 
matrix M containing the original samples, the accuracy of reconstructing the mutational 981 
spectrum of each sample with the extracted mutational signatures is evaluated. Samples 982 
that are well-reconstructed are removed, after which the framework is applied to the 983 
remaining sub-matrix of M. 984 
 985 
Transcriptional strand bias associated with mutational signatures was assessed by applying 986 
SigProfilerExtraction to catalogues of in-transcript mutations that capture strand 987 
information (192 mutations classes, https://www.synapse.org/#!Synapse:syn12026195). 988 
These 192-class signatures were collapsed to strand-invariant 96-class signatures and 989 
compared to the signatures extracted from the 96-class data, revealing very high cosine 990 
similarities (median 0.90, column F in https://www.synapse.org/#!Synapse:syn12016215). 991 
 992 
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SigProfilerAttribution (single sample attribution) 993 
(Note: This phase is termed SigProfilerSingleSample in both the MATLAB and Python code). 994 
After signatures are discovered by SigProfilerExtraction, another procedure, 995 
SigProfilerAttribution, estimates their contributions to individual samples. For each 996 
examined sample, ܥ ∈ 	ℝା௄×ଵ, the estimation algorithm involves finding the minimum of the 997 
Frobenius norm of a constrained function (see below for constraints) for a set of vectors 998 ௜ܵୀଵ..௤ ∈ 	Q, where	Q is a (not necessarily proper) subset of the set of mutational signatures, 999 P, ie, Q	 ⊆ P. 1000 
 1001 ݉݅݊ ะ	ܥԦ −	෍൫ܵ௥ሬሬሬԦ × ௥൯௤ܧ

௥ୀଵ ะி
ଶ 																																																																(1) 

 1002 
In equation (1), Ԧܥ	  and each ܵ௥ሬሬሬԦ  are vectors of K nonnegative components reflecting, 1003 
respectively, the mutational spectrum of a sample and the r-th reference mutational 1004 
signature. All mutational signatures, ܵ௥ሬሬሬԦ, were identified in the SigProfilerExtraction step. 1005 
Each ܧ௥  is unknown scalar reflecting the number of mutations contributed by signature ܵ௥ሬሬሬԦ in 1006 
the mutational spectrum ܥԦ. The minimization of equation (1) is always performed under 1007 
two additional constraints: (i) ܧ௥ ≥ 0 and (ii) ฮܥԦ	ฮଵ ≥  ௥; The constrained minimization of 1008ܧ
equation (1) is performed using a nonlinear convex optimization programming solver using 1009 
the interior-point algorithm73. 1010 
 1011 
SigProfilerAttribution follows a multistep process, wherein equation (1) is minimized 1012 
multiple times with additional constraints (Extended Data Figure 8b).  1013 
 1014 
In the first phase, the subset 	Q  contains all signatures that were found by 1015 
SigProfilerExtraction in the same cancer type as the examined sample. Furthermore, 1016 
signatures violating biologically meaningful constraints based on transcriptional strand bias 1017 
and/or total number of somatic mutations are excluded from the set Q 1018 
(https://www.synapse.org/#!Synapse:syn12177009). Further, any ܵ௥ሬሬሬԦ × ௥ܧ  for which the 1019 
cosine similarity between መܥ	  and ܥԦ  is ≤ 0.01 are sequentially removed, where ܥመ =1020 ∑ ൫ܵ௥ሬሬሬԦ × ௥൯௤௥ୀଵܧ	 . Let ܶ be the final set of signatures attributed to the sample at the end of 1021 
the first phase. 1022 
 1023 
In the second phase, equation (1) is minimized by sequentially allowing each signature, 1024 ܵ௥ ∈ 		P\Q,to be added provided that it increases the cosine similarity between	ܥመ  and ܥԦ 1025 
by >0.05. During this second phase, several additional biological conditions are enforced: (i) 1026 
signatures SBS1 and SBS5 are allowed in all samples, (ii) if one connected SBS signature is 1027 
found in a sample than another one is also allowed in the sample (e.g., if SBS17a is found in 1028 
a sample then SBS17b is allowed in the sample). 1029 
 1030 
 1031 
SignatureAnalyzer overview 1032 
SignatureAnalyzer employs a Bayesian variant of NMF that infers the number of signatures 1033 
through the automatic relevance determination technique and delivers highly interpretable 1034 
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and sparse representations for both signature profiles and attributions that strike a balance 1035 
between data fitting and model complexity. Please see references 6,15,39 for more details.  1036 
 1037 
SignatureAnalyzer signature extraction 1038 
In 2,780 PCAWG samples, we applied a two-step signature extraction strategy using 1536 1039 
penta-nucleotide contexts for SBSs, 83 ID features, and 78 DBS features. In addition to 1040 
separate extraction of SBS, ID, and DBS signatures, we performed a "COMPOSITE" signature 1041 
extraction based on all 1697 features (1536 SBS + 78 DBS + 83 ID). For SBSs, the 1536 SBS 1042 
COMPOSITE signatures are preferred, and for DBSs and IDs, the separately extracted 1043 
signatures are preferred. 1044 
In step 1 of the two-step extraction process, global signature extraction was performed for 1045 
the low mutation burden samples (n = 2,624). These excluded hyper-mutated tumours: 1046 
those with putative polymerase epsilon (POLE) defects or mismatch repair defects 1047 
(microsatellite instable tumours - MSI), skin tumours (which had intense UV mutagenesis), 1048 
and one tumour with temozolomide (TMZ) exposure. Because SignatureAnalyzer's 1049 
underlying algorithm performs a stochastic search, different runs can produce different 1050 
results. In step 1 we ran SignatureAnalyzer 10 times and selected the solution with the 1051 
highest posterior probability. In step 2, additional signatures unique to hyper-mutated 1052 
samples were extracted (again selecting the highest posterior probability over 10 runs), 1053 
while allowing all signatures found in the low mutation burden-samples to explain some of 1054 
the spectra of hyper-mutated samples. This approach was designed to minimize a well-1055 
known "signature bleeding" effect or a bias of hyper- or ultra-mutated samples on the 1056 
signature extraction. In addition, this approach provided information about which 1057 
signatures are unique to the hyper-mutated samples which is later used when attributing 1058 
signatures to samples.  1059 
 1060 
SignatureAnalyzer signature attribution 1061 
A similar strategy was used for signature attribution; we performed a separate attribution 1062 
process for low- and hyper-mutated samples in all COMPOSITE, SBS, DBS, and ID signatures. 1063 
For downstream analyses, we preferred to use the COMPOSITE attributions for SBSs and the 1064 
separately calculated attributions for DBSs and IDs. Signature attribution in low-mutation 1065 
burden samples was performed separately in each tumour type (e.g., Biliary-AdenoCA, 1066 
Bladder-TCC, Bone-Osteosarc, etc.). Attribution was also performed separately in the 1067 
combined MSI (n=39), POLE (n=9), skin melanoma (n=107), and TMZ-exposed samples 1068 
(https://www.synapse.org/#!Synapse:syn11738314). In both groups, signature availability 1069 
(i.e., which signatures were active or not) was primarily inferred through the automatic 1070 
relevance determination process applied to the activity matrix H only, while fixing the 1071 
signature matrix, W. The attribution in low-mutation burden samples was performed using 1072 
only signatures found in the step 1 of the signature extraction. Two additional rules were 1073 
applied in SBS signature attribution to enforce biological plausibility and minimize a 1074 
signature bleeding: (i) allow signature SBS4 (smoking signature) only in lung and head and 1075 
neck cases; (ii) allow signature SBS11 (TMZ signature) in a single GBM sample. This was 1076 
enforced by introducing a binary, signature-by-sample, signature indicator matrix Z (1 - 1077 
allowed and 0 - not allowed), which was multiplied by the H matrix in every multiplication 1078 
update of H. No additional rules were applied to ID or DBS signature attributions, except 1079 
that signatures found in hyper-mutated samples were not allowed in low-mutation burden 1080 
samples. 1081 
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 1082 
Tests on Synthetic Data 1083 
Our goal was to evaluate SignatureAnalyzer (SA) and SigProfiler (SP) on realistic synthetic 1084 
data. We operationally defined "realistic" as corresponding to either SA's or SP's analysis of 1085 
the PCAWG genome data. SA’s reference signature profiles were based on “COMPOSITE” 1086 
signatures, consisting of 1536 strand-agnostic single base substitutions (SBSs) in 1087 
pentanucleotide context, 78 doublet base substitutions and 83 types of small insertions and 1088 
deletions, for a total of 1,697 mutation types. SP’s reference analysis was based on strand-1089 
agnostic single base substitutions in the context of one 5’ and one 3’ base; we term this 1090 
“SBS96” data. For each test, we generated two sets of "realistic" data: SP-realistic, based on 1091 
SP's reference signatures and attributions, and SA-realistic, based on SA's reference 1092 
signatures and attributions, as well as two other types of data that involved using SA profiles 1093 
with SP attributions and vice versa.  1094 
  1095 
Generating synthetic data – overview. For tests (i) through (x) below, Synthetic data for 1096 
sets of synthetic tumours of a given cancer type, t, were generated based on three 1097 
parameters that were in turn based on the observed statistics for each signature, s, in 1098 
cancer type t: 1099 
  1100 
π, the proportion of tumours of cancer type t with signature s 1101 
  1102 
μ, the mean of log10 of the number of s mutations across those tumours of type t that have 1103 
signature s 1104 
  1105 
σ, the standard deviation of log10 of the numbers of s mutations across those t tumours that 1106 
have s 1107 
  1108 
To generate synthetic data, 1109 

(i) the proportion of tumours affected by s was drawn from the binomial distribution based 1110 
on π, 1111 

(ii) the number of mutations due to s in an affected tumour was drawn from a normal 1112 
distribution based on μ and σ.  1113 

The code used to generate the synthetic data and summarize SignatureAnalyzer and 1114 
SigProfiler results is open-source and freely available as the SynSig package: 1115 
https://github.com/steverozen/SynSig/tree/v0.2.0. 1116 

Description of each suite of synthetic data sets 1117 
  1118 
i. Synthetic pancreatic adenocarcinoma (1,000 spectra). 1119 
https://doi.org/10.7303/syn18500212.1 1120 
  1121 
ii. 2,700 synthetic whole-genome mutational spectra – 300 spectra from each of 9 cancer 1122 
types. These spectra consist of 300 synthetic spectra from each of the following cancer 1123 
types: bladder transitional cell carcinoma, oesophageal adenocarcinoma, breast 1124 
adenocarcinoma, lung squamous cell carcinoma, renal cell carcinoma, ovarian 1125 
adenocarcinoma, osteosarcoma, cervical adenocarcinoma, and stomach adenocarcinoma. 1126 
https://doi.org/10.7303/syn18500213.1 1127 
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  1128 
iii. Mutational spectra generated from combinations of flat, relatively featureless 1129 
mutational signatures  --  version 1, 1000 synthetic tumours comprised of 500 synthetic 1130 
Kidney-RCCs (high prevalence and mutation load from SBS5 and SBS40 signatures) and 500 1131 
synthetic ovarian adenocarcinomas (high prevalence of and mutation load from SBS3). This 1132 
data set embodies tumours with high prevalence of the main flat signatures, SBS3, SBS5, 1133 
and SBS40, in a realistic context. 1134 
https://doi.org/10.7303/syn18500214.1 1135 
  1136 
iv. Mutational spectra generated from combinations of flat, relatively featureless 1137 
mutational signatures --  version 2, 1000 synthetic spectra all constructed entirely from 1138 
SBS3, SBS5, and SBS40, using mutational loads modelled on kidney-RCC (SBS5 and SBS40) 1139 
and ovarian adenocarcinoma (SBS3). Most synthetic spectra have contributions from all 1140 
three signatures. 1141 
https://doi.org/10.7303/syn18500215.1 1142 
 1143 
v. Mutational spectra generated from signatures with overlapping and potentially 1144 
interfering profiles - version 1.  500 synthetic bladder transitional cell carcinomas (high in 1145 
SBS2 and SBS13) and 500 synthetic skin melanomas (high in SBS7a,b,c,d). The potential 1146 
interference is between SBS2 (mainly C > T) and SBS7a,b (mainly C > T). 1147 
https://doi.org/10.7303/syn18500217.1 1148 
  1149 
vi. Mutational spectra generated from signatures with overlapping and potentially 1150 
interfering profiles - version 2. 1000 synthetic tumours composed from SBS2 and 1151 
SBS7a,b.  Mutational load distributions were drawn from bladder transitional cell carcinoma 1152 
(SBS2) and skin melanoma (SBS7a,b).  Most spectra contain both signatures.  The potential 1153 
interference is between SBS2 (mainly C > T) and SBS7a,b (mainly C > T). 1154 
https://doi.org/10.7303/syn18500216.1 1155 
  1156 
vii. Mutational spectra generated from combinations of signatures conferring high and 1157 
low mutation burdens. Based on 500 synthetic non-hypermutated tumours (parameters for 1158 
SBS1 and SBS5 estimated from colorectal and uterine adenocarcinomas) and 500 hyper-1159 
mutated tumours (parameters for SBS26 and SBS44 estimated from hypermutated 1160 
colorectal and uterine adenocarcinomas). High and low mutation burden tumours are 1161 
segregated for SignatureAnalyzer (which analyses low mutation burden tumours first, then 1162 
high-burden tumours). SigProfiler analyses all tumours together. 1163 
https://doi.org/10.7303/syn18500218.1 1164 
https://doi.org/10.7303/syn18500219.1 1165 
https://doi.org/10.7303/syn18500216.1 1166 
  1167 
viii. A set of 30 random 96-feature mutational signature profiles and a set of 30 random 1168 
1697-feature signature profiles (mimicking COMPOSITE signatures, which have 1697 1169 
mutation types).  Each of these are used in two types of exposures, one with more (mean 1170 
~15.6) signatures per tumour and one with fewer (mean ~4) signatures per tumour. 1171 
https://doi.org/10.7303/syn18500221.1 1172 
 1173 
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ix. 2,700 whole-exome mutational spectra consisting of 300 synthetic spectra from each of 1174 
9 different cancer types. This test data set was generated from test ii by reducing the 1175 
number of mutations of each type by 0.013 (approximately ratio of mutation counts 1176 
between whole exome and whole genome mutational spectra).  1177 
https://doi.org/10.7303/syn18909829.4 1178 
 1179 
Summary of findings: Both SA and SP extracted substantially fewer signatures in this test 1180 
than in test ii. In particular: 1181 
  1182 
SA: SA extracted only 18 signatures from the SA-realistic whole-exome data in this suite, 1183 
compared to the 40 signatures it extracted from the corresponding whole-genome synthetic 1184 
data in test ii and compared to the 39 ground-truth signatures in the synthetic spectra. The 1185 
average cosine similarity between ground-truth and extracted signatures for the synthetic 1186 
exome data was 0.863, compared to 0.968 for the signatures extracted from the whole-1187 
genome spectra in test ii. 1188 
 1189 
SP: SP extracted only 8 signatures from the SP-realistic whole-exome data in this suite, 1190 
compared to the 19 it extracted from the whole-genome data in test ii and the 21 ground-1191 
truth signatures in the synthetic spectra. The average cosine similarity between ground-1192 
truth and extracted signatures for the synthetic exome data was 0.825, compared to 0.965 1193 
for the signatures extracted from the whole-genome spectra in test ii. 1194 
  1195 
x. 1,350 synthetic whole-genome mutational spectra: 150 spectra from each of 9 cancer 1196 
types. This test data set consisted of every other tumour from test ii. 1197 
 1198 
Summary of findings: On the SA-realistic synthetic data, SA extracted fewer signatures in 1199 
this data set than in test ii, and in fact the number of signatures extracted was closer to the 1200 
ground truth and the cosine similarities were there higher. SA over-split in the 1201 
corresponding set of 2,700 tumours, and we speculate that SA’s tendency to over-split 1202 
signatures is partly dependent on the number of input spectra, with the result that 1203 
extraction on 1,350 led to less over-splitting. SP extracted fewer signatures on this data set 1204 
than on test ii. In particular: 1205 
  1206 
SA: SA extracted 38 signatures from the SA-realistic data in this suite, compared to the 40 1207 
signatures it extracted from the 2,700 whole-genome spectra in test ii and compared to the 1208 
39 ground-truth signatures. The average cosine similarity between ground-truth and 1209 
extracted signatures for 1,350 genomes was 0.979 compared to 0.968 for the signatures 1210 
extracted from the 2,700 whole-genome spectra in test ii. 1211 
  1212 
SP: SP extracted 16 signatures from the SP-realistic data in this suite, compared to the 19 1213 
signatures it extracted from the 2,700 whole-genome spectra in test ii and the 21 ground-1214 
truth signatures. The average cosine similarity between ground-truth and extracted 1215 
signatures for the 1,350 spectra was 0.939 compared to 0.965 for the signatures extracted 1216 
from the 2,700 spectra in test ii. 1217 
 1218 
xi. Extraction of signatures from exome subsets of PCAWG mutational spectra. Our 1219 
objective was to further test whether availability of mutations from whole-genome 1220 
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mutational spectra, as opposed to whole-exome spectra, enabled us to extract larger 1221 
numbers of more accurate mutational signature profiles.  In this test, we extracted 1222 
signatures from mutational spectra that were based on only the exome regions of the actual 1223 
PCAWG tumours (rather than on the purely synthetic data in test ix). The input data and 1224 
extraction results are at https://doi.org/10.7303/syn18818766. We next summarize our 1225 
findings for each of the SBS, DBS, and ID mutational signatures. 1226 
  1227 
xi-1 SBS signatures. SignatureAnalyzer on COMPOSITE mutational classes (1536 SBS in 1228 
pentanucleotide context plus DBS and ID) extracted 12 mutational signature profiles from 1229 
the whole-exome data, none of which strongly resembled any of the 58 signatures it 1230 
extracted from the whole-genome data. However, some signatures were unions or splits of 1231 
the signatures extracted from the whole genome data. For example, WI was a union of the 1232 
APOBEC signatures BI_COMPOSITE_SBS2_P and BI_COMPOSITE_SBS13_P. More broadly, 1233 
somewhat recognizable SBS portions of the signatures were combined with the DBS and ID 1234 
portions of the signatures in difficult-to-interpret combinations. We believe that SBS 1235 
mutation counts were too low when spread across 1536 mutational classes to support 1236 
robust mutational signature extraction. 1237 
  1238 
SigProfiler on 96 SBS mutational classes extracted 17 mutational signature profiles from the 1239 
exome data, compared to 48 that it extracted from the whole-genome data. The median 1240 
cosine similarity of the exome-extracted signature profiles to the mutational signature 1241 
profiles extracted from the whole genome data was 0.94. An outlier was SBS-E-2, which was 1242 
a union of SBS2 and SBS13 (which tend to co-occur). 1243 
 1244 
xi-2 DBS signatures. SignatureAnalyzer extracted 2 DBS signatures from the whole-exome 1245 
data, compared to 15 DBS signatures that it extracted from the full whole genome data. One 1246 
exome-extracted signature was essentially identical to BI_DBS1 (consisting almost entirely 1247 
of CC > TT mutations), and one somewhat similar to BI_DBS2 (mostly CC > AA) but with 1248 
many other mutational classes in addition. 1249 
  1250 
SigProfiler extracted 3 DBS signatures from the whole-exome data, compared to the 11 DBS 1251 
signatures that it extracted from the whole genome data. The exome-extracted signatures 1252 
were good approximations of DBS1, DBS2, and DBS10 (cosine similarities 1, 0.93, and 0.98). 1253 
 1254 
xi-3 ID signatures. SignatureAnalyzer extracted 4 ID signatures from the whole-exome data, 1255 
compared to 29 ID signatures extracted from the whole-genome data. It extracted close 1256 
approximations of BI_ID1_P and BI_ID2_P  with cosine similarities 0.97 and 0.94. These are 1257 
insertions (signature W.3) and deletions (signature W.1) of T:A in poly T:A. 1258 
SignatureAnalyzer extracted 2 additional signatures. One of these (W.4) was a version of 1259 
BI_ID4_P with several mutational classes absent. The other (W.2) appeared to be a union of 1260 
many of the remaining ID signatures. 1261 
  1262 
SigProfiler extracted 6 ID signatures from the whole-exome data, compared to the 17 ID 1263 
signatures that it extracted from the whole genome data. Signatures ID-E-1, ID-E-2, ID-E-3, 1264 
and ID-E-4 were good approximations of ID1, ID2, ID3, and ID4, respectively. An additional 1265 
signature, ID-E-5, was approximately a union of ID6 and ID8. The remaining signature, ID-E-6 1266 
was a partial version (deletions in C homopolymers only) of ID7. 1267 
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 1268 
Detailed Summary of Results (including links to input synthetic data sets and the signature 1269 
profiles extracted); https://doi.org/10.7303/syn18497223 provides a table with the number 1270 
of signatures extracted by SigProfiler and SignatureAnalyzer for each synthetic data set and 1271 
the cosine similarities to the input ground-truth signatures. See above for overall 1272 
interpretation of the results.  1273 
 1274 
Data Availability 1275 
Data are available at https://www.synapse.org/#!Synapse:syn11726601/wiki/513478. All 1276 
figures and extended data figures have associated raw data. 1277 
 1278 
Code Availability 1279 
SigProfiler is available both as a MATLAB framework and as a Python package. In both cases, 1280 
SigProfiler is fully functional, free, and open-source tool distributed under the permissive 2-1281 
Clause BSD License. SigProfiler in MATLAB can be downloaded from: 1282 
https://www.mathworks.com/matlabcentral/fileexchange/38724-sigprofiler  1283 
SigProfiler in Python can be downloaded from: 1284 
https://github.com/AlexandrovLab/SigProfilerExtractor. SignatureAnalyzer code is available at 1285 
https://www.synapse.org/#!Synapse:syn11801492. The code used to generate the synthetic data 1286 
and summarize SignatureAnalyzer and SigProfiler results is open-source and freely available as the 1287 
SynSig package: https://github.com/steverozen/SynSig/tree/v0.2.0 under the GPL3 license. 1288 

1289 
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Extended Data Figure and Table Legends 1478 
 1479 
Extended Data Figure 1. Histogram of number of signatures attributed in each of 2,780 1480 
PCAWG samples by SigProfiler and SignatureAnalyzer. Hypermutated tumours and 1481 
melanomas (156) are listed at https://www.synapse.org/#!Synapse:syn11738314. 1482 
 1483 
Extended Data Figure 2. Comparisons between SigProfiler and SignatureAnalyzer results. 1484 
Comparison of the attributions for corresponding SigProfiler (a) and SignatureAnalyzer (b) 1485 
signatures. Each of the SBS signatures extracted by SigProfiler and SignatureAnalyzer was 1486 
paired with the signature of highest cosine similarity in the extraction by the other method 1487 
(if one with >0.85 cosine similarity exists). The first column of the plot corresponds to the 1488 
fraction of mutations assigned by one method (summed across samples and mutation 1489 
types) that were also assigned by the other method. The remaining mutations were then re-1490 
distributed to the other signatures in the extraction, weighted by their relative probabilities 1491 
of having been generated by each signature, and the resulting fraction of mutations is 1492 
plotted. Signatures on the x-axis are only shown if they contribute at least 0.1 fraction of 1493 
mutations to at least one signature on the y-axis. Cosine similarities between SigProfiler and 1494 
SignatureAnalyzer DBS (c) and ID (d) signatures. Brown nodes represent SigProfiler 1495 
signatures; green nodes represent SignatureAnalyzer signatures. Matches with cosine 1496 
similarities > 0.8 are show as edges, with the width of the edge indicate the strength of the 1497 
similarity. The locations of the nodes have no significance. Signatures with no matches of > 1498 
0.8 cosine similarity are show below. Note that SigProfiler ID15 and ID17 were extracted 1499 
from data that were not analysed by SignatureAnalyzer. Suffixes 'P' and 'S' on 1500 
SignatureAnalyzer signature names indicate (1) signatures extracted from non-1501 
hypermutated, non-melanoma tumours and (2) hypermutated and melanoma tumours, 1502 
respectively. 1503 
 1504 
Extended Data Figure 3. SignatureAnalyzer reference signatures. See legend of main text 1505 
Figure 2. 1506 
 1507 
Extended Data Figure 4. The number of SBS mutations attributed to each mutational 1508 
signature for each cancer type over the 2,780 PCAWG tumours by SignatureAnalyzer. See 1509 
main text Figure 3 for explanation. 1510 
 1511 
Extended Data Figure 5. The number of SBS mutations attributed to each mutational 1512 
signature to each cancer type over the complete set of 23,829 cancer samples analysed by 1513 
SigProfiler. See main text Figure 3 for explanation. 1514 
 1515 
Extended Data Figure 6. Associations of between SBS, DBS, and ID signature activities for 1516 
SigProfiler (a) and SignatureAnalyzer (b). Each node represents an SBS (light green), DBS 1517 
(dark green) or ID (black) signature. Any two signatures with sample attributions that 1518 
significantly correlated with R2 > 0.3 (SigProfiler) or > 0.5 (SignatureAnalyzer) are connected 1519 
by edges. Edge widths are proportional to the strength of the correlation. Signatures with 1520 
no significant correlation to any other signature above the relevant threshold are not 1521 
shown. Signature locations are fit for display purposes only and do not indicate similarity.  1522 
 1523 
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Extended Data Figure 7. Mutational signatures extracted from the composite feature set 1524 
consisting of SBSs in pentanucleotide context, DBSs, and IDs. For each of the four 1525 
composite mutational signatures shown, the top panel is the SBS signature collapsed to 96 1526 
SBS classes, the middle panel is the co-extracted DBS signature, and the lower panel is the 1527 
co-extracted ID signature. Note the similarities between the DBS portion of Composite 4 and 1528 
DBS2, between the ID portion of Composite 4 and ID3, and other similarities noted in the 1529 
figure. 1530 
 1531 
Extended Data Figure 8. SigProfiler signature extraction (a) and attribution (b). See 1532 
Methods for description.  1533 
 1534 
Extended Data Table 1. The number of DBSs is proportional to the number of SBSs with 1535 
the exception of a few cancer types (ColoRect-AdenoCA, Lung-AdenoCA, Lung-SCC, Skin-1536 
Melanoma) analysed by the following linear regression (computed by an R function call): 1537 
                         glm(DBS.counts ~ SBS.counts + Cancer.Types). 1538 
 1539 
Extended Data Table 2. Numbers of insertion/deletion mutations due to ID1, ID2, and all 1540 
other ID signatures in hypermutators and non-hypermutators. 1541 
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Extended Data Fig 8

S2: Consider signatures 
extracted from this tumour type

Signature rules (only SBSs)
1) Exclude signatures if they 
lack the appropriate 
statistically significant strand 
bias: applied to signatures 4, 
8, 7a/b/c/d, 11, 12, 16, 22, 
23, 24, 25, 27, 31, 32, 33, 35, 
42
2) Exclude 10a/b if sample 
has < 10^5 SBSs in WGS
3) Exclude 6, 14,15, 20, 21, 26 
if sample has < 10^4  SBSs in 
WGS

S7: Consider all other signatures

1) Remove least contributing 
signature if removal reduces 
cosine similarity < 0.01
2) “Connected signature 
inclusion rules” for SBSs; see 
Methods 1) For SBS, add SBS1 and SBS5 

if addition improves cosine 
similarity
2) For DBS, ID, and SBS 
signatures other than 1 or 5, 
add most contributing 
signature if addition 
increases cosine similarity > 
0.05
3) “Connected signature 
inclusion rules” for SBSs; see 
Methods

S9: Output the results

Complete 
set of 

mutational 
signatures

S1: Examine an individual 
sample

S3: Apply rules for mutational 
signatures

S4: Evaluate sample with all N
remaining signatures

S5: Exclude each of the N 
signatures and evaluate the 
sample with N-1 signatures 

S6: Evaluate sample with the 
remaining 

M signatures

S8: Include each of the remaining 
signatures from the global set of 

signatures and evaluate the sample 
with M+1 signatures 

b Attribution of activities of mutational signatures in samples

Six-step 
approach for 
deciphering 

known number 
of N mutational 

signatures

Evaluate 
stability

Se
le

ct
 th

e 
op

tim
al

 
va

lu
e 

of
 N

Repeat N = 1 ... (G – 1)

Step A (Apply the approach to a set of samples D; initially D contains all samples, i.e., D=M)

Step B (Solution evaluation and re-iteration)
Extracted mutational signatures and their activities to individual samples are saved into a set S. The activity of
any signature that does not increase the cosine similarity of a sample with more 0.01 was removed from the
sample (i.e., assigned a value of zero). Step A is repeated for all samples for which the identified signatures do
not explain their patterns (cosine similarity <0.95). The algorithm continues to the step C when step A cannot
find any stable signatures.

Described in detail in (Alexandrov et al., Cell Rep. 2013;3(1):246-59).

Step C (Clustering of mutational signatures)
Hierarchical consensus clustering was applied to the set S to derive the consensus mutational signatures across
the set of samples M.

a Extraction of mutational signatures
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Estimate Std.Error t value Pr(>|t|)

(Intercept) 5.61E+00 8.76E+01 0.064 0.9489

SBS.counts 3.74E-03 1.25E-04 29.841 <2.00E-16 ***

Bladder-TCC 1.32E+01 1.39E+02 0.095 0.92432

Bone-Osteosarc 2.18E+00 1.21E+02 0.018 0.98567

Bone-Other -2.81E+00 1.33E+02 -0.021 0.9831

Breast 5.32E+00 9.44E+01 0.056 0.95511

Cervix -1.06E+01 1.45E+02 -0.073 0.94185

CNS-GBM -2.81E+01 1.19E+02 -0.236 0.81352

CNS-Medullo -7.04E+00 9.75E+01 -0.072 0.94239

CNS-Oligo -1.03E+01 1.50E+02 -0.069 0.94539

CNS-PiloAstro -5.87E+00 1.03E+02 -0.057 0.95467

ColoRect-AdenoCA -4.11E+02 1.12E+02 -3.667 0.00025 ***

Eso-AdenoCA -1.56E+01 1.02E+02 -0.153 0.87838

Head-SCC 5.27E+01 1.11E+02 0.474 0.63541

Kidney-ChRCC -3.14E+00 1.17E+02 -0.027 0.97857

Kidney-RCC 5.61E+01 9.76E+01 0.574 0.56584

Liver-HCC 7.82E+01 9.21E+01 0.849 0.39575

Lung-AdenoCA 5.02E+02 1.21E+02 4.136 3.63E-05 ***

Lung-SCC 5.85E+02 1.15E+02 5.078 4.08E-07 ***

Lymph-BNHL 1.04E+01 1.01E+02 0.103 0.91765

Lymph-CLL -4.30E+00 1.02E+02 -0.042 0.96655

Myeloid-AML -1.89E+00 1.79E+02 -0.011 0.99156

Myeloid-MDS/MPN -7.43E+00 1.10E+02 -0.067 0.94622

Ovary-AdenoCA 3.59E+01 1.00E+02 0.358 0.72023

Panc-AdenoCA -8.34E-01 9.37E+01 -0.009 0.99289

Panc-Endocrine -5.70E+00 1.04E+02 -0.055 0.95628

Prost-AdenoCA 2.52E+00 9.27E+01 0.027 0.97831

Skin-Melanoma 1.67E+03 1.02E+02 16.47 <2.00E-16 ***

SoftTissue-Leiomyo 5.98E+00 1.60E+02 0.037 0.97016

SoftTissue-Liposarc 7.77E+00 1.48E+02 0.053 0.95804

Stomach-AdenoCA -3.04E+01 1.06E+02 -0.287 0.77417

Thy-AdenoCA -4.80E+00 1.15E+02 -0.042 0.96676

Uterus-AdenoCA -1.25E+02 1.14E+02 -1.096 0.27304

  
 

Extended Data Table 1. The number of DBSs is proportional to the number of SBSs with 
the exception of a few cancer types (ColoRect-AdenoCA, Lung-AdenoCA, Lung-SCC, Skin- 
Melanoma), analysed by the following linear regression (computed by an R function 

call):                         glm(DBS.counts ~ SBS.counts + Cancer.Types)
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Signature Count Fraction Count Fraction Count Fraction

ID1 593,935 0.236 399,633 0.276 993,568 0.250

ID2 1,838,867 0.730 252,893 0.174 2,091,760 0.527

ID1+ID2 2,432,802 0.966 652,526 0.450 3,085,328 0.777 

Other ID 
signatures 85,038 0.034 797,964 0.550 883,002 0.223

Total 2,517,840 1 1,450,490 1 3,968,330 1 

Extended Data Table 2. Numbers of insertion/deletion mutations due to 
ID1, ID2, and all other ID signatures combined, in hypermutators and non-
hypermutators

Hypermutators Non-
hypermutators All Tumours
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